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Abstract: The rapid rise of obesity during the past decades has coincided with a profound shift of our
living environment, including unhealthy dietary patterns, a sedentary lifestyle, and physical inactivity.
Genetic predisposition to obesity may have interacted with such an obesogenic environment in
determining the obesity epidemic. Growing studies have found that changes in adiposity and
metabolic response to low-calorie weight loss diets might be modified by genetic variants related
to obesity, metabolic status and preference to nutrients. This review summarized data from recent
studies of gene-diet interactions, and discussed integration of research of metabolomics and gut
microbiome, as well as potential application of the findings in precision nutrition.
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1. Introduction

The increasing epidemic of obesity has coincided with a profound shift of our living environment,
such as unhealthy dietary patterns, a sedentary lifestyle, physical inactivity, poor sleeping habits,
as well as changes in demographic and cultural background [1]. In a recent study of the US national
cohort, the magnitude of association between obesity, as assessed by body mass index (BMI) and
genetic risk of obesity was stronger in more recent birth cohorts than in earlier years of birth
cohorts, suggesting that such genetic predisposition to obesity may have a greater effect in more
recent obesogenic environments [2]. Although the environmental risk factors are largely modifiable
and the development of obesity would be essentially preventable, genetic variants associated with
adiposity may also influence behavioral responses such as shaping appetite, total energy intake
and preferences of macronutrients [3–6]. Also, food preference patterns (such as high sugar and
carbohydrate consumption) [7,8] would partly be genetically determined.

The genetic contribution to obesity has been extensively investigated in genome-wide association
studies (GWAS) [9–11], which successfully discovered susceptible loci and unveiled mechanisms.
However, predicting disease risk from genetic background is complicated by interactions between
genetic variants and environmental risk factors. Gene–environment interactions are ubiquitous,
and may account for the greater part of disease risk seen across genotypes [12]. With rapid advances
in omics technologies and analytic approaches, recent genome-wide analyses have reveled genetics of
intermediate phenotypes such as circulating metabolites (metabolomics) and gut microbiome [13–18].
Integrating information from studies of metabolomics and gut microbiome [19] will provide new
insights into the roles of gene–environment interaction in complex traits including obesity, and
contribute to a precision prevention and management of obesity. Here, we highlighted data from
recent studies of gene–diet interactions on obesity, and discussed how these findings may inform
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understanding of more complex architecture of interactions between genes and environment factors in
obesity and associated diseases.

2. Studying Gene–Environment Interactions

More and more genetic bases of complex metabolic diseases such as obesity and type 2 diabetes
have been revealed [9–11,20,21], however the genetic variants identified so far only explain a small
proportion of heritability of the diseases, suggesting so-called ‘missing’ heritability [22]. For example,
the recent GWAS by the Genetic Investigation of Anthropometric Traits (GIANT) consortium identified
a total of 97 BMI-associated loci; however, these loci only account for 2.7% of BMI variation [11]. As we
and others described previously [1,23–26], the importance of studying gene–environment interaction
has been well recognized, and the missing heritability of obesity could be partly due to interactions
between the genetic variations and environmental factors such as lifestyle and dietary factors. In the
following section of our review, we showed several studies on lifestyle and dietary factors that
magnified risk of obesity among individuals genetically at high risk. Genes can trigger the occurrence
of diseases when a person with a high-risk genetic profile is exposed to high-risk environmental factors
in the gene–environment interaction phenomena [27]. Gene–environment interaction may reflect
a causal mechanism where the variants and environmental exposures contribute to the causation
of a disease or condition in the same individual with the genetic factors influencing the sensitivity
to environmental factors. How these two exposures synergistically affect vulnerability to diseases
remains unresolved. In particular, obese individuals are characterized by different body shapes
and considerable heterogeneity within the spectrum of clinical obesity may exist [28–37]. A recent
GWAS identified genetic variants associated with overall body shape based on a combination of
multiple anthropometric traits [38]. To support gene–diet interaction and precision nutrition in obesity,
considering different body shapes and subtypes of obesity would be necessary.

3. Dietary and Lifestyle Factors Interact with Genetic Variants on Obesity

Epidemiological studies have consistently shown that particular diets and lifestyles accentuate
risk of obesity among adults genetically at high risk (Table 1). For example, replicable evidence has
shown that sugar-sweetened beverages [39–41], fried food consumption [42], physical activity and
sedentary lifestyles [43–45] are interacted with genetic variants in the association of obesity.

Table 1. Unfavorable lifestyle and dietary factors that may accelerate risk of obesity among individuals
genetically at high risk.

Factors References

High intake of sugar-sweetened beverages [39–41]
High intake of fried food [42]

High saturated fatty acids intake [46]
A sedentary lifestyle (indicated by prolonged TV watching) [43,45]

Sleep characteristics [47]
Physically inactive lifestyle [43–45]

Intake of free sugars or sugar sweetened beverages is a determinant of body weight [48,49].
We previously reported significant interactions between genetic factors linked to obesity (as assessed
by genetic risk score (GRS) based on 32 BMI-associated loci) and intake of sugar-sweetened beverages
in two US cohorts of the Nurses’ Health Study (NHS) and the Health Professionals Follow-up Study
(HPFS) [39]. The genetic association with obesity was stronger among individuals with higher intake of
sugar-sweetened beverages as compared with those with lower intake [39]. In a recent study of Swedish
adults, similar findings were observed, and the association of sugar-sweetened beverages with BMI
was stronger in people genetically predisposed to obesity [40]. Further, another recent study reported
similar interactions between a GRS for obesity and soft drinks consumption in relation to changes in
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BMI [41]. In a Hispanic population living in Costa Rica, there were significant interactions between
intake of sugar-sweetened beverages and the chromosome 9p21 variant on myocardial infarction,
and high consumption of sugar-sweetened beverages strengthen the genetic risk [50]. Consumption
of sugar-sweetened beverages has been implicated in driving the epidemic of obesity [51]; recent
reproducible evidence from these studies in the US and European populations suggests potential
interactions in the relationship.

Higher fried food intake, which increases energy intake, is considered as one of unhealthy dietary
factors that influence risks of general and central obesity [52]. We previously reported for the first time
that fried food consumption interacted with genetic background in relation to obesity in the NHS and
HPFS cohorts, highlighting the importance of reducing fried food consumption among individuals
genetically predisposed to obesity [42]. Our study indicated that FTO genotype showed the strongest
interaction (Pinteraction < 0.001) among all obesity predisposing variants [42]. In addition to fried food,
among participants of the Genetics of Lipid Lowering Drugs and Diet Network (GOLDN) and the
Multi-Ethnic Study of Atherosclerosis (MESA) population, higher intake of saturated fatty acids was
associated with higher BMI among individuals at a genetically high risk of obesity [46]. In a study
of three US cohorts, association of the APOA2 − 265T > C polymorphism and BMI was modified by
saturated fat intake [53].

On the other hand, results of the UK Biobank study [45] did not show significant interactions
between BMI-GRS and fired-food consumption or fizzy drink intake. Analysis, and the definitions of
fizzy drink consumption (such as no data on type were available) and fried-food intake (which was
indicated by combined the reported intake of fried chicken and fried potato), were different from other
studies [39–42], and habitual intake of these foods are also differ across study populations.

A recent study including data from 18 cohorts of European ancestry investigated whether a
composite score representing healthy diet (which was calculated based on self-reported intakes of
whole grains, fish, fruits, vegetables, nuts/seeds and red/processed meats, sweets, sugar-sweetened
beverages and fried potatoes) modified associations of genetic variants associated with obesity using
GRSs based on 32 BMI- and 14 waist–hip ratio (WHR)-associated single nucleotide polymorphisms
(SNPs) [54]. Their results suggested that associations between genetic predisposition and obesity traits
were stronger among individuals with healthier diet scores [54].

A number of studies investigated a gene–physical-activity interaction on obesity [43–45,55,56].
A meta-analysis has shown that physical activity attenuated the influence of FTO variants on
obesity in adults [55]. Whereas greater leisure time physical activity attenuated the genetic
association, a sedentary lifestyle indicated by prolonged TV watching was found to accentuate genetic
predisposition to elevated adiposity [43]. In our previous paper, we demonstrated that in both women
and men from the NHS and HPFS cohorts, the genetic association with BMI was strengthened with
increased hours of TV watching [43]. A recent study of the UK Biobank study also provides similar
results, and the effect of genetic risk of obesity on BMI was stronger for people watching at least
four hours of TV per day compared with those watching three hours or less [45]. The UK Biobank
study also reported that associations of genetic predisposition and measures of adiposity (such as
BMI and waist circumference) were modified by a variety of sleep characteristics including sleep
duration, chronotype, day napping, shift work, and night-shift work [47]. Their results showed that
the association of genetic risk and adiposity was exacerbated by adverse sleeping characteristics [47].

Childhood obesity is a strong risk factor for metabolic abnormalities in later adulthood [57,58].
In line with evidence in adults, studies have shown that FTO rs9939609 genotype was associated with
childhood obesity [59–62], and also suggested an association of the FTO variant and dietary intake
and preference [59,61,63]. We previously reported results of a combined analysis of 16,094 boys and
girls from 14 studies [63], and found that BMI-increasing allele of the FTO variant was associated
with increased total energy intake, but not with protein, carbohydrate, or fat intake. Also, there was a
significant interaction between FTO variant and dietary protein intake on BMI, showing that lower
protein intake attenuated the association between the FTO variant and BMI, with no heterogeneity
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among the studies [63]. A study suggests an interaction between the FTO SNP rs9939609 and
socioeconomic status on childhood obesity [64], and some other studies reported gene–environment
interactions in childhood obesity [53,65,66]. In a population-based longitudinal study in Brazil, Vitamin
D status significantly modified FTO effects on weight changes in children, suggesting that FTO SNP
rs9939609 may affect childhood weight gain, and genotype effects were more pronounced among
children with insufficient vitamin D levels [67].

4. Genetic Variants Modify the Response to Interventions

It has been reported that how genetic variants modifies effect of dietary intake on weight loss
among overweight and obese individuals. In participants of the Preventing Overweight Using Novel
Dietary Strategies (POUNDS Lost) Trial [68] and the Dietary Intervention Randomized Controlled
Trial (DIRECT) [69], we have performed a series of analyses on gene–diet interactions in obesity and
metabolic risk factors (Table 2) [70–93]. There have been debates about which dietary intervention
is more effective in losing body weight. According to a meta-analysis that assessed effectiveness
of different popular diets in improving weight loss among overweight and obese individuals [94],
significant weight loss was observed with any low-carbohydrate or low-fat diet, and weight loss
differences between individual diets were small [94]. On the other hand, our findings have consistently
shown that the effect of low-calorie dietary interventions varying macronutrient content differed
according to the genetic background including disease susceptibility, metabolic status and preference to
foods or nutrients. In addition, considerable inter-individual variation has long been noted in response
to dietary interventions, and genetic variations may at least partly account for such inter-individual
variance. For example, low-fat dietary intervention was associated with more weight loss among
overweight and obese individuals with IRS1 rs2943641 CC genotype [81]. Another study indicated
that overweight and obese individuals carrying the T allele of PPM1K rs1440581 might benefit more in
weight loss when undertaking a low-carbohydrate diet [87].

Table 2. Genetic variant that may alter effect of low-fat/high-carbohydrate and high-protein weight-loss
diets on obesity and metabolic risk factors among overweight and obese individuals.

Low-Fat/High-Carbohydrate Diet or
High-Fat/Low-Carbohydrate Diet High- or Low-Protein Diet

Genetic Variants Outcomes Genetic Variants Outcomes

Diabetes genetic risk
score [85] Glycemic traits Diabetes genetic risk

score [72]
Insulin resitence;
Insulin secretion

IRS1 rs1522813,
rs2943641 [81,83]

Insulin resistance; Metabolic
syndrome; Body weight; DHCR7 rs12785878 [84] Insulin resitence

FTO rs1558902 [93] Insulin resistance FTO rs9939609,
rs1558902 [73,90]

Body composition and
fat distribution; Appetite

GIPR rs2287019 [80] Glycemic traits; Insulin resistance

CRY2 rs11605924,
MTNR1B rs10830963 [79] Energy expenditure

TCF7L2 rs12255372 [78] Body composition

PCSK7 rs236918 [71] Insulin resistance

APOA5 rs964184 [88] Lipid profiles

LIPC rs2070895 [86] Lipid profiles

CETP rs3764261 [82] Lipid profiles

NPY rs16147 [89] Blood pressure

PPM1K rs1440581 [87] Insulin resistance; body weight

FGF21 rs838147 [70] Body composition

Adiponectin GRS [75] Appetite
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In addition, obese individuals are at high risk of progression to type 2 diabetes, and previous
GWASs revealed susceptibility loci for type 2 diabetes [95–104]. We examined associations between
weight-loss diets and a GRS for diabetes based on 31 diabetes-associated variants and assessed
2-year changes in markers of insulin resistance and β cell function in the POUNDS Lost trial [72].
We found that the lower GRS was associated with a greater decrease in fasting insulin, HbA1c,
and insulin resistance as assessed by HOMA-IR, and a lesser increase in insulin secretion as assessed
by HOMA-B, particularly among participants consuming a low-protein diet [72]. We found a significant
interaction between the GRS and dietary protein on these outcomes, and the genetic effect was opposite
among who consumed a high-protein diet [72]. Furthermore, we previously showed that changes in
adiposity and metabolic response to weight loss diets varying macronutrient content were significantly
influenced by several other individual genetic variants, such as those relating obesity (FTO and NPY),
and type 2 diabetes (TCF7L2 and IRS1, etc.). Also, a genetic variant in FGF21 region determining
preference to carbohydrate intake was associated with improving obesity in the POUNDS Lost trial [70].
Our series of studies through assessing gene–diet interaction support a concept of ‘precision dietary
interventions’ which takes individual variability, determined by genome, metabolome, microbiome,
and other makeup, into consideration in designing interventions. Despite further external replications
are necessary, accumulating data suggest that one dietary intervention might be more appropriate
than others according to individual variability. Personal information such as genotype is useful
to predict inter-individual differences in effectiveness of dietary interventions; however, there are
concerns whether provision of such personal information may induce adverse effects for individual’s
behaviors. According to results of a randomized controlled trial of healthy middle-aged adults [105],
as compared to standard lifestyle advice, additional provision of personalized information about
genetic risk (of type 2 diabetes) did not affect behaviors (such as physical activity and dietary habit)
among the study participants. Also, provision of personal information about risk of type 2 diabetes
did not seem to cause anxiety in their study [105].

In addition to dietary interventions, bariatric surgery is also considered to be an effective treatment
for patients with severe and complex obesity [106–108]. There is a significant genetic contribution
to weight loss after Roux-en-Y gastric bypass (RYGB) surgery [109]. However, only a few GWASs
were performed previously to identify genetic variants associated with weight-loss response after
gastric bypass [110,111], and more work is needed to understand the role of genetics after bariatric
surgery. Whether genetic variants may predict the effectiveness of gastric bypass surgery needs to be
further examined.

Further, an increasing number of research studies reveal new genetic variants associated with
diseases, and whether or how much modifiable factors would alter the genetic risk need to be further
investigated in the future. In a recent meta-analysis of diet/lifestyle intervention trials, the effect of
weight-loss interventions was not different according to FTO risk allele [112]. On the other hand,
according to results of the Look AHEAD (Action for Health in Diabetes) trial, genetic risk of coronary
artery disease significantly predicted cardiovascular morbidity and mortality over nearly 10 years,
and their lifestyle intervention did not alter the genetic association [113].

5. Metabolomics Approach in the Gene–Diet Interaction

In addition to classical environmental exposures, circulating metabolites could be used for
predicting risk of metabolic diseases [114–116] as well as for assessing weight-loss in response to
a dietary intervention [91,117]. Metabolomics is systematic study of small-molecules generated by
process of metabolisms, and it has made remarkable progress in understanding underlying mechanisms
of metabolic diseases and the risk prediction. Among various metabolites, circulating amino acids such
as branched-chain and aromatic amino acids concentrations have been consistently associated with
metabolic abnormalities like type 2 diabetes and obesity-associated insulin resistance [27,114,118,119].
Also, taurine metabolism disturbance is closely linked to obesity, insulin resistance and diabetes, and
we recently reported that effects of diabetes genetic risk (assessed by 31 diabetes-associated variants)
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on changes in fasting glucose, insulin, and insulin resistance were significantly modified by circulating
taurine among overweight and obese participants in the POUNDS Lost trial [92]. We observed that
elevated concentrations of taurine were associated with a greater reduction of insulin resistance among
individuals with higher genetic risk of diabetes than those with lower genetic risk [92].

Recent GWASs have revealed loci associated with intermediate phenotypes and circulating
metabolites [13–15], and these variants would be useful to investigate effects of genetic determinant
of metabolites on obesity. According to the Mendelian randomization principle, genetic variants
can be a better marker than biomarkers in assessing causal inference, and it is less likely to be
affected by confounding and reverse causation. We previously examined relations between a genetic
variant determining amino acid metabolites and obesity in the POUNDS Lost trial [87]. We identified
significant interactions between dietary fat and a genetic variant rs1440581 near PPM1K gene region
that was associated with branched-chain amino acids/aromatic amino acids ratio (the Fischer’s ratio)
on weight loss and changes in insulin resistance [87]. Our results suggested that biological mechanisms
underlying associations of metabolites and the outcomes were different across the participants [87].
More studies are warranted to examine metabolomics approaches in the gene–diet interaction to get
insights into potential mechanisms.

6. Potential Interactions of Diet with Gut Microbiome

Gut microbiota may be a potential factor for the treatment of obesity and related metabolic
diseases [120,121], and a study has also shown that obese individuals with lower bacterial richness
would have greater weight gain [120]. Potential influences of dietary habit on gut microbiota have
also been attracting interests [19,122,123]. Long-term dietary habits would influence in determining
composition of gut microbiota [124], suggesting the importance of well-designed study to investigate
the interplay of long-term dietary intake and gut microbiota on metabolic disease onset. Circulating
levels of a microbial metabolite, trimethylamine N-oxide (TMAO), has been associated with an
increased risk of cardiovascular diseases and mortality [125,126], and its precursor such as betaine was
also associated with cardiovascular diseases and type 2 diabetes [127,128]. While experimental studies
in animals suggest the causality of gut microbiota in development of metabolic diseases, prospective
cohort studies among healthy individuals are warranted to investigate how altered or changing gut
microbiota and their genome (metagenome) are associated with risk of complex diseases.

Recently, several studies identified host genetic variants associated gut microbiota [16–18], and a
study showed an interaction between host genetics and diet in regulating microbiome composition [16].
The study identified a genome-wide significant variant in LCT region that determines gut microbiome
Bifidobacterium abundance, and the variant was also differently associated with dairy intake [16].
In a study of elderly Mediterranean population, an association of the LCT variant and obesity was
significantly modified by dairy lactose and milk intake [129], suggesting that changes in the gut
microbiota across the LCT genotype might be involved in differences in caloric extraction of ingested
food and the risk of obesity [129]. Further studies considering gut-microbiome, those related genetic
variants, and dietary habit would be warranted.

7. Challenges and Opportunities for Gene–Diet Interaction Studies

A major challenge of examining gene–diet interactions is whether observations are replicable
in other populations [23–25]. In previous publications on gene–diet interactions on obesity, results
from different populations are presented to demonstrate that the findings are replicable in other
cohorts [39,40,54]. On the other hand, large-scale collaboration studies are also needed to provide a
higher level of evidence and also to perform more detailed analyses including different types of dietary
factors, phenotypes, and different obesity GRSs. Within the Cohorts for Heart and Aging Research in
Genomic Epidemiology (CHARGE) consortium, authors have collected results from multiple cohorts
and meta-analyzed results to examine gene–diet interactions [130,131]. Population-wide biobanks
have been established in several countries such the UK [132] and China [133]. Research based on the
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large sample size of biobanks with the electronic health records, available data on habitual dietary
intake (such as using food frequency questionnaires), and other health data will significantly contribute
to identification of gene–diet interactions on various health outcomes. Also, it is of importance to
provide robust evidence on gene–environment interaction from a large-scale collaboration study in
participants of randomized clinical trials. Different dietary interventions were introduced in each
study, and testing gene–diet interactions is also challenging.

Other challenges include imprecise assessment of environmental exposures, difficulty in defining
the causal variants, and devising standardized statistical models to detect interactions in different
patterns [23–25]. A study [45] introduced a negative control variable to control for residual confounding
factors, and also considered effects of ‘heteroscedasticity’ since overweight and obese individuals have
a wider variance in BMI than non-overweight individuals, and these differences in BMI may create
false positive evidence of interaction.

8. Conclusions

The obesity epidemic during the past decades has coincided with a profound shift of unhealthy
dietary patterns, a sedentary lifestyle, and physical inactivity. Genetic predisposition to obesity may
have interacted with such an obesogenic environment in determining the obesity epidemic. Increasing
evidence has shown the potential effects of gene–environment interactions on obesity. Data from
dietary intervention trials suggest that changes in adiposity and metabolic response to low-calorie
weight-loss diets could be significantly modified by genetic variants, especially those related to obesity,
type 2 diabetes, metabolism and food preference. While further external replication and a large-scale
analysis would be necessary to confirm these findings, the positive results obtained thus far tend to
support precision dietary interventions considering genetic predisposition to diseases, genetic variants
determining dietary preference and metabolites, as well as phenotypes and intermediate metabolites.
The idea of precision nutrition and dietary intervention is considered as each dietary habit and advice
is individually tailored to prevent chronic diseases on the basis of genomic background, habitual
food and beverage consumption, nutrient intake (especially those contributing to risks of diseases),
and also a person’s metabolomics, microbiome, and other omics profiles. On the other hand, few
studies investigate potential roles of metabolomics mechanisms and gut microbiome that may act at
the interface of genetic variation and environment in affecting obesity and health. Research integrating
data on genes, dietary habits, metabolites and gut-microbiome in investigation of human health would
be one of the most exciting areas in precision nutrition in the near future.
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