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Abstract.  There has been increasing interest in the role of hypoxia in the microenvironment of organs, because of the discovery 
of hypoxia-inducible factor-1 (HIF1), which acts as a transcription factor for many genes activated specifically under hypoxic 
conditions. The ovary changes day by day during the estrous cycle as it goes through phases of follicular growth, ovulation, 
and formation and regression of the corpus luteum (CL). These phenomena are regulated by hypothalamic and pituitary 
hormones, sex steroids, peptides and cytokines, as well as oxygen conditions. Hypoxia strongly induces angiogenesis via 
transcription of a potent angiogenic factor, vascular endothelial growth factor (VEGF), that is regulated by HIF1. A CL forms 
with a rapid increase of angiogenesis that is mainly induced by HIF1-VEGF signaling. Hypoxia also contributes to luteolysis 
by down-regulating progesterone synthesis and by up-regulating apoptosis of luteal cells. This review focuses on recent 
studies on the roles of hypoxia- and HIF1-regulated genes in the regulation of bovine CL function.
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Introduction

The corpus luteum (CL) develops after ovulation and is accom-
panied by active angiogenesis. Its primary role is the establishment 
and maintenance of pregnancy in mammals. When conception does 
not occur, the CL regresses with a decrease in progesterone (P4) 
synthesis and increased apoptosis of luteal cells. Variable blood 
flow to the ovary during the ovarian cycle [1] causes changes in 
the transport of nutrients, hormones, and gases, including O2, to the 
ovary. Ovarian blood flow in cows decreases during luteal regression 
and is kept at low levels during luteal formation after ovulation 
[1]. Thus, during luteal regression and formation, the intra-luteal 
environment is characterized by low oxygen (hypoxic) conditions 
due to decreased blood supply.

The discovery that cellular responses to hypoxic conditions are 
mainly regulated by hypoxia-inducible factors (HIFs) was the basis 
of the study that won the 2019 Nobel Prize in Physiology or Medicine 
[2]. HIFs are hypoxia-specific transcription factors. HIF1 was first 
identified as an inducer of erythropoiesis in the kidney [2, 3] and was 
later found to be involved in inducing many physiological processes 
including angiogenesis, glycolysis, apoptosis and autophagy [4]. 
Recently, it was discovered to be a factor in the regulation of ovarian 
functions [5, 6].

This review focuses on the roles of hypoxia and HIF signaling 

in the development and death of the CL in cattle.

Luteinization

Luteinization is the process by which the follicular granulosa and 
theca cells are transformed into luteal cells. It begins in the developing 
follicle, whose interior is under hypoxic conditions [7–10]. Moderate 
hypoxia, such as the hypoxia in the peri-ovulatory follicles, has been 
shown to stimulate P4 production in granulosa cells (GCs) [11–13]. 
Culturing murine GCs [12] and bovine luteinized GCs [11, 13] under 
10% O2 conditions increased the transcription of steroidogenic acute 
regulatory protein (STAR) as well as production of P4. In mice, 
HIF1-induced autophagy was found to be vital for GC proliferation 
through the selective degradation of damaged mitochondria during 
follicle-stimulating hormone (FSH) -mediated follicular develop-
ment [14, 15]. This autophagy-related action has been observed in 
luteinization as well as luteal formation after ovulation [16]. BCL2/
adenovirus E1B 19 kilodalton protein-interacting protein 3 (BNIP3) 
is a cell death factor that induces autophagy of the mitochondria 
(mitophagy) [17]. The finding that BNIP3 is abundantly expressed 
in the early CL supports the idea that hypoxia-induced autophagy 
is necessary for luteinization and luteal formation [16]. These stud-
ies suggest that the hypoxia generated in the developing follicle 
induces luteinization by up-regulating P4 production in GCs and this 
luteinization continues during early luteal formation after ovulation.

Luteal Formation

VEGF
Vascular endothelial growth factor (VEGF) – a strong angiogenic 

factor [18] – is the most essential factor for angiogenesis during 
luteal formation [5, 8, 19–22]. Soon after HIF1 was discovered [23], 
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it was found that it profoundly induced the transcription of VEGF 
[24]. The early luteal tissue just after ovulation is presumed to be 
under hypoxic conditions, since the vasculature and the structure 
of follicular wall are destroyed by ovulation [25] and the blood 
flow to the ovary is low around the time of ovulation [1]. In bovine 
luteal endothelial cells, the mRNA expressions of the α subunit of 
HIF1 (HIF1A) and VEGF were not significantly different between 
normoxic (20% O2) and hypoxic (1% O2) cultures [26]. In the porcine 
CL, HIF1A mRNA expression was high at the early luteal stage 
suggesting that HIF1 assists in luteal formation [27]. The amount 
of HIF1 inside the cells is tightly regulated at the protein level [28]. 
Under normoxic conditions, HIF1A protein is rapidly degraded 
by the ubiquitin-proteasome pathway. In contrast, hypoxic condi-
tions slow the degradation of HIF1A, leading to its accumulation. 
Consequently, HIF1 forms a dimer with the β subunit (HIF1B, also 
called aryl hydrocarbon receptor nuclear translocator; ARNT) to 
become a functional transcription factor [28]. Immunostaining of 
the primate ovary showed that HIF1A protein was highly expressed 
in the early CL in the primate ovary [29]. HIF1A protein expression 
was also high in the early and developing bovine CL, and along 
with VEGF protein, was significantly up-regulated under hypoxic 
conditions (3% O2) [30]. These studies suggest that the vascular 
and structural changes caused by ovulation lead to an acute oxygen 
shortage locally in follicular walls, which, in turn, strongly activates 
HIF1. This induces the transcription of VEGF, which is necessary 
for angiogenesis that occurs during luteal formation.

BNIP3
BCL-2 family proteins are well known regulators of apoptosis. 

BNIP3 is a member of this family that was first identified as an 
apoptosis promoter [31]. Subsequently, BNIP3 was found to regulate 
the induction of autophagy, especially mitophagy [17]. Recently, 
BNIP3-related autophagy was discovered in the ovarian functions. In 
the murine ovarian follicles, FSH induced the autophagy of murine 
GCs via HIF1, the latter being necessary for follicular development and 
atresia [15]. BNIP3 expression was also detected in bovine follicles 
and CLs and was found to be up-regulated by hypoxic conditions in 
GCs and luteal cells [16]. BNIP3 has also been suggested to have 
roles before ovulation, because of its increased expression in the GCs 
of bovine large follicles [16]. Furthermore, in the bovine CL, BNIP3 
expression at the early luteal stage is much higher than that at other 
luteal stages. These results suggest that BNIP3 regulates mitophagy 
and autophagy in the early CL in order to form and establish the CL. 
They also suggest that the activation of BNIP3 is induced by HIF1 
and hypoxia that occur during ovulation.

GLUT1
HIF1 is also known to induce genes related to glycolysis, one 

of which is the facilitative glucose transporter 1 (GLUT1) [4]. The 
expression of GLUT1 in CL has been reported in canine [32] and 
bovine [33, 34] ovaries. In the canine CL, GLUT1 expression was 
positively correlated with the plasma P4 concentration and expression 
of HIF1A [32]. In the bovine CL, GLUT1 is expressed throughout 
the estrous cycle [33] and is most highly expressed at the early 
luteal stage [34], when the expression of HIF1A is also high [30]. 
Culturing bovine luteal cells under hypoxic conditions induced GLUT1 

expression, while inhibiting GLUT1 decreased P4 production [16]. 
These results support the idea that GLUT1 is needed for luteal P4 
production, which luteal cells need to take up glucose. They also 
support the idea that GLUT1 expression at the early luteal stage is 
induced by HIF1, after HIF1 is activated by the hypoxic conditions 
during ovulation.

Luteal Regression

Functional luteolysis
Luteal regression is characterized by a decrease in P4 production 

(functional luteolysis), followed by a decrease in luteal size (structural 
luteolysis), which is largely achieved by apoptosis [35–39]. In cows, 
ovarian blood flow (as measured by electromagnetic probes) is low 
just after ovulation, increases gradually toward the luteal stage, 
and then decreases during luteal regression [1, 40]. Measurements 
with color-doppler ultrasound also show that intra-luteal blood flow 
decreases simultaneously with the decrease in plasma P4 concentra-
tions during luteolysis, suggesting that the decreased blood supply is 
related to functional luteolysis in cows [41, 42]. Vascular occlusion 
was found to occur following the sloughing of endothelial cells into 
the lumina of small blood vessels during luteolysis, suggesting that 
vascular occlusion is the cause of the decreased blood supply and 
hypoxic conditions in the CL [43]. We found that hypoxic condi-
tions decreased P4 production in mid luteal cells by inhibiting the 
expression and activity of the enzyme P450scc (cytochrome P450 
side-chain cleavage enzyme), which converts pregnenolone into P4 
by cleaving the side-chain [44]. This inhibitory effect was evident in 
the mid CL, while it was not detected in the early CL [45]. Hypoxia 
has been suggested to inhibit the process of side-chain cleavage 
of cholesterol, since molecular oxygen is required for this process 
[46], and the importance of oxygen has been reported in different 
types of cells [47, 48]. Hypoxia is also known to generate reactive 
oxygen species in mitochondria, thereby damaging the mitochondria 
[49]. The damage to mitochondria could be one of the reasons for 
the hypoxia-induced inhibition of P450scc activity by hypoxia. 
Because the expression of HIF1A in bovine CL is low during the 
regressed stage [30], hypoxia-induced functional luteolysis seems 
to occur without the activation of HIF1. However, the relationship 
between P450scc activity and HIFs is not known, and needs to be 
explored in future studies.

Structural luteolysis
Apoptosis, which is essential for structural luteolysis [36], was 

also induced in cultured luteal cells under hypoxic conditions. In 
cultured luteal cells, hypoxic conditions induced caspase-3 – an 
effector caspase in the apoptotic cascade [50]. BNIP3, which facilitates 
apoptosis [31] and mitophagy [17] under hypoxic conditions, was also 
induced in bovine luteal cells by hypoxia. These findings suggest that 
the oxygen deficiency in the CL is one of the factors that accelerate 
luteolysis principally induced by uterine prostaglandin F2α and 
other luteolytic factors, such as cytokines, peptides and gases [37].

Conclusion

The findings cumulatively suggest that hypoxia plays multiple 
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roles in both the formation and regression of the bovine CL. During 
CL formation, hypoxia promotes luteinization and induces angio-
genesis, glucose uptake, and mitophagy, while during CL regression, 
it decreases P4 synthesis and promotes apoptosis (summarized in 
Fig. 1). Further studies on how the length and degree of hypoxia 
determine the fate of cells in each luteal stage and what other factors, 
such as hormones, regulate HIF1 signals will contribute to a better 
understanding of the roles of hypoxia in ovarian physiology.
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