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Introduction

It is now widely accepted that the immune system is able to rec-
ognize and destroy transformed cells before they become clini-
cally detectable, a process known as tumor immunosurveillance. 
The development of effective antitumor immune responses relies 
on coordinated interactions of host immunocompetent cells as 
well as on the generation of tumor antigen (Ag)-specific cytotoxic 
T lymphocytes (CTLs). CTLs play a major role in the defense 
against cancer as they recognize, via T-cell receptors (TCRs), 
specific antigenic peptides presented on the surface of trans-
formed cells by major histocompatibility complex (MHC) Class I 
molecules. To become competent killer cells, naive circulating 
CD8+ T lymphocytes require an efficient priming by professional 
antigen-presenting cells (APC), namely dendritic cells (DCs), as 
well as an adequate CD4+ T-cell help, mostly mediated by cyto-
kines and chemokines.1–3 Primed T cells then clonally expand 
and leave lymph nodes (LNs), infiltrate tumor tissues before and 
eventually get activated to mediate effector functions (Fig. 1). 
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The destruction of tumor cells by the immune system is under 
the control of positive and negative receptors that tightly 
regulate T-cell effector functions. The T-cell receptor (TCR) 
inhibitory molecule CD5 critically contributes to the regulation 
of antitumor immune responses. Indeed, the modulation of CD5 
within the tumor microenvironment corresponds to a strategy 
adopted by tumor-specific cytotoxic T lymphocytes (CTLs) to 
optimize their cytotoxic and cytokine secretion functions. In 
this review, we provide insights into the immunobiology of CD5 
and its role in regulating antitumor CD8 T-cell responses, and 
suggest the possibility of targeting CD5 to improve the efficacy 
of current immunotherapeutic approaches against cancer.
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The killing of target cells occurs either directly, upon the release 
of cytolytic granule contents, or indirectly, following the secre-
tion of effector cytokines.4–7

The identification of tumor-associated antigens (TAAs) and 
the presence of TAA-specific CD8+ tumor-infiltrating T lympho-
cytes (TILs) within spontaneously regressing tumors provided 
evidence in support of the existence of CTL-mediated antitu-
mor immune responses.8 Moreover, tumor infiltration by CD8+ 
T lymphocytes has often been associated with an improved prog-
nosis.9 However, it is currently acknowledged that this favorable 
prognostic trend strongly depends on the environmental context 
of the immune infiltrate, and better outcomes are correlated with 
the absence of immunosuppressive factors impairing CTL effec-
tor functions. Indeed, antitumor immune responses are often 
inapt to control tumor growth in the immunosuppressive micro-
environment that is frequently encountered within tumors, 
leading to insufficient recruitment and/or altered activation of 
effector T cells.10

The activation of Ag-specific T cells via the TCR is a complex 
signaling process leading to their proliferation and differentia-
tion into effector cells. An improved knowledge of the mecha-
nisms controlling T-cell activation and proliferation has led to 
the identification of regulatory molecules that either activate or 
inhibit T-cell functions. Indeed, beside activating molecules, T 
cells also express several inhibitory receptors, such as CTLA-4, 
TIM-3 and PD-1, which—upon interaction with the respec-
tive ligands (i.e., B-7-1/B7-2, galectin-9 and PD-L1/PD-L2)—
impair T-cell activation.11,12 CTLA-4, TIM-3 and PD-1 play a 
key role in T-cell unresponsiveness and dysfunction, and have 
been involved in the frequently inadequate control of tumor 
progression.13,14 Blocking these inhibitory receptors has been 
associated with a beneficial therapeutic effect in experimental 
tumor models as well as in melanoma patients.15–17 Other TCR 
inhibitory molecules exist, including CD5, and hence may rep-
resent alternative therapeutic targets to treat human neoplasms. 
In this review, we present a brief overview on the biology of 
CD5 in health and diseases, focusing on the role of CD5 in 
antitumor T-cell responses and its potential therapeutic inter-
est for the optimization of current immunotherapeutic strategies 
against cancer.
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Figure 1. Intratumoral CD5 downregulation potentiates antitumor T-cell responses. Malignant cells express pathogen-associated molecular patterns 
(PAMPs) that can be recognized by pattern recognition receptors (PRRs) on dendritic cell (DC) precursors, triggering the local release of cytokines 
and chemokines. This results in the recruitment and activation of innate immunity effector cells, including macrophages (mφ), natural killer (NK) and 
natural killer T (NKT) cells, all of which are able to kill cancer cells. DCs engulf apoptotic tumor cells, undergo a maturation process and then migrate 
to regional lymph nodes, where they present processed tumor-derived peptides to CD8+ and CD4+ T cells upon the upregulation of MHC Class I and II 
molecules. Activated cytotoxic T lymphocytes (CTLs) leave lymphoid organs to infiltrate tumor tissues and exert effector functions. Depending on the 
strength of the TCR/peptide-MHC Class I molecule interactions, tumor-specific CTLs can undergo an intratumoral adaptation process by downregulat-
ing the expression of CD5, as a means to enhance TCR signaling and to overcome tumor escape deriving from an altered expression of peptide/MHC 
(pMHC) complexes. This results in increased T-cell reactivity and optimized cytotoxic activity toward tumors that express low levels of pMHC com-
plexes. Nevertheless, the downregulation of CD5 in situ sensitizes tumor-specific T lymphocytes to activation-induced cell death (AICD) through the 
upregulation of FAS ligand (FASL).
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CD5 Signaling Mechanisms

Accumulating evidence indicates that CD5 is recruited at the 
immune synapse formed between T cells and APCs.43,44 It has 
been demonstrated that CD5 co-localizes with TCR/CD3 com-
plexes at the immune synapse and reduces TCR-conveyed signals, 
such as the Ca2+ response induced by Ag presentation and the 
extent of tyrosine phosphorylation, without affecting the forma-
tion and stability of conjugates.44 It has also been shown that the 
CD5-mediated TCR inhibition does not require the extracellular 
domain of the molecule,45 but only its cytoplasmic tail,36,46 where 
the pseudo-ITAM domain is likely to play an essential role.44,47 
However, a role for the extracellular domain of CD5 cannot be 
totally excluded, since neutralizing mAbs against this domain48 
as well as soluble CD5-Fc molecules49 can block the inhibitory 
effect of CD5 in some experimental models or specific microen-
vironment, such as within tumors, also suggesting the participa-
tion of a putative ligand to these effects.

The cytoplasmic tail of CD5 contains several tyrosine resi-
dues. Among them, the first one, Tyr429, is included in a canoni-
cal SRC autophosphorylation site (DNEY). Moreover, Tyr429 
and Tyr441 are in a YSQP-(x8)-YPAL pseudo-ITAM motif. 
The clustering of CD5 with the TCR is probably critical to trig-
ger the phosphorylation of these residues. However, it is not yet 
clear how these phosphorylation events lead to the inhibition of 
TCR signaling. Several effector molecules positively or negatively 
involved in TCR-induced responses, such as SHP-1, rasGAP, 
CBL, CK2, ZAP70 and PI3K, have been reported to associate 
with tyrosine phosphorylated CD5.21,47,50 CD5 phosphorylation 
could therefore be necessary to recruit inhibitory signaling mol-
ecules in the proximity of the TCR and/or to sequester activa-
tion kinases away from the TCR complex, thereby reducing the 
strength of Ag-receptor signaling. More recently, it has also been 
reported that CD5-mediated T-cell inhibition is dependent on 
phosphorylation of the negative regulatory tyrosine (Tyr531) 
of the SRC kinase member FYN, resulting in a reduction of its 
kinase activity and inhibition of ZAP70.51

Regulation of CD5 Expression  
during Thymocyte Development

The expression of CD5 is tightly regulated during T-cell devel-
opment.52 It has been shown that thymic selection is sensitive to 
variations in the levels of CD5 on T-cell surface. During nor-
mal thymocyte development, low levels of CD5 are expressed 
on immature double negative (DN) CD4−/CD8− thymocytes. 
CD5 surface expression then increases at both the double posi-
tive CD4+/CD8+ and single positive (SP) CD4+ or CD8+ stage, 
and relatively high levels of CD5 are maintained on circulating 
SP T cells.52,53 The mechanisms by which CD5 expression lev-
els change during thymocyte development involve the pre-TCR 
first and then the TCR signal intensity for specific peptide-MHC 
(pMHC) complexes.52

The regulation of CD5 during T-cell development is critical for 
setting TCR response thresholds to pMHC complexes encoun-
tered during thymic selection as well as for the establishment of 

CD5 Structure and Cellular Distribution

CD5, also known as Leu-1 in humans and Lyt-1 in mice, is a 
67-kDa type I transmembrane glycoprotein that belongs to the 
highly conserved scavenger-receptor cysteine-rich superfam-
ily (SRCR).18 It is characterized by a cysteine-rich extracellular 
domain of approximately 100 amino acids19,20 and a cytoplasmic 
tail containing a pseudo-ITAM-like motif.21 CD5 is constitu-
tively expressed on lymphocyte precursors, mature T cells and 
on a subset of mature B cells (B1a cells).18,20,22 CD5 is associated 
both physically and functionally with the TCR/CD3 complex as 
well as with the B-cell receptor (BCR).23–25

Distinct potential ligands for CD5 including CD5L,26,27 
CD72 (Lyb-2 in mice),28 and CD5 itself have been described,26–31 
but the actual identity of the physiologically relevant CD5 ligand 
remains to be determined. More recently, it has been reported 
that conserved fungal components also interact with membrane-
bound CD5 and that a soluble CD5 ectodomain protects mice 
from zymosan-induced septic-shock-like syndrome.31

CD5 Immunobiology and Function

The precise role of CD5 in the interactions of immune cells has 
remained unclear for a long time. Initial studies with anti-CD5 
monoclonal antibodies (mAbs) pointed to a positive role for CD5 
in enhancing TCR-mediated signal transduction,32,33 but more 
recent studies with Cd5 knockout mice revealed that CD5 nega-
tively regulates Ag receptor-mediated signaling in thymocytes and 
mature T cells.34 Indeed, based on data from Cd5-deficient mice, 
it has been demonstrated that CD5 exerts a negative effect on TCR 
and BCR signaling.34,35 Thus, immature T cells from Cd5−/− mice 
are hyperresponsive to TCR stimulation and exhibit an altered 
positive and negative thymic selection. CD5 also inhibits periph-
eral blood T-cell signaling and mature Cd5−/− T cells exhibit an 
enhanced proliferation upon TCR stimulation.34,36 CD5 has also 
been described to play an inhibitory role in the suppressive func-
tion of murine CD4+/CD25+ regulatory T cells (Tregs),37 and 
Cd5−/− mice show increased numbers of CD4+/CD25+/FOXP3+ 
thymocytes and peripheral natural (n)Tregs as compared with their 
wild-type counterparts.38 Moreover, a few studies have suggested 
a role for CD5 in T

H
17 differentiation. In particular, Cd5-Ck2 

double-deficient mice, which are resistance to experimental auto-
immune encephalomyelitis (EAE), exhibit a reduced T

H
17 cell 

compartment.39 Of note, CD5 co-stimulation can also induce 
stable T

H
17 development by promoting the expression of the inter-

leukin (IL)-23 receptor and sustained STAT3 activation.40,41

CD5 is an important physiological regulator of T-cell immune 
responses. The regulation of CD5 corresponds to a key event in 
the maintenance of immune homeostasis and tolerance. Studies 
based on experimental mouse models indicates that CD5 plays 
a key role in generation and maintenance of immune tolerance 
and that alterations of its activity can promote autoreactivity.42 In 
addition to its function as an inhibitory receptor and modulator 
of autoimmunity, CD5 has recently been documented to regulate 
activation-induced cell death (AICD) and antitumor immune 
responses (see below).
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Role of CD5 in Antitumor T-Cell Responses

As discussed above, CD5 plays a major role in regulating antitu-
mor immune responses, and the downregulation of CD5 expres-
sion on TILs potentiates tumor-specific T-cell reactivity. We have 
previously reported that the cytotoxic activity of human T-cell 
clones toward specific lung cancer cells is inversely proportional 
to CD5 expression levels. The downregulation of CD5 on TILs 
occurs within the tumor microenvironment and presumably cor-
responds to a strategy used by T cells to adjust their sensitivity 
to the strength of the TCR-pMHC interaction.62 A decrease in 
MHC Class I molecule expression is often observed in human 
tumors and reflects a mechanism frequently used by cancer cells 
to escape from CD8+ T-cell immunity.63 The modulation of 
CD5 by T lymphocytes infiltrating tumors expressing low levels 
of pMHC complexes and the subsequent increase in T-cell reac-
tivity might therefore constitute a strategy used by the immune 
system to overcome tumor evasion. In line with this hypothesis, 
we have reported that tumor-specific CTLs undergo an intra-
tumoral adaptation process depending on the strength of the 
TCR/pMHC interaction, as a means to enhance TCR signal-
ing and to overcome tumor escape resulting from altered pMHC 
expression via the regulation of CD5 (Fig. 1).

Our in vivo experiments based on the B16 melanoma model 
revealed a delayed tumor growth in Cd5-deficient mice as com-
pared with their wild-type counterparts.64 In the absence of Cd5, 
mice displayed strong antitumor immune responses that were 
associated with tumor infiltration by hyperactivated tumor-reac-
tive CD8+ T cells that protected animals from tumor burden. The 
absence of Cd5 lowered the T-cell activation threshold, resulting 
in enhanced tumor-specific T-cell responses. Conversely, CD5 
expression rendered wild-type murine TILs unresponsive to spe-
cific Ag stimulation. The quiescent status of CD5+ tumor-specific 
CTLs may, at least in part, elucidate the paradoxical lack of cor-
relation between the frequency of pMHC-tetramer+ circulating T 
cells induced in vaccination trials and tumor regression.

CD5 and AICD Regulation

CD5 is a negative regulator of T-cell activation and thus plays a 
critical role in preventing AICD.39,49 AICD, an apoptotic pathway 
triggered at least in part by the death receptor CD95 (APO-1, FAS) 
and its natural ligand (CD95L, FASL) following T-cell hyperac-
tivation, controls the expansion of activated T lymphocytes after 
TCR engagement and induces T-cell tolerance.65 Mice lacking 
Cd5 exhibited a significant delayed onset and decreased severity 
of EAE.49 EAE resistance was associated with a decreased survival 
of effector T cells and an attenuated generation of T

H
 cells. In this 

disease model, convincing results pointing to a direct role for CD5 
in protecting T cells from apoptosis were obtained upon the in 
vivo blockade of CD5 with soluble CD5-Fc molecules.49

CD5 also protects tumor-specific T lymphocytes from AICD 
as triggered by the recognition of specific targets by prevent-
ing T-cell overactivation through the downregulation of FASL 
expression and inhibition of caspase-8 activation.48 Consequently, 

tolerance, by adjusting thymocyte responsiveness to self pMHC 
complexes.54 Studies from Cd5-deficient mice have shown that 
CD5 determines thymic outcomes through the modulation of 
TCR signaling.35 Indeed, in the absence of CD5, thymocytes 
are hyperresponsive to TCR stimulation, and the efficiency of 
thymocyte selection in TCR-transgenic Cd5-deficient mice is 
altered in a manner consistent with enhanced TCR signaling. 
The impact of Cd5 deletion on thymocyte selection depends on 
the avidity of the TCR for its selecting ligand, which in turn 
is reflected by the level of endogenous CD5 surface expres-
sion.46 Analyses of TCR-transgenic T cells under conditions in 
which the endogenous peptide repertoire is altered have shown 
that self pMHC complexes regulate T-cell activation thresholds 
through changes in the expression level of CD5 on DP thymo-
cytes.55 Therefore, the regulation of CD5 in the thymus plays a 
critical role in tuning the threshold of TCR-mediated responses 
and in selecting the mature TCR repertoire during thymocyte 
development.46,52

Peripheral Regulation  
of CD5 Expression

The precise mechanisms that govern the regulation of CD5 expres-
sion by mature T cells are not very well understood. Previous 
reports have shown that CD5 expression on mature T cells directly 
parallels the avidity or signaling intensity stemming from the 
TCR/pMHC interaction.52 As TCR/pMHC interactions main-
tain the homeostasis of peripheral naive T lymphocytes,56 CD5 
expression is continuously tuned at the periphery according to 
the avidity of the TCR interactions with self pMHC complexes.54 
Indeed, pMHC complexes continually modulate the expression 
levels of CD5 in naive CD4+ T cells, and reduced expression of 
CD5 in T cells deprived from TCR/pMHC interactions are asso-
ciated with increased responses to TCR engagement. Moreover, it 
has been reported that CD5 levels reflect the avidity of T cells for 
self-pMHC complexes and potentially influence the homeostatic 
behavior of naive and memory T cells.57

A key role of CD5 in controlling aberrant immune responses 
by augmenting the threshold needed for TCR activation follow-
ing Ag recognition has been documented.58 Indeed, the genera-
tion of a peripheral T-cell population with elevated levels of CD5, 
induced in vivo by DCs, can lead to Ag-specific unresponsive-
ness. An increase in CD5 expression levels has also been observed 
in peripheral anergic CD8+ T cells chronically exposed to Ags.59 
Conversely, the priming of naive CD8+ T cells by IL-7 and IL-21 
has been described to increase Ag responsiveness associated with 
a downmodulation of CD5.60 A decrease in CD5 expression lev-
els has been detected in CD3+/CD8+ T-cell populations from the 
peripheral blood of HIV-infected patients.61 Moreover, a down-
regulation of CD5 on TILs can occur at the tumor site. Notably, 
CD5 levels on tumor-specific T cells parallel the signaling inten-
sity of TCR/pMHC interactions.62 Thus, CD5 levels appear to 
be adapted to signals received at the periphery and are adjusted in 
a manner to reflect the intensity of the interactions between the 
TCR and pMHC complexes.
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implying that therapies that are specifically targeted to the tumor 
site may be optimal for improving the effector functions of TILs.

Adoptive immunotherapy is currently one of the most promis-
ing therapeutic approaches against cancer, and has already been 
successfully used in clinical trials.68 According to our current 
knowledge on CD5 functions in T cells, the modulation of CD5 
expression and/or activity in tumor-specific T lymphocytes before 
their transfer to cancer patients may represent a valuable strat-
egy to improve the clinical outcome of adoptive cancer immuno-
therapies. However, together with CD5 manipulation, the control 
of T-cell AICD is an additional parameter to be considered for 
designing optimal cancer therapies. Indeed, the control of AIDC 
in tumor-specific CTLs through regulation of the FASL path-
way may further potentiate intratumoral T-cell responses. Thus, 
immunotherapeutic approaches combining anti-CD5 neutraliz-
ing mAb and soluble FAS-Fc molecules may constitute a powerful 
alternative for the design of anticancer treatments that are capable 
of inducing effective and prolonged antitumor responses. This 
said, it should be noted that the downmodulation of CD5 signal-
ing and the consequent enhanced reactivity of T cells may induce 
autoimmune reactions, limiting the benefits of this intervention 
for cancer patients. Despite this obstacle, we believe that intensi-
fied studies of the role of CD5 in antitumor immune responses 
may permit to potentiate current T cell-based immunotherapeutic 
strategies and offer novel therapeutic approaches against cancer.
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Cd5−/− T cells are more susceptible to tumor-mediated AICD than 
Cd5+/+ T cells. Our in vivo experiments indicate that the potent 
antitumor immune response elicited in Cd5-deficient mice is 
transient and that tumor flare-ups correlate with an increased 
AICD of CD8+ TILs.64 This suggests that tumor-mediated 
T-cell AICD is likely to be involved in tumor immune escape. 
Accordingly, the protection of T cells from TCR-mediated apop-
tosis with soluble FAS-Fc molecules resulted in a dramatic reduc-
tion of tumor growth. These results point to a role for CD5 in 
the fate of tumor-specific T-cells and further substantiate its con-
tribution to the regulation of antitumor CTL responses (Fig. 1).

Conclusions and Perspectives

One of the major challenges in cancer immunotherapy is the 
induction of strong and durable antitumor immune responses. 
The discovery of immune inhibitor checkpoints, such as those 
mediated by CTLA-4 and PD1, offered new immunotherapeutic 
perspectives to cancer treatment. Clinical trials based on the inhi-
bition of CTLA-4 in patients with metastatic melanoma generated 
promising results. Indeed, attenuation of the CTLA-4-mediated 
immune checkpoint using ipilimumab (an anti-CTLA-4 neutral-
izing mAb) consistently improved patient survival.66 Interference 
with PD1 or its ligand PD-L1 also promotes antitumor immu-
nity, and human anti-PD1 and anti-PD-L1 mAbs are currently 
under clinical evaluation.67 Our recent studies support a criti-
cal role for CD5 in antitumor immune responses and suggest 
that CD5 may constitute an interesting target for optimizing 
immunotherapeutic approaches against cancer. The use of neu-
tralizing anti-CD5 mAbs or soluble CD5-Fc molecules, alone or 
combined with other immunomodulatory treatments, appears 
therefore as a forthcoming strategy for cancer immunotherapy. 
The developers of these strategies, nevertheless, will have to take 
into account the fact that most peripheral T cells express CD5, 
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