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Abstract

Skin cancer is the most common cancer in the U.S., while DNA-damaging UVB radiation from 

the sun remains the major environmental risk factor. Reducing skin cancer incidence is becoming 

an urgent issue. The energy-sensing enzyme 5’-AMP-activated protein kinase (AMPK) plays a 

key role in the regulation of cellular lipid and protein metabolism in response to stimuli such as 

exercise and changes in fuel availability. However, the role AMPK in the response of skin cells to 

UVB damage and in skin cancer prevention remains unknown. Here we show that AMPK 

activation is reduced in human and mouse squamous cell carcinoma as compared with normal 

skin, and by UVB irradiation, suggesting that AMPK is a tumor suppressor. At the molecular 

level, AMPK deletion reduced the expression of the DNA repair protein xeroderma pigmentosum 

C (XPC) and UVB-induced DNA repair. AMPK activation by its activators AICAR (5-

aminoimidazole-4-carboxamide ribonucleoside) and metformin (N’,N’-dimethylbiguanide), the 

most widely used anti-diabetic drug, increased the expression of XPC expression and UVB-

induced DNA repair in mouse skin, normal human epidermal keratinocytes, and AMPK wild-type 

cells but not in AMPK deficient cells, indicating an AMPK-dependent mechanism. Topical 

treatment with AICAR and metformin not only delayed onset of UVB-induced skin tumorigenesis 

but also reduced tumor multiplicity. Furthermore, AMPK deletion increased ERK activation and 

cell proliferation, while AICAR and metformin inhibited ERK activation and cell proliferation in 

keratinocytes, mouse skin, AMPK wild-type and AMPK deficient cells, suggesting an AMPK-

independent mechanism. Finally, in UVB-damaged tumor-bearing mice, both topical and systemic 

metformin prevented the formation of new tumors and suppressed growth of established tumors. 

Our findings not only suggest that AMPK is a tumor suppressor in the skin by promoting DNA 
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repair and controlling cell proliferation, but also demonstrate previously unknown mechanisms by 

which the AMPK activators prevent UVB-induced skin tumorigenesis.
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Introduction

Non-melanoma skin cancer (NMSC) is the most common type of cancer in the US, with 

more than one million new cases of skin cancer being diagnosed each year, accounting for 

40% of all newly diagnosed cancer cases. The number of NMSC continues to rise each year. 

The major risk factor for NMSC is environmental UV radiation, in which UVB in sunlight is 

the dominant skin carcinogen (1–3). UVB damages DNA, causes somatic mutations, and 

thus disrupts genomic integrity.

The predominant DNA photoproducts caused by UVB radiation are 

pyrimidine(6-4)pyrimidone dimers (6-4PP) and cyclobutane pyrimidine dimers (CPD) (4, 

5). CPD are also a major source of DNA breaks (6) that cause genomic instability (7). 

Replication of damaged DNA can cause mutations that may ultimately lead to skin 

carcinogenesis (8–14). In response to DNA damage, the cells activate a specific DNA repair 

mechanism, global genome nucleotide excision repair (GG-NER), which involves well-

coordinated actions of DNA damage-binding proteins 1 and 2 (DDB1 and DDB2) and the 

xeroderma pigmentosum (XP) proteins (XPA-G) (11, 12, 15–18). A deficiency in repairing 

UV-induced DNA damage substantially accelerates skin cancer development, as seen in 

xeroderma pigmentosum (XP) patients with genetic defects in the repair of UV-induced 

DNA damage (11, 12).

The energy-sensing enzyme 5’-AMP-activated protein kinase (AMPK) plays a key role in 

the regulation of cellular lipid and protein metabolism in response to stimuli such as exercise 

and changes in fuel availability, and is conserved among animals, plants, and fungi (19, 20). 

AMPK is a heterotrimer that contains α-, β-, and γ-subunits, each of which has at least two 

isoforms. Emerging evidence indicates that AMPK is a promising metabolic tumor 

suppressor and a target for cancer prevention and therapy (21). The AMPK pathway 

intersects with the oncogenic Ras/PI3K/mTOR and ERK pathways at multiple points in 

growth control pathways (19). AMPK signaling also interacts with the p53 and ATM 

pathways, two essential tumor suppressors and genomic gatekeepers, to coordinate 

metabolic checkpoints and DNA damage response (22–24). As more functions and targets of 

AMPK are decoded, the challenge will be in determining the role of AMPK activity in 

malignancies and the precise interactions of AMPK with a specific organ and its 

carcinogenic causes. These future findings will provide a fundamental basis for AMPK 

activators as new agents and for strategies to better prevent and treat cancer.

There are two AMPK activators that have been explored for cancer treatment. One of them 

is the most widely used anti-diabetic drug, metformin (N’,N’-dimethylbiguanide), which 

belongs to the biguanide class of oral hypoglycemic agents. It is now prescribed to almost 
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120 million people worldwide and has become the first line anti-hyperglycemic agent in the 

treatment of type 2 diabetes (25). Metformin works mainly by activating the AMPK 

pathway and via an AMPK-independent mechanism (26, 27). Retrospective studies suggest 

that diabetics treated with metformin have a substantially reduced cancer burden compared 

with other diabetics. It is unclear whether this reflects a chemopreventive effect, and 

whether these data have relevance to people without diabetes. Over the past few years, 

however, impressive evidence from several studies indicates that metformin exhibits cancer 

prevention effects in vitro and in animal models (28, 29). In addition, another AMPK 

activator, AICAR (5-aminoimidazole-4-carboxamide ribonucleoside), has been shown to 

suppress glioblastoma growth in vivo (30) and melanoma cell growth in vitro (31). AICAR 

also inhibits keratinocyte growth in vitro (32). However, the role AMPK in the response of 

skin cells to UVB and in skin cancer prevention remains unknown.

Here we have investigated the role of AMPK in UVB-induced DNA damage repair and cell 

proliferation, two critical processes determining skin cancer susceptibility, and the impact of 

AICAR and metformin on UVB-induced skin tumorigenesis and the role of AMPK 

activation. We found that the activation of the energy-sensing enzyme 5’-AMP-activated 

protein kinase (AMPK) was reduced in human and mouse squamous cell carcinomas as 

compared with normal skin and by UVB damage. AMPK plays important roles in UVB-

induced DNA damage repair and cell growth. Both AICAR and metformin reduced UVB-

induced skin tumorigenesis. Furthermore, both topical and systemic metformin inhibited 

growth of established tumors and prevented new tumor formation in mice with previous 

UVB damage. At the molecular level, bothAMPK-dependent- and independent-mechanisms 

are involved.

Results

AMPK pathway is inhibited in human and mouse skin tumors and in UVB-irradiated mouse 
skin

To determine the role of the AMPK pathway in skin tumorigenesis, we analyzed the 

activation of AMPK in human and mouse skin tumors and the regulation of AMPK by UVB 

irradiation. As compared with normal human skin, human cutaneous squamous cell 

carcinomas (SCC) showed reduced AMPK phosphorylation (Fig. 1A), implying that AMPK 

is inhibited in human SCC. As compared with sham-irradiated mouse skin, phosphorylation 

of ACC, a known AMPK target, was reduced not only in UVB-induced mouse tumors but 

also in non-tumor mouse skin chronically irradiated by UVB (Fig. 1B), suggesting that 

AMPK inactivation is an early event in UVB-induced skin tumorigenesis. In mouse skin, 

UVB increased the phosphorylation of AMPK at 6 h, while it suppressed the 

phosphorylation of AMPK and ACC at 24 h post-UVB, suggesting that, although UVB 

activates AMPK at an earlier time point, it inhibits AMPK activation at a later time point 

(Fig. 1C). ). It is possible that AMPK activation is followed by its down-regulation. These 

findings suggest that AMPK acts as a tumor suppressor in UVB-induced skin cancer.
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AMPK is required for enhancing UVB-induced DNA damage repair by AICAR and 
metformin

The ability of a keratinocyte to carry out proper DNA repair is vital to its genomic integrity 

following UVB damage. Replication of damaged DNA can cause mutations that may 

ultimately lead to skin carcinogenesis (8–14). To determine whether UVB-induced DNA 

damage repair is affected by AMPK inhibition, AICAR, or metformin, we analyzed the 

difference in DNA repair between AMPK wild-type (WT) mouse embryonic fibroblast 

(MEF) cells and AMPK knockout MEF cells, and between vehicle-treated (Veh) mouse skin 

and AICAR- or metformin (Met)-treated skin and normal human epidermal keratinocytes 

(NHEK). To determine the specific role of AMPK in UVB-induced DNA damage repair, we 

elected to use conditions that neither caused apoptosis, which can remove damaged cells, 

nor allowed cell proliferation, which will lead to overestimation of DNA repair due to 

dilutions of DNA damage. We elected to use a low dose of UVB at 5 mJ/cm2 for MEF cells, 

100 mJ/cm2 for mouse skin, and 20 mJ/cm2 for NHEK cells, which do not cause apoptosis 

(data not shown). In addition, we used low serum medium (2%) for MEF cells or reduced 

growth factors (20% of normal levels) for NHEK cells, together with functional checkpoint 

pathway, to assure growth arrest after UVB radiation within 24 h for NHEK cells and mouse 

skin, and 48 h for MEF cells (data not shown). In MEF cells, AMPK deletion significantly 

reduced CPD repair (Fig. 2A-B; P < 0.05, Student’s t-test and two-way ANOVA), while it 

had no effect on 6-4PP repair (Fig. 2A). These data indicate that AMPK is required for 

efficient CPD repair and suggest that AMPK acts as a tumor suppressor, as failure to repair 

CPD but not 6-4PP is the principal cause of skin cancer (9). In mouse skin, topical treatment 

with AICAR or metformin accelerated CPD repair at 6 h post-UVB (Fig. 2C-D; P < 0.05, 

Student’s t-test) significantly, while it did not affect either the repair of CPDs at 24 h or that 

of 6-4PPs at 6 or 24 h post-UVB (Fig. 2E-F), indicating that the AMPK activators AICAR 

and metformin promote CPD repair.

To further determine the role of AMPK activation in the action of AICAR and metformin, 

we assessed whether AMPK deletion abolishes the promoting effect of AICAR and 

metformin on CPD-repair. In AMPK WT MEF cells, AICAR (AI) and metformin 

accelerated CPD repair at 6 h post-UVB, while they had no effect in AMPK KO MEF cells 

(Fig. 2G), indicating that AMPK is required for promoting DNA repair by AICAR and 

metformin. To determine the molecular mechanism by which AMPK regulates DNA repair, 

we analyzed the difference in the protein levels of DDB1, DDB2, and XPC, crucial specific 

factors required for repairing the majority of UVB-induced DNA damage (11, 12, 15–18). 

AMPK deletion in MEF cells reduced the protein levels of XPC, while it had no effect on 

DDB1 and DDB2 levels (Fig. 2H). However, AMPK deletion neither affected XPC 

transcription (Fig. s1A) nor increased the nuclear localization of E2F4/p130 (Fig. s1B), the 

repressor complex for XPC transcription, suggesting that AMPK regulates XPC expression 

through a post-transcriptional mechanism. In normal epidermal human keratinocytes 

(NHEK), AICAR and metformin (Met) increased the expression of XPC (Fig. 2I) and CPD 

repair (Fig. s1C). Similarly topical AICAR and metformin increased XPC protein levels in 

mouse skin (Fig. s1D). Taken together, these data indicate that AICAR and metformin 

promote UVB-induced DNA repair in an AMPK-dependent manner.
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Activation of the AMPK pathway reduces UVB-induced skin tumorigenesis in mice

To determine whether activation of AMPK affects UVB-induced skin tumorigenesis, we 

treated SKH-1 hairless mice, which are widely used in photocarcinogenesis as a clinically 

relevant animal model, with the AMPK activators AICAR and metformin and then exposed 

the mice to UVB radiation three times a week for 23 weeks. Treatment of mice with topical 

AICAR or metformin at 24 h after the final treatment increased ACC phosphorylation (Fig. 

3A), indicating that both AICAR and metformin activate the AMPK pathway in mouse skin. 

Topical treatment with either AICAR or metformin in parallel with UVB treatment not only 

significantly delayed the onset of UVB-induced skin tumorigenesis (Fig. 3B; P < 0.05, Log-

rank test between vehicle and AICAR or metformin groups) but also reduced tumor 

multiplicity (Fig. 3C; P < 0.05, Student’s t-test), including both large malignant tumors 

(diameter > 1cm, all SCC) and small pre-malignant lesions (diameter < 1cm, all papilloma) 

(Fig. 3D). These data indicate that the AMPK activators AICAR and metformin reduce 

UVB-induced skin tumorigenesis.

AICAR and metformin reduce cell proliferation through an AMPK-independent mechanism

Deregulated cell proliferation is not only critical for tumor growth but also essential for 

tumor formation. To determine whether AICAR or metformin plays a role in cell 

proliferation in vivo, we assessed the difference in epidermal thickness and the number of 

Ki67-positive epidermal cells between vehicle-, AICAR-, or metformin-treated mouse 

epidermis. Chronic UVB irradiation increased epidermal thickness about 10-fold, while 

AICAR and metformin significantly reduced UVB-induced epidermal hyperplasia (Fig. 4A-

B, P < 0.05, Student’s t-test). In addition, AICAR and metformin reduced the number of 

Ki67-positive epidermal cells in sham- or UVB-irradiated mice (Fig. 4C-D; P < 0.05, 

Student’s t-test). These data indicate that AICAR and metformin inhibit cell proliferation in 

vivo. To determine whether AMPK plays a role in the anti-proliferative action of AICAR 

and metformin, we analyzed the effect of AMPK deletion and the effect of AICAR and 

metformin on cell proliferation in AMPK WT and KO MEF cells. AMPK deletion increased 

cell proliferation significantly at 2 and 3 days in culture (Fig. 4E, P < 0.05 using Student’s t-

test and two way ANOVA), indicating that AMPK is critical for controlling cell growth. 

AICAR and metformin inhibit cell proliferation in both WT and KO cells at the third day 

after plating (Fig. 4F), indicating that AMPK is dispensable for the anti-proliferating effect 

of AICAR and metformin.

ERK pathway is inhibited by AICAR and metformin

To determine the molecular pathway that mediates the effect of AICAR and metformin on 

cell growth, we analyzed the involvement of ERK, a major growth-promoting pathways. 

Repeated topical treatment with either AICAR or metformin in mice reduced the 

phosphorylation of ERK (Fig. 5A). One time treatment also had an inhibitory effect (Fig. 

s1D). These data suggest the ERK pathway as a target for AICAR and metformin in the 

skin. Similarly, in NHEK cells AICAR and metformin decreased ERK activation (Fig. 5B). 

To determine the role of AMPK in ERK activation, we analyzed the difference in ERK 

activation in AMPK WT and KO cells. AMPK deletion increased the phosphorylation of 

ERK and EGFR (Fig. 5C), an upstream pathway of ERK activation, and the protein levels of 
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cyclin D1, a downstream target of ERK activation. In AMPK KO cells, inhibiting the EGFR 

pathway decreased ERK phosphorylation and cyclin D1 levels, and inhibiting the ERK 

pathway reduced cyclin D1 levels (Fig. 5D). These data indicate that AMPK is a suppressor 

for the EGFR/ERK/cyclin D1 pathway, a key mitogenic signal in response to growth factor 

stimulation. However, AICAR and metformin reduced ERK phosphorylation not only in 

AMPK WT cells but also in AMPK KO cells (Fig. 5E), indicating that AICAR and 

metformin inhibit ERK through an AMPK-independent pathway. In contrast, neither 

AICAR nor metformin affected EGFR phosphorylation, suggesting that AICAR and 

metformin target EGFR downstream but ERK upstream pathways. These data suggest that 

the anti-proliferative action of AICAR and metformin is mediated through AMPK-

independent inhibition of ERK signaling.

Metformin suppresses growth of established tumors and prevents new tumor formation in 
UVB-irradiated mice

To further advance our findings on the chemopreventive effect of AICAR and metformin 

toward potential clinical applications, we analyzed the impact of metformin on tumor 

formation and growth in tumor-bearing mice that had been chronically exposed to UVB 

radiation. We elected to focus on metformin, as it has been widely used for years for anti-

diabetic treatment, and thus is more likely to be applied for cancer prevention and 

intervention in, for example, non-diabetic high risk individuals who have a history of skin 

cancer. To mimic a skin tumorigenesis scenario, we irradiated SKH-1 mice with UVB for 17 

weeks until they developed 3–4 tumors on average that were 2–4 mm in diameter. Then 

these mice were treated with vehicle, topical metformin (Met-T), or systemic metformin 

through oral gavage (Met-G) and continued to be irradiated with UVB (Fig. 6A-B). Both 

topical and systemic metformin increased phosphorylation of ACC in non-tumor mouse 

skin, indicating AMPK activation (Fig. 6C). Either treatment prevented new tumor 

formation (Fig. 6D; P < 0.05, Student’s t-test). In addition, both topical and systemic 

metformin treatment significantly inhibited growth of established tumors (Fig. 6E, P < 0.05, 

Student’s t-test), while systemic treatment was more effective than topical treatment. This 

may be due to the limited penetration of topical treatment for established tumors.

To determine the role of cell proliferation, we assessed the effect of topical and systemic 

metformin on epidermal hyperplasia and the number of Ki67-positive cells in UVB-

damaged non-tumor skin and established tumors. Both topical and systemic metformin 

reduced epidermal thickness and the number of Ki67-positive cells in non-tumor skin, while 

systemic but not topical metformin reduced the number of Ki67-positive cells in established 

tumors (Fig. 6F). Taken together, these data demonstrated that, in tumor-bearing mice, the 

most widely used anti-diabetic drug metformin given topically or systemically prevents new 

tumor formation and suppresses growth of established tumors in association with inhibiting 

cell proliferation, suggesting a potential chemopreventive benefit for individuals with skin 

cancer histories and at high risk for skin cancer.
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Discussion

Recent studies have demonstrated that the energy-sensing enzyme AMPK inhibits growth 

and/or survival of cancer cells, and thus AMPK activators including AICAR and the anti-

diabetic drug metformin might be used to enhance cancer therapy (19, 20). However, the 

role AMPK in the response of skin cells to UVB damage and in skin cancer prevention 

remains unknown. Here we have shown that the AMPK pathway is down-regulated in 

human and mouse skin tumors and in UVB-irradiated mouse skin. The AMPK pathway is 

critical for UVB-induced DNA damage repair and growth control. In mice, topical treatment 

with the AMPK activators AICAR and metformin prevents UVB-induced skin 

tumorigenesis. Topical or systemic metformin prevents new tumor formation and suppresses 

growth of established tumors in UVB-irradiated mice with skin tumors. AICAR and 

metformin promote UVB-induced DNA damage repair through an AMPK-dependent 

mechanism, while they inhibit cell proliferation through an AMPK-dispensable pathway. 

Our findings strongly indicate that AICAR and metformin promote the genomic integrity of 

normal skin cells following UVB damage and thus reduce skin tumorigenesis.

We demonstrated that AMPK is required for efficient repair of UVB-induced DNA damage, 

linking energy metabolism with genomic stability. This was supported by the following 

evidence: (1) AICAR and metformin increased UVB-induced DNA damage repair in mouse 

skin; (2) deletion of AMPK inhibited DNA repair; and (3) AMPK deletion diminished the 

promoting action of AICAR and metformin on DNA repair. At the molecular level, AMPK 

inhibition specifically down-regulated XPC, a key protein required for global genome 

nucleotide excision repair (GG-NER), while AICAR and metformin increased XPC levels, 

suggesting that AMPK positively regulates GG-NER through XPC. Our previous studies 

have supported a model in which XPC mediates the function of the deacetylase SIRT1 and 

the tumor suppressor PTEN in GG-NER (33, 34). Both SIRT1 and PTEN regulate XPC at 

the transcriptional level. However, the regulation of XPC by AMPK seems to be 

independent of its transcription or its transcription repressor factors. It is possible that 

AMPK regulates the mRNA stability through the RNA binding protein HuR (35). Further 

investigation is needed to elucidate the molecular mechanism by which AMPK regulates 

XPC. Nevertheless, our results strongly indicate that AMPK activation is required for fully 

operational GG-NER capacity to remove the tumorigenic DNA lesions, i.e., CPD, as failure 

to repair CPD is the principle cause of skin cancer (9), and effective GG-NER protects mice 

against UVB-induced skin tumorigenesis.

In addition, our results indicate that AICAR and metformin inhibit cell proliferation in 

mouse skin and reduce UVB-induced epidermal hyperplasia. AMPK suppresses cell 

proliferation through inhibiting the mitogenic EGFR/ERK pathway. In contrast, both 

AICAR and metformin inhibit the ERK pathway but they had no effect on EGFR activation. 

The anti-proliferative action and ERK inhibition of AICAR and metformin are independent 

of AMPK action, as AMPK deletion had no effect. Interestingly, previous studies have 

identified an opposing effect of AICAR/AMPK on ERK activation. In both NIH-3T3 and 

cardiac fibroblasts, AICAR inhibits growth factor-induced ERK activation (36, 37), in an 

AMPK-dependent but EGFR-independent manner (36). In contrast, in erythroleukemia 

K562 cells, AMPK is required for ERK activation (38). It is possible that the regulation of 
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ERK activation by AICAR is cell type-specific. In the skin as well as in MEF cells in this 

study, AICAR and metformin inhibit the ERK pathway through an AMPK- and EGFR-

independent mechanism. Furthermore, although AMPK and meformin have been shown to 

suppress the mTOR pathway (19, 20, 39–41), in glioblastomas, AICAR is more effective in 

blocking cell proliferation than the mTOR inhibitor rapamycin, despite less efficient 

inhibition of mTOR signaling (30), thus challenging the dominant role of mTOR inhibition. 

We are currently working on identifying the molecular mechanism of AICAR and 

metformin for ERK inhibition and proliferation control and elucidating the importance of 

mTOR in the chemopreventive action of AICAR and metformin.

In summary, we have demonstrated that AMPK may play a critical role in inhibiting skin 

carcinogenesis by promoting UVB-induced DNA damage repair and growth control. The 

AMPK activators AICAR and metformin reduce UVB-induced skin tumorigenesis. AICAR 

and metformin promote UVB-induced DNA damage repair through AMPK activation, while 

they decrease cell proliferation through AMPK-independent ERK inhibition. Our findings 

suggest that AICAR and the most widely used anti-diabetic drug metformin are potential 

chemopreventive agents for skin cancer, especially for individuals with skin cancer history.

Materials and Methods

Human normal and tumor samples

All human specimens were studied after approval by the University of Chicago Institutional 

Review Board. Frozen tissues were obtained under the consent (Department of Medicine, 

University of Chicago) as in our previous studies (34).

Cell culture

AMPK wild-type (WT) and knockout (KO) mouse embryonic fibroblast (MEF) cells (42) 

were maintained in a monolayer culture in 95% air/5% CO2 at 37°C in Dulbecco’s modified 

Eagle’s medium (DMEM) supplemented with 10% fetal bovine serum (FBS), 100 units per 

mL penicillin, and 100 mg per mL streptomycin (Invitrogen, Carlsbad, California). MEF 

cells were cultured for less than 20 passages. Normal human epidermal keratinocytes 

(NHEK) were obtained from Clonetics (Lonza) and cultured in KGM Gold BulletKit 

medium (Clonetics, Lonza) according to the manufacturer’s instructions. NHEK cells were 

cultured for less than 4 passages. For DNA repair analysis, MEF or NHEK cells were 

cultured in low serum medium (2%) for MEF cells or growth factors (20% of normal levels) 

for NHEK cells overnight prior to UVB irradiation and after irradiation to prevent cell 

growth.

UVB radiation

UVB radiation was performed as described previously (43). Our UVB radiation was 

monitored every other week to measure the exposure output and dose. Our UVB system 

does not emit UVC radiation.
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Animal Treatments

All animal procedures have been approved by the University of Chicago Institutional 

Animal Care and Use Committee. Hairless SKH-1 mice were obtained from Charles River. 

Mice were exposed to UVB (100 mJ/cm2, dose selected to avoid visible sunburn) dorsally or 

sham-irradiated, three times a week for up to 25 weeks, to monitor tumor formation and 

growth. One hour prior to each UVB irradiation, mice were treated with vehicle (acetone), 

AICAR (1 μmol) or metformin (2 μmol). In UVB-irradiated tumor-bearing mice, metformin 

was given either topically (2 μmol) or by gavage (300 mg/kg). Mouse skin samples were 

fixed in formalin for histological analysis or immunohistochemical analysis for Ki67-

positive cells (Immunohistochemistry Core facility), or snap-frozen for immunoblotting 

analysis. Mice were housed five animals per cage, and there was no evidenceof dorsal 

wounds caused by fighting or sunburn.

Western blotting

Protein concentrations were determined using the BCA assay (Pierce, Rockford, IL, USA). 

Equal amounts of protein were subjected to electrophoresis. Western blotting was performed 

as described previously using film detection (13, 43). Antibodies used included phospho-

ERK (p-ERK), ERK, phospho-EGFR (p-EGFR), AMPK, ACC, DDB1, DDB2, XPC, E2F4, 

p130, Lamin B, β-actin, GAPDH (Santa Cruz), cyclin D1 (BD Bioscience) p-AMPK (T172) 

and p-ACC (S79)(Cell Signaling Technology).

In vitro cell proliferation assay, immunohistochemistry, promoter reporter assay and 
cytosol-nuclear fractionation

Cell proliferation of MEF cells were analyzed using the MTS assay (Promega) according to 

the manufacturer’s instructions as in our recent studies (44). Immunohistochemical analysis 

of Ki67-positive cells in the mouse epidermis was conducted in the Immunohistochemistry 

Core facility. The promoter reporter assay and cytosol-nuclear fractionation were performed 

as described in our recent studies (33).

Determination of two major forms of UVB-induced DNA damage in genomic DNA by slot 
blot assay

Slot blot assay of CPD and 6-4PP were performed as described previously (45). Briefly, 

mouse skin or cells were collected at different time points post-UVB and DNA was isolated 

using a QIAamp DNA Mini Kit (Qiagen, Valencia, CA). The DNA concentration was 

calculated from the absorbance at 260 nm using NanoDrop 1000 (NanoDrop products, 

Wilmington, DE). The CPD and 6-4PP in DNA were quantified by slot blot (Bio-Rad) with 

monoantibodies (TDM-2 for CPD and 64 M-2 for 6-4PP, COSMO BIO Co., Koto-Ku, 

Tokyo, Japan) as described previously (45). The chemiluminescence was detected with a 

Carestream Imaging Station (Carestream). For examining repair kinetics, the percentage (%) 

of repair was calculated by comparing the optical density at the indicated time to that of the 

corresponding absorbance at time zero when there was no opportunity for repair and 100% 

of CPDs (or 6-4PPs) were present post-UVB.
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Statistical analyses

Statistical analyses were performed using Prism 5 (GraphPad software, San Diego, CA). 

Data were expressed as the mean of at least three independent experiments and analyzed by 

Student’s t-test and ANOVA. Error bars indicate standard error of means (S.E.). Log-rank 

tests were used to evaluate tumor onset. Student’s t-tests were used to analyze tumor number 

per mouse. A P value of less than 0.05 was considered statistically significant.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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NHEK normal human epidermal keratinocytes

NMSC non-melanoma skin cancer

SCC squamous cell carcinoma

UVB Ultraviolet B

Veh vehicle

WT wild-type

XP xeroderma pigmentosum

XPC xeroderma pigmentosum group C
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Fig. 1. 
AMPK pathway is inhibited in skin tumors from human and mouse and by UVB. A, 

immunoblot analysis of p-AMPK (T172) and β-actin in normal human skin and human SCC. 

B, immunoblot analysis of p-ACC (S79), ACC and GAPDH in sham- or UVB-irradiated 

non-tumor skin and UVB-induced skin tumors from SKH-1 mice. Mice were irradiated with 

UVB (100 mJ/cm2) three times a week for 23 weeks. Non-tumor skin or tumor was 

collected at 24 h after the final UVB irradiation or sham irradiation. C, immunoblot analysis 

of p-AMPK, AMPK, p-ACC, ACC and GAPDH in SKH-1 mouse skin sham-treated or 

treated with UVB at 0.5, 6 or 24 h post-UVB (100 mJ/cm2).
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Fig. 2. 
AICAR and metformin enhance UVB-induced DNA repair through activating AMPK. A, 

slot blot analysis of the levels of CPD and 6-4PP in MEF cells (n=3) with wild-type AMPK 

(WT) or AMPK knockout (KO) at 0, 6, 24, and 48 h post-UVB (5 mJ/cm2). B, 

quantification of percentage (%) of CPD repair from A. *, P < 0.05, significant differences 

between AMPK WT and KO groups. C, slot blot analysis of the levels of CPD in SKH-1 

mouse skin (n =3) treated with vehicle (Veh), AICAR, or metformin (Met) at different times 

post-UVB (100 mJ/cm2). D, quantification of percentage (%) of CPD repair from C. *, P < 

0.05, significant differences between vehicle- and AICAR- or metformin-treated groups. E, 

slot blot analysis of the levels of 6-4PP in SKH-1 mouse skin (n =3) treated with vehicle 

(Veh), AICAR, or metformin (Met) at different times post-UVB (100 mJ/cm2). F, 

quantification of percentage (%) of 6-4PP repair from E. G, slot blot analysis of the levels of 

CPD and 6-4PP in WT or KO MEF cells (n=3) treated with vehicle (Veh), AICAR (AI, 1 

mM), or metformin (2 mM) at 0, 6, 24, and 48 h post-UVB (5 mJ/cm2). H, immunoblot 

analysis of DDB1, DDB2, XPC, AMPK and GAPDH in WT and KO AMPK MEF cells. I, 

immunoblot analysis of XPC and GAPDH in NHEK cells treated with vehicle (Veh), 

AICAR (AI, 1 mM) or metformin (2 mM). Error bars in panels B, D and F indicate S.E.
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Fig. 3. 
AICAR and metformin prevent UVB-induced skin tumorigenesis in SKH-1 hairless mice. 

A, immunoblot analysis of p-ACC, ACC, and GAPDH in SKH-1 mouse skin at 24 h after 

the final topical treatment with vehicle (Veh), AICAR (1 μmol), or metformin (Met, 2 μmol) 

for 23 weeks. B, percent (%) of tumor-free mice in vehicle (Veh), AICAR, or metformin-

treated mice following sham or UVB irradiation (n=10). SKH-1 mice were treated with 

topical AICAR (1 μmol) or metformin (2 μmol) 1 h prior to each UVB irradiation (100 

mJ/cm2) three times a week for 23 weeks. C, Average number (#) of tumors per mouse from 

mice treated as in B. D, average number (#) of large (> 1cm in diameter) and small (< 1cm 

in diameter) tumors per mouse. *, P < 0.05, significant differences between vehicle- and 

AICAR- or metformin-treated groups. Error bars in panel D indicate S.E.

Wu et al. Page 16

Oncogene. Author manuscript; available in PMC 2013 November 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 
AICAR and metformin reduce cell proliferation in mouse skin and MEF cells independent 

of the AMPK pathway. A, histological analysis of non-tumor mouse epidermis (n = 10) 

topically treated with vehicle, AICAR (1 μmol) or metformin (2 μmol) for 23 weeks post-

UVB or –sham. Scale Bar: 200 μm. B, quantification of epidermal thickness (μm) in A. C, 

immunohistochemical analysis of Ki67-positive cells in mouse skin (n = 5) topically treated 

with vehicle, AICAR (1 μmol) or metformin (2 μmol) for 23 weeks post-UVB or –sham 

irradiation. Scale Bar: 50 μm. D, quantification of Ki67-positive (Ki67+) cells in C. *, P < 

0.05, significant differences between vehicle- and AICAR/metformin-treated groups. E, 

proliferation analysis using the MTS assay (Promega) in WT or KO AMPK MEF cells. *, P 

< 0.05, significant differences between AMPK WT and KO cells. F, proliferation analysis 

using the MTS assay (Promega) in WT or KO AMPK MEF cells treated with vehicle, 

AICAR (AI, 1 mM) or metformin (Met, 2 mM). *, P < 0.05, significant differences between 

vehicle- and AI/Met-treated groups in WT and KO cells. Error bars in panels B, D, E, and F 

indicate S.E.

Wu et al. Page 17

Oncogene. Author manuscript; available in PMC 2013 November 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5. 
AMPK is not required for inhibiting the ERK pathway by AICAR and metformin. A, 

immunoblot analysis of p-ACC, ACC, p-ERK, ERK, and GAPDH in mouse skin at 24 h 

after the final topical treatment with vehicle, AICAR (1 μmol) or metformin (2 μmol) for 23 

weeks. B, immunoblot analysis of Cyclin D1, p-ERK, ERK, p-ACC and GAPDH in NHEK 

cells at 24 h after treatment with vehicle, AICAR (1 mM) or metformin (2 mM). C, 

immunoblot analysis of AMPK, p-ERK, ERK, p-EGFR, cyclin D1 and GAPDH in AMPK 

WT and KO MEF cells. D, immunoblot analysis of cyclin D1, p-ERK, ERK, p-EGFR, 

AMPK, and GAPDH in KO MEF cells treated with vehicle (−), PD (PD98059, 20 μM) and 

AG (AG1478, 1 μM), and WT MEF cells. E, immunoblot analysis of p-ERK, ERK, p-

EGFR, AMPK and GAPDH in WT and KO MEF cells treated with vehicle, AICAR (1 

mM), or metformin (2 mM).
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Fig. 6. 
Metformin prevents new tumor formation and suppresses growth of established tumors in 

mice. A, a schematic diagram of the experimental design for B-F, in which mice were 

treated with topical metformin (Met-T, 2 μmol) or systemic metformin (Met-G, 300 mg/kg 

body weight) 1 h prior to each UVB treatment at 17 weeks after the initial UVB irradiation, 

together with continuing UVB irradiation three times a week for 8 weeks. B, representative 

mouse pictures from experimental design as in A. C, immunoblot analysis of p-ACC, ACC 

and GAPDH. D, number (#) of new tumors per mouse at different weeks following 

metformin treatment as in A (n = 3). E, average volume (mm3) of established tumors formed 

at 17 weeks post-UVB at different weeks following treatment as in A. F. histological 

analysis of non-tumor (NT) epidermis treated with metformin as in A for 8 weeks by 

hematoxylin and eosin stain (H&E) and immunohistochemical analysis of Ki67-positive 

(Ki67+) cells in non-tumor (NT) and skin tumors. *, P < 0.05, significant differences 

between vehicle- and metformin-treated groups. Error bars in panels D and E indicate S.E.
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