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Unveiling hidden multipolar orders with
magnetostriction
Adarsh S. Patri 1, Akito Sakai2,3, SungBin Lee 4, Arun Paramekanti1, Satoru Nakatsuji 2,3 & Yong Baek Kim1

Broken symmetries in solids involving higher order multipolar degrees of freedom are his-

torically referred to as “hidden orders” due to the formidable task of detecting them with

conventional probes. In this work, we theoretically propose that magnetostriction provides a

powerful and novel tool to directly detect higher-order multipolar symmetry breaking—such

as the elusive octupolar order—by examining scaling behaviour of length change with respect

to an applied magnetic field h. Employing a symmetry-based Landau theory, we focus on the

family of Pr-based cage compounds with strongly correlated f-electrons, Pr(Ti,V,Ir)2(Al,

Zn)20, whose low energy degrees of freedom are purely higher-order multipoles: quadrupoles

O20;22 and octupole T xyz . We demonstrate that a magnetic field along the [111] direction

induces a distinct linear-in-h length change below the octupolar ordering temperature. The

resulting “magnetostriction coefficient” is directly proportional to the octupolar order para-

meter, thus providing clear access to such subtle order parameters.
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In crystalline solids, the combination of spin–orbit coupling
and crystal electric fields places strong constraints on the
shape of localized electronic wavefunctions1. The quantum

mechanically defined multipole moments provide a useful mea-
sure of the resulting complex angular distribution of the mag-
netization and charge densities2,3. Most conventional broken
symmetry phases in solids involve the magnetic dipole moment of
the electron. Remarkably, a large class of strongly correlated
electron materials display non-trivial higher order multipolar
moments, e.g., quadrupolar or octupolar moments, whose fluc-
tuations and ordering leads to a rich variety of phases, such as
quadrupolar heavy Fermi liquids4–6, superconductivity7–9, and
unusual multipolar symmetry-broken phases2,3,10–13. While
multipolar ordered phases fall under the purview of the celebrated
Landau paradigm of symmetry-broken phases, they have been
termed as so-called ‘hidden orders’: mysterious phases of matter
whose orderings are invisible to conventional local probes (such
as neutron scattering or magnetic resonance), but are remarkably
still known to exist as their onset triggers non-analytic signatures
in thermodynamic measurements4,14–17. Studying the mysterious
ordering patterns of higher order multipoles is also often ren-
dered challenging since they typically coexist with conventional
dipolar moments. Examples of such symmetry breaking which
are of great interest include spin-nematic order18 in spin S ≥ 1
quantum magnets, quadrupolar charge order in transition metal
oxides, and higher multipolar order in actinide dioxides, such as
NpO2

19, and f-electron heavy fermion materials20, such as
URu2Si221–29 and UBe1330–32. The quest to probe such orders has
led to novel experimental techniques, e.g., elasto-resistivity33–35 to
elucidate the quadrupolar order associated with orbital nematicity
in the iron pnictides. A broad understanding of the nature of
these symmetry-broken phases, and means to definitively
demonstrate their existence, has proven to be a challenging, yet
stimulating, endeavour for both theory and experiment.

Our work is motivated by a recent series of experiments on the
Pr-based cage compounds Pr(Ti,V,Ir)2(Al,Zn)20 which form an
ideal setting to study multipolar moments and associated hidden
orders8,17,36–38. In these systems, the 4f2 electrons of Pr3+ ions
subject to CEFs host a ground non-Kramers doublet with solely
higher-order moments: quadrupoles (O20 and O22) and octupole
(T xyz)

14,39. Uncovering and understanding the pattern of multi-
polar ordering across this family of materials remains an
important open problem.

The nature of the quadrupolar ordering in these cage com-
pounds has been indirectly examined with a few techniques40,41

such as ultrasound experiments42–45 (indicating softening of
elastic modulus at quadrupolar ordering temperature, TQ), as well
as NMR measurements (where the magnetic field-induced dipole
moment is strongly dependent on the underlying quadrupolar
phase46). More recently, magnetostriction and thermal expansion
strain experiments47 have also lent themselves as possible probes
to study the transitions and the underlying quadrupolar phase. By
contrast, the octupolar ordered state has continued to remain an
elusive phase of matter, with only indirect hints of its existence
from NMR48 and μSR49 measurements, but as yet no direct probe
to reveal its existence50. More recently, some of us (A.S. and S.N.,
unpublished) have begun experiments to study angle-dependent
magnetostriction, the change in sample length induced by a
magnetic field which can point along various crystalline direc-
tions, in a wide class of materials with multipolar degrees of
freedom.

In this work, motivated by these experiments, we theoretically
discuss how magnetostriction provides a novel means to directly
probe multipolar order parameters. The central observation of
this paper is that an applied magnetic field allows for a linear
coupling between lattice strain fields and a uniform octupole

moment which depends strongly on the applied field direction. In
the absence of a dipolar moment, this enables measurements of
the magnetostriction to directly reveal the hidden octupolar order
parameter. We investigate such field-scaling behaviour of the
magnetostriction for various magnetic field directions by
employing a symmetry-based Landau theory, which allows us to
highlight the universal aspects of the physics and to reveal its
applicability to a broader class of materials. Specifically, our
Landau theory permits both antiferro-quadrupolar ordering
(AFQ) and ferro-octupolar ordering (FO), and we examine our
theory along different field directions in three temperature
regimes. Denoting the quadrupolar and octupolar transition
temperatures as TQ and TO, respectively, we consider the regimes
(i) the paramagnetic phase above both transition temperatures
(T >TQ;TO), (ii) intermediate temperatures (TO <T <TQ) where
the system exhibits pure quadrupolar order, and (iii) below both
ordering temperatures (T <TQ;TO) where the system features
coexisting quadrupolar and octupolar orders. We make definite
predictions for all possible combinations of length change and
magnetic field directions, which can be tested in future
experiments.

Results
Magnetostriction as a probe of multipolar ordering. Our stu-
dies predict a linear-in-h scaling behaviour for particular length
changes, for T <TO. The coefficient of the linear-in-h term, i.e.
the “magnetostriction coefficient”, is directly proportional to the
ordered ferro-octupolar moment, thus providing a clear and
distinct means to directly probe this order parameter. This linear-
in-h behaviour appears for magnetic fields applied along the [111]
and [100] directions. For other magnetic field (and length
change) directions, we predict the signature of quadrupolar
ordering as a constant plus quadratic-in-h scaling behaviour in
the length change; although the scaling behaviour explicitly
involves the FQ order, the AFQ order parameter can be inferred
from the FQ, as it scales (to leading order) as the square root of
the FQ order parameter. We present our theoretical predictions
for the scaling behaviours in Table 1 for a variety of magnetic
field and length change directions. A quick way to see this linear-
in-h result is to note that the elastic energy of a strained cubic
crystal is given by51,52

Flattice ¼
cB
2

ϵ2B
� �

þ c11 � c12
2

ϵ2μ þ ϵ2ν

� �
þ c44

2
ϵ2xy þ ϵ2yz þ ϵ2xz

� �
;

ð1Þ

where the crystal’s deformation is described by the components of
the strain tensor ϵik, and cij is the elastic modulus tensor
describing the stiffness of the crystal. Note that we use the normal
modes of the cubic lattice to write the elastic energy in this elegant
form. Here cB is the bulk modulus, ϵB � ϵxx þ ϵyy þ ϵzz is the

volume expansion of the crystal, ϵν � ð2ϵzz � ϵxx � ϵyyÞ=
ffiffiffi
3

p
and

ϵμ � ðϵxx � ϵyyÞ are lattice strains that transform as the Γ3g irre-
ducible representation (irrep.) of the Oh group, and the off-
diagonal strain components transform as the Γ5g irrep. of Oh

group. The subscript g indicates even under time-reversal and
spatial inversion (parity). Knowing ϵij determines the fractional

length change along the ℓ̂-axis via ðΔL=LÞ
ℓ
¼

P
ij
ϵij‘̂i‘̂j, where ‘̂i

is the ith component of unit vector ℓ̂; Supplementary Note 1
provides a more detailed discussion on this expression. As dis-
cussed below, an applied magnetic field enables a linear coupling
between the strain field and the time-reversal-odd ferro-octupolar
moment, m, via a term in the free energy
ΔF ¼ �gOmðϵyzhx þ ϵxzhy þ ϵxyhzÞ, with a coupling constant gO.
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Minimizing Flattice+ ΔF with respect to the strain, we find
ϵxy / ðgO=c44Þmhz , and cyclically for ϵyz; ϵxz , while diagonal
components of the strain tensor vanish. As a representative
example, take a [111] field, where hi ¼ h=

ffiffiffi
3

p
, this leads to

ðΔL=LÞð1;1;1Þ ¼ ðϵxy þ ϵyz þ ϵxzÞ=3 and so (ΔL/L)(1,1,1)∝ (gO/c44)
mh. This direct relation between the linear-in-h magnetostriction
coefficient and the ferro-octupolar order parameter for a mag-
netic field along the [111] direction is one of the central results of
our paper. Furthermore, we predict a characteristic hysteresis in
the octupolar moment and the associated parallel length change
as a function of magnetic field, arising from the symmetry-
allowed cubic-in-h coupling of the magnetic field to the octupolar
moment. Very recent (unpublished) experiments on PrV2Al20
indeed appear to find a hysteretic linear-in-field magnetostriction,
for a [111] magnetic field, below a transition at T* ≈ 0.65 K. Our
theoretical results for magnetostriction in the presence of octu-
polar order thus lend strong support to the idea that this
approach, pursued in recent experiments performed by some of
us (A.S. and S.N., unpublished), herald the unambiguous dis-
covery of octupolar order.

The theoretical roadmap which gives rise to this striking result
requires (i) the Landau free energy of the multipolar moments,
and (ii) coupling between the multipolar moments and lattice
strain. We present these key ingredients below.

Landau theory of multipolar order. We present in this section,
for the sake of self-containedness and to specify our notation, the
Landau theory of multipolar order first introduced in ref. 51. We
focus on key aspects of the model here, and relegate the
symmetry-based derivation as well as the complete form of the
free energy to Methods; the symmetry transformations of the
multipolar moments are given in Supplementary Note 2.

The 4f2 electrons of Pr3+ ions in the family of rare-earth
metallic compounds Pr(Ti,V,Ir)2(Al,Zn)20 reside on a diamond
lattice of cubic space group Fd�3m. Surrounding each Pr3+ ion is a
Frank-Kasper (FK) cage (16 Al atom polyhedra). The crystalline
electric field (CEF) of this FK cage, with Td point group
symmetry, splits the J= 4 multiplet of the 4f2 electrons. The
ground states are experimentally found to be a non-Kramers
doublet, and they transform as the basis states of the Γ3g irrep. of
Td; here the subscript g(erade) and u(ngerade) denote even and
odd under time-reversal, respectively. Moreover, this doublet is
energetically well separated from the excited states, and so for
energies much lower than this gap (≳50 K4), the Γ3g doublets
form an ideal basis to describe the low energy degrees of freedom.
The Γ3g doublets can give rise to time-reversal even quadrupolar

moments O22 ¼
ffiffi
3

p

2 ðJ2x � J2y Þ and O20 ¼ 1
2 ð2J2z � J2x � J2y Þ which

transform as Γ3g, as well as a time-reversal odd octupolar moment

T xyz ¼
ffiffiffiffi
15

p

6 JxJyJz which transforms as Γ2u (where the overline
represents the fully symmetrized product). Using the constructed
pseudospin basis ({|↑〉, |↓〉}) from the Γ3g doublets, allows the
multipolar moments to be neatly denoted by an effective
pseudospin-1/2 operator τ= (τx, τy, τz)

τx ¼ � 1
4
O22; τy ¼ � 1

4
O20; τz ¼ 1

3
ffiffiffi
5

p T xyz: ð2Þ

The perpendicular component of the pseudospin vector τ⊥ ≡ (τx,
τy) denotes the quadrupole moments, while τz denotes the
octupolar moment. We also define the raising/lowering pseudos-
pin operators τ±= τx ± iτy.

The ordering of these multipolar degrees of freedom acts as a
mean field on the pseudospins, and breaks the degeneracy of the
non-Kramers doublet. In order to describe these pseudospin-
symmetry-broken phases, we resort to a Landau theory approach,
focussing on the following order parameters,

ϕ � hτþAi þ hτþB i;
~ϕ � hτþAi � hτþB i;
m � hτzAi þ hτzBi;
~m � hτzAi � hτzBi;

ð3Þ

Here, angular brackets 〈...〉 denote thermal averages, while the A,
B subscripts denote the two sublattices of the diamond lattice.
The complex scalars ϕ and ~ϕ describe ferroquadrupolar (FQ) and
anti-ferroquadrupolar (AFQ) orders, respectively, while the real
scalars m and ~m denote the ferro-octupolar (FO) and anti-
ferrooctupolar (AFO) order parameters. We henceforth use the
convention of ~ϕ ¼ j~ϕjei~α and ϕ= |ϕ|eiα for the complex order
parameters.

In this work, we focus on a system where the primary order
parameters are AFQ and FO. As discussed in previous works53,54,
the Landau theory of a system with AFQ order necessarily admits
a ‘parasitic’ secondary order parameter FQ. Such mixing does not
occur for the octupolar order parameter; motivated by explaining
the experiments performed by some of us (A.S. and S.N.,
unpublished) on PrV2Al20, we choose to work with only FO order
and ignore the AFO order parameter. We can thus construct our
Landau theory using the order parameters ϕ, ~ϕ, and m, based on
the local Td symmetry instilled by the FK cage,
FQ;O½ϕ; ~ϕ;m� ¼ F~ϕ þ Fm þ Fϕ þ F~ϕ;ϕ;m. Here, the free energies
F~ϕ, Fm, and Fϕ denote the independent free energies of the AFQ,
FO, and FQ orders, and F~ϕ;ϕ;m describes the interactions between
the different multipolar order parameters. Figure 1 shows the zero
magnetic field phase diagram, depicting both quadrupolar and
octupolar transitions; with two primary order parameters AFQ
(and its accompanying parasitic FQ moment) and FO ordering at

Table 1 Scaling relation for relative length change of system ΔL=L‘ along direction ‘ for magnetic field applied along bn direction

Magnetic field, h= h bn ℓ ΔL=L‘ scaling: T>TQ;TO ΔL=L‘ scaling: TO<T<TQ ΔL=L‘ scaling: T<TQ;TObn= [100] ¼ ð1;0;0Þ κ1h2 Φ1+ κ1h2 Φ1+ κ1h2

¼ ð0; 1; ± 1Þ κ1h2 Φ1+ κ1h2 Φ1 ±Mhþ κ1h
2bn ¼ 1ffiffi

2
p ½110� ¼ ð1; 1;0Þ 1

2 γh
2 þ 1

2 κ2h
2 Φ2 þ 1

2 γh
2 þ 1

2 κ2h
2 Φ2 þ 1

2 γh
2 þ 1

2 κ2h
2

¼ ð1;�1; 1Þ � 1
3 γh

2 � 1
3 γh

2 � 1
3 γh

2

¼ ð�1; 1; 2Þ � 1
6 γh

2 þ 1
2 κ2h

2 Φ2 � 1
6 γh

2 þ 1
2 κ2h

2 Φ2 � 1
6 γh

2 þ 1
2 κ2h

2bn ¼ 1ffiffi
3

p ½111� ¼ ð1; 1; 1Þ 2
3 γh

2 2
3 γh

2 2ffiffi
3

p Mhþ 2
3 γh

2

¼ ð1;�1;0Þ � 1
3 γh

2 þ 1
3 κ2h

2 Φ2 � 1
3 γh

2 þ 1
3 κ2h

2 Φ2 � 1ffiffi
3

p Mh� 1
3 γh

2 þ 1
3 κ2h

2

¼ ð1; 1;�2Þ � 1
3 γh

2 þ 1
3 κ2h

2 Φ2 � 1
3 γh

2 þ 1
3 κ2h

2 Φ2 � 1ffiffi
3

p Mh� 1
3 γh

2 þ 1
3 κ2h

2

For each bn, we present the length change parallel and (the two) perpendicular directions with respect to bn. The FQ moment term is expressed as gQjϕj� Φ1;2 þ κ1;2h
2

� �
due to the even-in-h behaviour of

the quadrupolar moment, where Φ1,2 is the zero magnetic field quadrupolar moment which arises due to AFQ spontaneously ordering. Here, the two types of gQ (and κ1,2,Φ1,2) include the complex angle-
dependent parts (α) and the quadrupolar–lattice strain coupling; as described in Supplementary Note 6, there are two possible combinations of the complex angle dependency in gQ , which we denote by
the subscripts 1, 2. Since Φ1,2,κ1,2 arise from the parasitic FQ moment, they are diminutive, as compared with the conduction electrons’ term (γ≡ γc/c44). M � gO

c44
m is a re-defined octupolar moment,

including the octupolar–lattice strain coupling.
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critical temperatures of TQ and TO, respectively. The ‘kink’ in the
AFQ (as well as FQ) at the octupolar ordering temperature
reflects the non-analytic behaviour of the octupolar moment at its
critical temperature. We present in Supplementary Note 3 the
values of the Landau parameters used for Fig. 1.

In order to study magnetostriction, it is important to
understand how the magnetic field couples to the multipole
moments. Due to the lack of magnetic dipole moment supported
by the Γ3g doublet, the magnetic field does not couple linearly to
the states. One can derive the low energy magnetic field
Hamiltonian by performing second-order perturbation theory
in h · J, where the low energy subspace is spanned by the Γ3g
doublet, and the high energy subspace is spanned by the excited
triplets Γ4,5. This leads to Fmag½ϕ; ~ϕ�, which involves the
quadrupolar moments coupling quadratically to the magnetic
field, ~h2τx,y. The coupling of the magnetic field to the octupole
moment (after performing third-order perturbation theory) is of
the form ~hxhyhzτz. The Oðh3Þ term is neglected at this stage,
and its role is revived in the discussion of hysteresis.

Symmetry allowed coupling of multipoles to lattice modes. We
now turn our attention to the problem of coupling the lattice
normal modes of the cubic crystal to the multipolar moments.
We recall that the cubic crystal structure supports macroscopic
normal modes that transform as irreps. of Oh, while the Landau
free energy of the multipolar moments (F) is constructed subject
to symmetries of the local Td environment. The symmetry con-
straints on F ensure that in principle only select normal modes of
the crystal that transform as the irreps. of Td are permitted to
couple to the multipolar moments. In the present case, all the
cubic normal modes presented in Eq. (1) also transform as irreps.
under Td (as can be explicitly verified), and so all of the afore-
mentioned strain modes can participate in the coupling.

Coupling of quadrupolar moment to lattice strain. Coupling
between the quadrupolar moments and the lattice normal modes
appears as a natural choice, as the quadrupolar moments and the
lattice strains are both even under time-reversal. Moreover, both
the normal modes fϵμ; ϵνg and the quadrupolar moments
fO22;O20g transform as Γ3g irreps. of Td (the aforementioned
lattice normal modes also transform as Γ3g in Oh, as Td is a
subgroup of Oh). This similarity in how they transform under Td
allows a linear coupling between the aforesaid lattice normal
modes and quadrupolar moments. Thus, the Landau free energy
of the multipolar moments gets augmented by the following

lattice elastic energy and coupling terms to quadrupolar
moments,

Fstrain;Q ¼ c11 � c12
2

ϵ2μ þ ϵ2ν

� �
� gQϵμ hτxAi þ hτxBi

� �
� gQϵν hτyAi þ hτyBi

� �
;

ð4Þ

where gQ is the coefficient of coupling between the quadrupolar
moments and lattice strain tensors. Note that we include the
coupling of the lattice strain to the quadrupole moment on each
sublattice. Using the definition of the order parameter ϕ from Eq.
(3), and minimizing Fstrain;Q with respect to ϵμ; ϵν yields the total
strain for each normal mode

ϵμ ¼
gQ

ðc11 � c12Þ
jϕj cos α ;

ϵν ¼
gQ

ðc11 � c12Þ
jϕj sin α :

ð5Þ

Substituting these expressions back into Eq. (4), we find that the

strain-optimized Fstrain;Q½ϕ� ¼ � g2Q
2ðc11�c12Þ

jϕj2 renormalizes the
mass term of the FQ order.

Coupling of octupolar moment to lattice strain. A direct linear
coupling between the octupolar moment T xyz and the lattice
normal modes is not permitted, as the octupolar moment is odd
under time-reversal. However, this potential difficulty can be
alleviated by the introduction of the time-reversal odd magnetic
field h which assists in the coupling between the lattice degrees of
freedom and octupolar moment. Thus, the Landau free energy of
the multipolar moments gets augmented by the following lattice
elastic energy and the coupling terms to the octupolar moments,

Fstrain;O ¼ c44
2

ϵ2xy þ ϵ2yz þ ϵ2xz

� �
� gOm hxϵyz þ hyϵxz þ hzϵxy

h i
� γc hxhyϵxy þ hxhzϵxz þ hyhzϵyz

h i
;

ð6Þ

where we use the definition of m from Eq. (3), and gO is the
coefficient of coupling between the octupolar moment and lattice
strain. We also include another symmetry-allowed direct cou-
pling between the magnetic field and the same lattice normal
modes (with proportionality constant γc, equivalent on both
sublattices). Physically, this kind of term could arise from the
independent coupling of the magnetic field and lattice strain to
the conduction electrons (and after integrating out the conduc-
tion electrons). We discuss in Supplementary Note 5 how the
numerical values of these coupling constants can be obtained
from experimental observations in conjunction with our theore-
tical predictions.

Minimizing with respect to the lattice degrees of freedom yields
the following expressions for the (total) lattice strains

ϵxy ¼
gOhz
c44

� �
mþ γc

hxhy
c44

;

ϵxz ¼
gOhy
c44

� �
mþ γc

hxhz
c44

;

ϵyz ¼
gOhx
c44

� �
mþ γc

hyhz
c44

:

ð7Þ

Substituting the expression for the minimized lattice strains from
Eq. (7) into Eq. (6) yields Fstrain;O½m�, where the mass term of the
octupolar moment is renormalized by a term quadratic in h; it
also introduces an Oðh3Þ coupling term between the octupolar
moment and the magnetic field, which renormalizes the
coefficient of the already present hxhyhzm from third-order in
perturbation theory in h ⋅ J.

T T
T

O
rd

er
pa

ra
m

et
er

|φ|˜

m

|φ|

Fig. 1 Phase diagram at zero magnetic field [h= 0]. The temperature
regimes studied in Table 1 and in Supplementary Note 4 are denoted by
vertical arrows at: T < TQ; TO, TO < T < TQ, and T > TQ; TO. The order
parameters for AFQ, FO, and FQ are denoted by j~ϕj, m, and |ϕ|,
respectively. AFQ and FO spontaeously order at TQ and TO, respectively
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Length change under magnetic field along various directions.
Equipped with the necessary ingredients in the previous subsec-
tions, we can now examine the relative length change, ΔL/L, for
magnetic fields applied along [100], [110], [111] directions and
examine the scaling in magnetic field strength, h. For the sake of
clarity, we stress that we consider here the complete
Landau theory of multipolar moments coupled to lattice
strain fields (after having integrated out the lattice degrees of
freedom): F½ϕ; ~ϕ;m� ¼ FQ;O½ϕ; ~ϕ;m� þ Fmag½ϕ; ~ϕ� þ Fstrain;Q½ϕ�þ
Fstrain;O½m�. The scaling relations can be inferred by substituting
the expressions for the (extremized) strain in Eqs. (5) and (7) into
ðΔL=LÞ

ℓ
¼

P
ij
ϵij‘̂i‘̂j. We stress that from Eq. (7), the off-diagonal

strain components involve the octupolar moment; thus to have
any possibility of observing m, it requires length change expres-
sions that are not along purely the crystal axes [100], [010], [001].
We summarize the key results in Table 1. Taking the example of
length changes along the (1, ±1, 1) direction we have

ΔL
L

	 

ð1; ± 1;1Þ

¼ ϵB
3
þ
2 ± ϵxy ± ϵyz þ ϵxz

� �
3

¼ 1
3
ϵB þ

2gOm
3c44

± hz ± hx þ hy
h i

þ 2γc
3c44

± hxhy ± hyhz þ hxhz
h i

:

ð8Þ

This equation has a striking conclusion as it pertains to observing
hidden order. The mysterious octupolar moment can now be
determined (up to a proportionality constant) by measuring the
slope of the linear-in-h behaviour of the length change both
parallel and perpendicular to magnetic fields applied along the
[111] direction. This provides a clear signature for the onset of
the octupolar ordering as well as a means to study the general
behaviour of the octupolar moment (up to a proportionality
constant) with respect to other external variables such as tem-
perature, T. Moreover, we discover that length change parallel to
the magnetic field along [111] has (negative) twice the slope of the
linear-in-h term and (negative) twice the quadratic background as
the length changes perpendicular ℓ ¼ ð1;�1; 0Þ; ð1; 1;�2Þ to the
field [111]. Furthermore, from Table 1, the octupolar moment
analogously appears in the length change perpendicular to the
magnetic field along the [100] direction. Indeed, the sign of lin-
ear-in-h coefficient flips for the two presented orthogonal direc-
tions. All of these provide distinct means to validate the theory.

Next, for magnetic fields along the [110] direction, we find that
the length changes parallel, ℓ ¼ ð1; 1; 0Þ, and perpendicular,
ℓ ¼ ð1;�1; 1Þ; ð�1; 1; 2Þ, to the field are purely quadratic-in-h
and do not possess a linear-in-h scaling behaviour. Thus, these
length changes (for this choice of magnetic field) do not provide
information about the octupolar moment; the quadratic in h
behaviour arises from the conduction electrons and/or the
quadrupolar moment. We provide in Supplementary Note 4 a
justification of the scaling behaviours of the multipolar moments,
and in Supplementary Note 6 the corresponding general length
change expressions. We note that the scaling behaviours
presented here and in Supplementary Note 6 neglect the cubic-
in-h coupling, which breaks the ℤ2 symmetry (m↔−m) of the
octupolar moment. This introduces a ‘flip’ in the octupolar
moment at h= 0 (and at T<TO where m has spontaneously
ordered, i.e. m ≠ 0): for h= 0+, the +|m| solution is ‘chosen’, and
as we crossover to h= 0−, the now physically distinct −|m|
solution is ‘chosen’ (this is seen in Fig. 2). A similar phenomena is
observed in usual ferromagnetism, below the ordering tempera-
ture. The neglect of this term is due to the consideration of weak,

perturbative magnetic fields in this study. It is likely that this term
could become more important (with regard to the scaling
behaviour) for larger magnetic fields, but this is beyond the field
ranges considered in this work.

Hysteretic behaviour of octupolar ordering. We are motivated
in this section by preliminary experimental observations found by
some of us (A.S. and S.N., unpublished) of hysteretic behaviour in
the length change along the [111] direction below the supposed-
octupolar temperature. Hysteresis arises from the existence of
domains and the motion of domain walls in the presence of
obstructing ‘pinning sites’, which have not been taken into
account in the Landau theory we have studied. In order to
incorporate such effects, we adapt the phenomenological
approach due to Jiles and Atherton55,56 which has been used to
study hysteresis loops in ferromagnetic and ferroelastic materials.
This approach identifies the order parameter (obtained by
minimizing the Landau free energy) as its ideal bulk value, where
the Landau theory includes a direct coupling ufmh3 of the ferro-
octupolar moment m and the external [111] magnetic field. The
total macroscopic octupolar moment (mexp) is obtained by sol-
ving the constructed Jiles and Atherton model, which is heur-
istically derived in Supplementary Note 7. The key point to note
is that the hysteresis loop arises from having a time-reversal odd
moment (and domains) coupling to the magnetic field.

We present the calculated hysteresis for T <TO in Fig. 2a. The
initial condition chosen to obtain the hysteresis loop is such that at
h= 0, the ideal configuration is not being met (i.e. mexp ≠m); this
depicts the realistic scenario of having not all domains aligned in the
same direction at h= 0. The depicted hysteresis is reminiscent of the
hysteresis in ferromagnets. We obtain the corresponding length
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Fig. 2 Hysteresis for h || [111]. a Total octupolar order parameter (mexp)
versus magnetic field strength (h) along [111] direction demonstrating
hysteresis for T < TQ; TO. The initial condition is denoted by ‘×’ in Fig. 2a, b.
b Length change along (1, 1, 1) direction demonstrating hysteresis, using the
solution of (a), and taking γc= 0.8. Inset: Derivative of length change along
(1, 1, 1) direction with respect to magnetic field strength (dðΔL=LÞdh ) versus
magnetic field. The linear-in-h scaling of ΔL/L is reflected as a constant y-
intercept here
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change along the (1, 1, 1) direction as shown in Fig. 2b, which for
small magnetic fields displays the linear-in-h scaling behaviour. To
better observe this linear-in-h scaling in the length change, we
present the derivative of the length change with respect to the
magnetic field in the inset of Fig. 2b. The linear-in-h scaling
behaviour of the length change is more clearly apparent as a
constant y-intercept in the inset; the further linear scaling in the
inset is due to the background quadratic-in-h scaling behaviour of
ΔL/L from the conduction electrons (~γ term).

Furthermore, we note that the field strength h* corresponding to
the minimum of the length change [i.e. d(ΔL/L)/dh= 0] provides a
threshold above which the conduction electron background
dominates over the linear-in-h scaling behaviour. For this particular

length change direction, h� ¼
ffiffi
3

p

2
gOjmj
γc

. We note that dimensionally h

has units of energy (as we have set the Bohr magneton, μB= 1 here)
and the strain tensor ϵ is dimensionless; this implies that the
composite quantity gOjmj is dimensionless, while the conduction
electron term γc (which scales like an off-diagonal magnetic
susceptibility, from Eq. (6)) has units of (energy)−1. Dimensional
analysis thus suggests γc ~ DOS, where (DOS) is the conduction
electron density of states at the Fermi level. To proceed further with
the other quantities, we note that m itself is a dimensionless
quantity; subsequently gO is also dimensionless. This follows from

the convention used in Landau theory where m � TO�T
TO

� �β
, and as

such for low temperatures (T→ 0) we can take m as an O(1)
number. If we also take gO � Oð1Þ, then from above h* ~ DOS−1.
Thus, the location of the minimum field is inversely dependent on
the conduction electron DOS at the Fermi level: when the
conduction electron DOS is small, the minimum field h* is
correspondingly large.

Discussion
In this work, motivated by recent and ongoing experiments on Pr
(Ti,V,Ir)2(Al,Zn)20, we have used Landau theory of multipolar
orders coupled to lattice strain fields to study magnetostriction in
systems with quadrupolar and octupolar orders. Our theoretical
results for magnetostriction in the presence of octupolar order
appear consistent with recent magnetostriction experiments
performed by some of us (A.S. and S.N., unpublished) on
PrV2Al20 where the onset of unusual linear-in-field and hysteretic
magnetostriction is observed for fields along the [111] direction
for T < 0.65 K; in particular, we predict linear-in-h scaling of the
length change for length changes (both parallel and perpendi-
cular) to magnetic fields applied along the [111] direction, and
also for length changes perpendicular to [100], below TO.
Moreover, the coefficient of the linear-in-h term is directly pro-
portional to the octupolar moment, thus giving a distinct sig-
nature for the onset of octupolar ordering as well as a means to
detect/measure the octupolar moment. In addition, we can qua-
litatively understand the quadratic-in-field background magne-
tostriction observed in these experiments; we predict that this
scaling arises from the quadrupolar moments and/or direct
coupling of the conduction electrons to the external magnetic
field and the appropriate lattice normal modes. The summary of
all the scaling behaviours is presented succinctly in Table 1.

Our results are broadly applicable to a variety of multipolar
orders in cubic systems. For instance, the conclusions here are
extendable to the cluster octupolar moments suggested in
antiferro-magnetically interacting magnetic moments in pyro-
chlore iridates57. Furthermore, the results presented here can be
extended to other more ‘typical’ probes of multipolar ordering/
fluctuations. For instance, due to the permitted octupolar-strain
coupling, we expect to observe elastic constant softening in the
elastic constant c44 at the ordering temperature, TO, under the

application of a magnetic field. We note that it is the c44 elastic
constant that softens, as it is the associated elastic constant with
the off-diagonal strain normal modes. Similarly, we expect elasto-
resistivity experiments58 to be a probe for octupolar susceptibility.
The application of an elastic strain with T2g symmetry (such as xy,
xz, or yz) in the presence of a magnetic field would result in an
associated anisotropic resistivity (ρxy, ρxz, ρyz), which will be
proportional to the octupolar susceptibility. Finally, we expect
that Pr(Ti,V,Ir)2(Al,Zn)20 compounds will possess the char-
acteristic low frequency Raman quasielastic peak59, associated
with octupolar fluctuations; specifically, under the application of a
magnetic field along the [001] direction, we expect the quasie-
lastic peak to appear in the xy symmetry Raman spectra.

In terms of future work, an interesting avenue to explore is that
of the coupling of the conduction electrons to the multipolar
moments, as well as to the lattice strain and magnetic field. In
particular, the origin of the conduction electron term in Eq. (6),
introduced in our phenomenological model from symmetry argu-
ments, is a fascinating direction to explore (as well as potential other
terms arising from conduction electrons). We discuss in Supple-
mentary Note 8 a possible origin of the conduction electron term of
Eq. (6). Understanding the nature and role of the conduction
electrons will also help shed light on the quantum critical behaviour
and superconductivity in such multipolar Kondo lattice
systems4,7,8,32,60–64.

Methods
Non-Kramers ground states of Pr3+ ions. The ground states are experimentally
found to form a non-Kramers doublet written in |Jz〉 basis as

Γð1Þ3 ¼ 1
2

ffiffi
7
6

q
4j i � 1

2

ffiffi
5
3

q
0j i þ 1

2

ffiffi
7
6

q
� 4j i;

Γð2Þ3 ¼ 1ffiffi
2

p 2j i þ 1ffiffi
2

p �2j i:
ð9Þ

Constructing a pseudospin basis ({|↑〉, |↓〉}) from the Γ3g doublets as

"j i ¼ 1ffiffi
2

p Γð1Þ3

��� E
þ i Γð2Þ3

��� Eh i
;

#j i ¼ 1ffiffi
2

p i Γð1Þ3

��� E
þ Γð2Þ3

��� Eh i ð10Þ

allows the multipolar moments to be succinctly written as the effective pseudospin-
1/2 operator τ= (τx, τy, τz) in Eq. (2) in the main text. The local Td symmetry
instilled by the FK cage provides a constraint on the possible terms permitted in the
Landau theory. The generating elements of Td are S4z (improper rotation of π/2
about the bz-axis) and C31 (rotation of 2π/3 about the body diagonal [111] axis). In
addition to these point group symmetries, we also require that the terms in the
Landau theory be invariant under spatial inversion about the diamond bond centre
I (which swaps the A and B sublattices), as well as time-reversal Θ. The behaviour
of the multipolar moments under these symmetry constraints is detailed in
Supplementary Table 1. As described in the main text, we construct our Landau
theory using the order parameters ϕ, ~ϕ, and m.

Interacting multipolar orders. Equipped with the symmetry knowledge from
Supplementary Table 1 we can now write down the Landau free energy for this
particular multipolar ordered system as

FQ;O½ϕ; ~ϕ;m� ¼ F~ϕ þ Fm þ Fϕ þ F~ϕ;ϕ;m : ð11Þ

Here, the free energies F~ϕ , Fm, and Fϕ denote the independent free energies of the

AFQ, FO, and FQ orders. Setting ~ϕ ¼ j~ϕjei~α and ϕ= |ϕ|eiα, we get

F~ϕ ¼
t~ϕ
2
j~ϕj2 þ u~ϕj~ϕj

4
� 


þ l~ϕ þ w~ϕ cosð6~αÞ
� �

j~ϕj6; ð12Þ

Fm ¼ tm
2
m2 þ umm

4
h i

; ð13Þ

Fϕ ¼
tϕ
2
jϕj2 þ uϕjϕj

4
� 


þ vϕ sinð3αÞjϕj
3; ð14Þ

The first two terms in Eqs. (12)–(14), in square brackets, are the usual mass and
quartic interaction terms for AFQ, FO and FQ order parameters. We choose

t~ϕ ¼ ðT � TQÞ=TQ , and tm ¼ ðT � Tð0Þ
O Þ=Tð0Þ

O with Tð0Þ
O <TQ , where T denotes the

temperature. Focussing on the mass term alone, decreasing T will thus lead to an
anti-ferroquadrupolar order for T < TQ , and a lower temperature transition into a

state with coexisting ferro-octupolar order when T <Tð0Þ
O . These (bare) transition
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temperatures will be affected by the interplay of the two order parameters; in
particular, the true octupolar transition TO will be renormalized from its bare value

Tð0Þ
O due to the onset of quadrupolar order (besides fluctuation effects which we do

not consider here). A measure of how close the two transition temperatures are to
each other is provided by the ratio (TQ − TO)/(TQ + TO). Finally, since FQ is not
considered to be a primary order parameter, we choose a large positive mass term,
tϕ. The remaining non-trivial terms in Eqs. (12) and (14) are the unusual sixth
order and cubic “clock” terms, with respective coefficients w~ϕ and vϕ, which fix the
phases of the AFQ and FQ order parameters. We set l~ϕ > jw~ϕj to ensure that the
free energy is bounded from below.

The couplings between the different multipolar order parameters are
encapsulated in F~ϕ;ϕ;m , namely between AFQ and FQ moments (g1, g2), and
between the quadrupolar and the octupolar moments ðuϕm; u~ϕ;mÞ

F~ϕ;ϕ;m ¼ g1jϕjj~ϕj
2 sinðαþ 2~αÞ þ g2j~ϕj

2jϕj2

þ uϕmjϕj
2m2 þ u~ϕmj~ϕj

2m2;
ð15Þ

where the term g1 is a symmetry-allowed cubic term.

Coupling of magnetic field to multipolar moments. Due to the lack of magnetic
dipole moment supported by the Γ3g doublet, the magnetic field does not couple
linearly to the states. One can derive the low energy magnetic field Hamiltonian by
performing second-order perturbation theory in h ⋅ J, where the low energy sub-
space is spanned by the Γ3g doublet, and the high energy subspace is spanned by the
excited triplets Γ4,5; here h has units of energy as we have set the Bohr magneton,
μB= 1. This leads to

Heff ¼γ0

ffiffiffi
3

p

2
ðh2x � h2yÞτx þ

1
2
ð3h2z � h2Þτy

� 

¼ψ�

Hτ
þ þ ψHτ

� � ψ�
Hϕþ ψHϕ

� :

ð16Þ

In the above Eq. (16), h= (hx, hy, hz) with |h|= h, and γ0 � �14
3ΔðΓ4Þ

þ 2
ΔðΓ5Þ

, where Δ

(Γ4), Δ(Γ5) are the gaps between the low energy doublets and the corresponding
triplet states at zero magnetic field. The effective coupling to the ferroquadrupolar

order is via ψH � γ0
ffiffi
3

p

4 ðh2x � h2yÞ þ i γ04 ð3h2z � h2Þ. Based on the form of the cou-
pling in Eq. (16), we infer that ψH transforms identically to ϕ under the relevant
symmetries. Going to third-order in perturbation theory leads to a further O(h3)
coupling of the magnetic field to octupole moment of the form ~hxhyhzτz.

Thus, the symmetry-allowed effective magnetic field coupling to the
quadrupolar moments is

Fmag½ϕ; ~ϕ� ¼ ~rH sinðθH þ 2~αÞj~ϕj2jψH j
þ rH cosðα� θHÞjϕjjψH j
þ ~sH j~ϕj

2 þ sH jϕj
2� �
h2;

ð17Þ

where jψH j ¼
γ0
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðh2x � h2yÞ

2 þ ð3h2z � h2Þ2
q

, and tanðθHÞ ¼ 1ffiffi
3

p 3h2z�h2

ðh2x�h2y Þ
. The first

(second) line in Eq. (17) is the symmetry-allowed coupling to the AFQ (FQ). The
third line involves couplings permitted due to pure symmetry reasons that
renormalize the mass terms of the AFQ and FQ. Physically they arise from
conduction electron mediated magnetic couplings (having integrated out the
conduction electrons); similar coupling to the octupolar moment is also permitted
[~h2m2], which is formally introduced via the magnetic field assisted coupling of
the octupolar moment to the lattice strain. In the main text, we discuss magnetic
fields applied along the [100], [110] and [111] directions. For clarity, we present the
value for |ψH| and θH for the magnetic field directions discussed in subsequent
sections in Table 2. In the presence of the magnetic field, it is possible for additional
couplings between the quadrupolar and octupolar moments to be induced, such as

� m2 cosð~α� θHÞj~ϕjjψH j ; ð18Þ

� m2 sinðθH þ 2~αÞj~ϕj2jψH j ; ð19Þ

� m2jϕj2 h2x þ h2y þ h2z

� �
; ð20Þ

� m2j~ϕj2 h2x þ h2y þ h2z

� �
: ð21Þ

These terms are merely the usual quadratic-in-field coupling to the quadrupolar
moment (Eqs. (16) and (17)) with m2 multiplied into it. Due to symmetry
constraints, we cannot have terms which are linear in the octupolar, quadrupolar
and magnetic field (breaks C31 symmetry). These above terms do not affect the
leading scaling behaviour of the magnetostriction, as they have the same order of h
as previous terms in the free energy. Specifically, the terms are quadratic-in-h and
can be thought of as renormalizing the mass term of the octupolar moment. We
recall that the octupolar mass term already contains a quadratic-in-h term, which
arose from integrating out the elastic strain in Eq. (6), and so these new terms
merely modify the coefficient of the previous quadratic-in-h expressions/terms.

The Landau theory is numerically minimized using standard minimization/
optimization schemes. The hysteresis differential equation is numerically solved
using Runge-Kutta 4th order methods. We use the initial condition of mir= 0 for
h= 0 to obtain the depicted solution, with k= 100, α= 10−3, c= 0.01.

Data availability
All relevant data are available upon reasonable request to the corresponding author.

Code availability
All relevant codes are available upon reasonable request to the corresponding author.
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