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Abstract
The use of Bruton Tyrosine Kinase (BTK) inhibitors in Waldenström’s Macroglobulinemia (WM) is evolving. Ibrutinib, a 
first-generation BTK inhibitor, is currently approved for use in frontline and relapsed/refractory disease. Second-generation 
BTK inhibitors are being used and studied to improve clinical outcomes and/or safety profile. Zanubrutinib, one such second-
generation inhibitor, was recently approved in treatment-naive and refractory/relapsed patients. Here, we review the use 
of BTK inhibitors in WM in front-line and refractory or relapsed settings. We also highlight common adverse events, the 
emergence of BTK inhibitors resistance, and future directions of their use.
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1  Introduction

Waldenström’s Macroglobulinemia (WM) constitutes 
approximately 1–2% of all hematological malignancies. It 
is a rare type of non-Hodgkin lymphoma (NHL) that is more 
common in the elderly, with a median age of 70 years at 
diagnosis. It is characterized by infiltration of the bone mar-
row by monoclonal immunoglobin M (IgM) protein-produc-
ing lymphoplasmacytic cells [1, 2]. The incidence of WM 
is higher in males, older age, and non-Hispanic Caucasians 
[3]. One fourth of WM patients are asymptomatic at the time 
of the diagnosis and may remain symptom free without any 
treatment for several years [4, 5]. The median overall sur-
vival (OS) for symptomatic patients is approximately 9 years 
with the 10-year OS ranging from 8 to 84%, according to the 
revised IPSSWM classification [6].

Treatment of symptomatic WM depends on patients’ 
comorbidities and preferences, and availability of treatment 
options. Preferred primary treatment options, according 
to the National Comprehensive Cancer Network (NCCN) 
guidelines, include anti-CD20 monoclonal antibodies 
(rituximab) based regimens, either in combination with 
chemotherapy (chemoimmunotherapy, CIT) or proteasome 
inhibitors [7]. Chemoimmunotherapy can be associated with 
some toxicities and many patients will inevitably develop 
resistance and will require further lines of therapy [8].

Bruton Tyrosine Kinase inhibitors (BTKi) are used fre-
quently in the treatment of WM. Ibrutinib was approved by 
the Food and Drug Administration (FDA) and is currently 
included as part of the preferred regimens in the NCCN 
guidelines for both treatment-naïve (TN) and relapsed/
refractory (R/R) disease, either as a single agent or in com-
bination with rituximab [7]. Zanubrutinib, a second genera-
tion BTKi, was recently approved by the FDA [9]. In this 
article, we review the pathogenesis of WM and the role of 
BTKi in its management both in front-line and R/R disease 
settings. We further discuss BTKi related adverse events 
(AE), treatment resistance and future directions.
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2 � Pathogenesis of WM and Role of BTKi

The understanding of the role of specific cytogenetic 
alterations in WM has helped in identifying its pathogen-
esis [10]. The myeloid differentiation primary response 
88 (MYD88) is an adaptor molecule partially activated by 
direct interaction with BTK, which results in a cascade of 
events that eventually lead to the release of nuclear factor 
Kβ p65 (NF-Kβ p65), which drives its prosurvival signal-
ing [11–14]. Inhibition of MYD88 in vitro decreases the 
release of NF-Kβ and causes cytotoxicity and inhibition 
of cell growth [14, 15]. The presence of MYD88 somatic 
mutations is a characteristic feature in WM and may help 
in the diagnostic process. MYD88L265P is the most com-
mon mutation which exists in almost 90% of WM patients 
[16–18]. Mutated MYD88 has the ability to constitutively 
homodimerize and allow downstream signaling without 
receptor activation, which triggers prosurvival signaling 
via BTK, PI3K/AKT, and MAPK/ERK1/2 [19]. MYD88 
can also drive prosurvival NF-Kβ and mTOR signaling by 
acting as part of a multiprotein supercomplex (My-T-BCR) 
formed by MYD88, Toll-like receptor 9 (TLR9), and B-cell 
receptor (BCR) [20].

BTK inhibition reduces NF-Kβ signaling and promotes 
apoptosis, making BTK a viable therapeutic target [19, 21, 
22]. In addition to BTK, hematopoietic cell kinase (HCK) 
was found to be more activated and expressed in primary 
WM cells, which is triggered by IL-6 after over-expression 
of mutated MYD88. Knockdown of HCK is associated with 
reduced cell survival and attenuation of BTK, PI3K/AKT, 
and MAPK pathways. Inhibition of HCK by A419259 blocks 
the activation of HCK by IL-6 and induces apoptosis in WM 
cells and in activated B-cell diffuse large B-cell lymphoma 
(ABC DLBCL) cells. This makes HCK a potential thera-
peutic target to consider in the management of WM, either 
by itself, in combination with BTK inhibitors, or by a BTK/
HCK dual inhibitor such as KIN-8194 [23, 24]. Ibrutinib has 
an off-target effect against HCK, while other BTKi have a 
reduced off-target effect [23, 25]. However, the efficacy of 
these agents was not inferior to ibrutinib in treating WM, as 
will be demonstrated in the next sections.

C-X-C chemokine receptor type 4 (CXCR4) is a G pro-
tein-coupled receptor (GPCR) that acts as a chemokine 
receptor when it binds to its ligand CXCL12, leading to 
chemotaxis, lymphocyte trafficking, cell cycle proliferation, 
migration, and stemness. It is the second most commonly 
mutated gene in WM, which can occur in approximately 
50% of patients [26–29]. The CXCR4 somatic mutations 
in WM are identical to the germline variants found in a 
rare disease called WHIM syndrome (warts, hypogamma-
globulinemia, infection, and myelokathexis), thus a mutated 
CXCR4 is denoted CXCR4WHIM [30, 31]. Patients with 

CXCR4WHIM mutation have reduced sensitivity to ibruti-
nib, more aggressive disease, higher degree of bone marrow 
involvement, higher IgM levels, hyperviscosity, all of which 
may be associated with shorter treatment-free survival [19, 
32].

3 � Use in Frontline Settings

Most WM clinical trials using BTKi included patients with 
R/R disease. Characteristics and outcomes of clinical tri-
als using BTKi in front-line settings in WM patients are 
summarized in Table 1. The use of BTKi in TN patients 
was assessed in 30 patients who received ibrutinib until 
progression or intolerable toxicity. After a median follow 
up of 4 years, a 100% objective response rate (ORR) with 
87% major response rate (MRR), and 30% very good par-
tial response (VGPR) or a complete response (CR) were 
reported [33]. Ibrutinib was studied in combination with 
rituximab in TN patients with an ORR of 91% [34, 35]. A 
study that compared ibrutinib, a first generation BTKi, with 
zanubrutinib, a second generation BTKi, showed a higher 
percentage of 18-month event free survival rate among TN 
patients treated with ibrutinib when compared to zanubruti-
nib, though with wide confidence interval (94% versus 78%; 
95% CI 63–99 and 52–91, respectively) [34, 35].

A phase II trial of zanubrutinib showed a MRR of 87.5% 
and a 24-month OS of 100% in TN patients, with lower 
responses in patients with no MYD88 mutation (MRR: 40%, 
18-month OS: 80%) [36, 37].

Acalabrutinib, a second-generation BTKi, showed a simi-
lar ORR, and MRR were observed, though no TN patients 
achieved VGPR/CR [38]. Tirabrutinib was studied on 18 TN 
patients with 94% ORR and 89% MRR [39].

4 � Use in R/R Patients

4.1 � First‑Generation BTKi

In the pivotal phase II trial that led to the approval of the 
first BTKi in WM patients, ibrutinib was given until dis-
ease progression or intolerance in 63 R/R patients [40]. 
With a median follow-up of 59 months, an ORR of 91% 
with a VGPR/CR rate of 30% were observed, whereas the 
60-month progression-free survival (PFS) was 54%. Previ-
ous treatment with 3 or more versus 1–2 lines of therapy was 
associated with a lower PFS (60-month PFS: 38% versus 
68%, respectively, P = 0.01); yet, no significant association 
was found when comparing MRR or VGPR/CR rates [40]. In 
the iNNOVATE trial subgroup analysis, an ORR and MRR 
of 87% and 77%, respectively, were reported on 31 R/R WM 
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patients on ibrutinib with a 60-month OS of 73% [41]. In 
that study, MYD88 mutated/CXCR4 wildtype patients had 
an 88% MRR compared to 71% in MYD88 mutated/CXCR4 
mutated patients. When combined with rituximab, ibrutinib 
was found to have a slightly higher VGPR/CR of 34% in 
41 R/R patients compared to other ibrutinib trials [34]. In 
ASPEN’s head-to-head comparison between ibrutinib and 
zanubrutinib the response and survival rates were similar 
(ORR: 94% versus 94%, MRR: 80% versus 78%, 18-mo 
PFS: 82% versus 86%, respectively) [35].

4.2 � Second‑Generation BTKi

Zanubrutinib demonstrated a relatively high rate of VGPR/
CR (51%) in 53 R/R patients in a phase I/II clinical trial 
in which 38 patients had the MYD88 mutation [37]. In 
contrast, in the sub-study cohort of ASPEN, zanubrutinib 
was only administered to MYD88 wild-type patients and 

resulted in relatively lower efficacy, with an ORR of 81% 
and a VGPR/CR rate of 29% [36]. Another phase-2 trial of 
zanubrutinib in R/R patients showed ORR of 77%, VGPR/
CR rate of 33% and a 24-month PFS and OS of 60.5% and 
87.8%, respectively [42].

Acalabrutinib was studied in 92 patients with R/R disease 
and produced an ORR of 93% with 9% VGPR/CR [38]. Tira-
brutinib showed ORR of 100% and a MRR of 89% in R/R 
patients with the MYD88 mutation and wildtype CXCR4 
[39]. Characteristics and outcomes of clinical trials using 
BTKi in R/R WM patients are included in Table 2.

5 � BTKi Safety

The use of ibrutinib is associated with some AEs, which 
might be explained by its multiple inhibitory effects on dif-
ferent proteins such as EGFR, Src, ITK, TEC, and HCK 

Table 1   Characteristics and outcomes of clinical trials using BTKi in front line settings in WM patients

TN treatment naïve, ORR objective response rate, MRR major response rate, VGPR very good partial response, CR complete response, PFS 
progression-free survival, OS overall response, WT wildtype, mo months, UNK unknown
a Genotype for this study was for the entire cohort (TN + R/R)

Study ID Study Design Intervention TN sample (%) Mutational status Outcomes

Dimopoulos (2020) [36] Phase 3 Zanubrutinib 5 (17.9) MYD88WT/ CXCR4WT: 5 ORR: 80%
MRR: 40%
VGPR/CR: 20%
18-mo PFS: 60%
18-mo OS: 80%

Tam (2020) [35] Phase 3 Ibrutinib 18 (18.2) MYD88L265P/CXCR4WT: 17
MYD88L265P/CXCR4UNK: 1

ORR: 89%
MRR: 67%
VGPR/CR: 17%
18-mo PFS: 94%

Zanubrutinib 19 (18.6) MYD88L265P/CXCR4WT: 18
MYD88L265P/CXCR4WHIM: 1

ORR: 95%
MRR: 74%
VGPR/CR: 26%
18-mo PFS: 78%

Buske (2021) [34] Phase 3 Ibrutinib + Rituximab 34 (45.3) aMYD88L265P/CXCR4WT: 32
MYD88L265P/CXCR4WHIM: 26
MYD88WT/CXCR4WT: 11

ORR: 91%
MRR: 76%
VGPR/CR: 27%

Castillo (2021) [33] Phase 2 Ibrutinib 30 (100) MYD88L265P/CXCR4WT: 16
MYD88L265P/CXCR4WHIM: 14

ORR: 100%
MRR: 87%
VGPR/CR: 30%
48-mo PFS: 76%
48-mo OS: 100%

Owen (2019) [38] Phase 2 Acalabrutinib 14 (13.2) aMYD88L265P: 50 ORR: 93%
MRR: 79%
VGPR/CR: 0%

Sekiguchi (2020) [39] Phase 2 Tirabrutinib 18 (66.7) MYD88WT/CXCR4WHIM: 1
MYD88L265P/CXCR4WT: 13
MYD88L265P/CXCR4WHIM: 3

ORR: 94.4%
MRR: 88.9%
VGPR/CR: 16.7%

Trotman (2020) [37] Phase 1/2 Zanubrutinib 24 (31.2) MYD88L265P/CXCR4WT: 14
MYD88L265P/CXCR4WT: 4
MYD88L265P/CXCR4UNK: 2
MYD88WT/CXCR4WT: 3

ORR: 100%
MRR: 87.5%
VGPR/CR: 33.3%
24-mo PFS: 91.5%
24-mo OS: 100%
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[43]. The most common AEs are rash, fatigue, diarrhea, 
cytopenias, respiratory tract infections, bleeding, atrial fibril-
lation (AF), and hypertension (HTN). In the iNNOVATE 
trial, 19% of patients experienced any grade AF, and 16% 
of all patients suffered from grade 3/4 AF from a combina-
tion of ibrutinib and rituximab after a median follow-up of 
60 months. However, the longer use of ibrutinib-rituximab 
did not increase the prevalence of grade 3/4 AF after the 
first 2 years of therapy (8% at 0–1 years, 6% at 1–2 years, 
and 9% at 3–5 years). A similar trend was also observed 

with grade 3/4 HTN after the first 3 years (27% at 0–3 years 
and 9% at 3–5 years) [34, 44]. History of AF was associated 
with earlier development of AF with a median of 4 months, 
whereas patients without such a history developed AF within 
a median time of 33 months [45, 46]. Previous systematic 
reviews confirmed the increased risk of AF, HTN, and bleed-
ing events on ibrutinib [47–49].

Second-generation BTKi are more selective and produce 
lower off-target effect compared than ibrutinib [50, 51]. 
In the ASPEN trial, diarrhea, muscle spasms, peripheral 

Table 2   Characteristics and outcomes of clinical trials using BTKi in relapsed/refractory settings in WM patients

R/R relapsed/refractory, ORR objective response rate, MRR major response rate, VGPR very good partial response, CR complete response, PFS 
progression-free survival, OS overall response, WT wildtype, mo months, UNK unknown, NR not reached
a Genotype for this study was for the entire cohort (TN + R/R)

Study ID Study Design Intervention R/R sample (%) Mutational status Outcomes

Dimopoulos (2020) [36] Phase 3 Zanubrutinib 23 (82.1) MYD88WT/CXCR4WT: 18
MYD88WT/CXCR4WHIM: 1
MYD88WT/CXCR4UNK: 2
MYD88UNK/CXCR4UNK: 2

ORR: 81%
MRR: 52%
VGPR/CR: 29%
18-mo PFS: 71%
18-mo OS: 90%

Tam (2020) [35] Phase 3 Ibrutinib 81 (82.8) MYD88L265P/CXCR4WT: 73
MYD88L265P/CXCR4WHIM: 8

ORR: 94%
MRR: 80%
VGPR/CR: 20%
18-mo PFS: 82%

Zanubrutinib 83 (81.4) MYD88L265P/CXCR4WT: 73
MYD88L265P/CXCR4WHIM: 10

ORR: 94%
MRR: 78%
VGPR/CR: 29%
18-mo PFS: 86%

Trotman (2021) [41] Phase 3 Ibrutinib 31 (100) MYD88L265P/CXCR4WT: 17
MYD88L265P/CXCR4WHIM: 7
MYD88WT/CXCR4WT: 1
Unavailable: 6

ORR: 87%
MRR: 77%
VGPR/CR: 29%
60-mo OS: 73%
Median OS: NR

Buske (2021) [34] Phase 3 Ibrutinib + Rituximab 41 (54.7) aMYD88L265P/CXCR4WT: 32
MYD88L265P/CXCR4WHIM: 26
MYD88WT/CXCR4WT: 11

ORR: 93%
MRR: 76%
VGPR/CR: 34%

Treon (2020) [40] Phase 2 Ibrutinib 63 (100) MYD88L265P/CXCR4WT: 36
MYD88L265P/CXCR4WHIM: 22
MYD88WT/CXCR4WT: 4
Unavailable: 1

ORR: 90.5%
MRR: 79.4%
VGPR/CR: 30.2%
60-mo PFS: 54%
60-mo OS: 87%

Owen (2019) [38] Phase 2 Acalabrutinib 92 (86.8) aMYD88L265P: 50 ORR: 93%
MRR: 80%
VGPR/CR: 9%

Sekiguchi (2020) [39] Phase 2 Tirabrutinib 9 (33.3) MYD88L265P/CXCR4WT: 9 ORR: 100%
MRR: 88.9%
VGPR/CR: 0%

An (2021) [42] Phase 2 Zanubrutinib 44 (100) MYD88L265P/CXCR4WT: 32
MYD88L265P/CXCR4WHIM: 5
MYD88WT/CXCR4WHIM: 1
MYD88WT/CXCR4WT: 6

ORR: 76.7%
MRR: 69.8%
VGPR/CR: 32.6%
24-mo PFS: 60.5%
24-mo OS: 87.8%

Trotman (2020) [37] Phase 1 /2 Zanubrutinib 53 (68.8) MYD88L265P/CXCR4WT: 26
MYD88L265P/CXCR4WT: 7
MYD88L265P/CXCR4UNK: 5
MYD88WT/CXCR4WT: 8

ORR: 93.9%
MRR: 79.6%
VGPR/CR: 51%
24-mo PFS: 76.2%
24-mo OS: 91.5%
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edema, AF, and pneumonia were higher in the ibrutinib 
arm compared with the zanubrutinib [35]. Although grade 
3/4 neutropenia were common in the zanubrutinib arm, the 
infection rate was similar between the two groups. Dose 
reduction was needed in 14% of patients under zanubrutinib 
and in 23% in the ibrutinib arm.

Acalabrutinib can be associated with headache (39%), 
diarrhea (33%), contusion (29%), dizziness (25%), fatigue 
(23%), nausea (23%), upper respiratory tract infections 
(22%), constipation (21%), and arthralgia (20%). The most 
common grade 3/4 AEs were neutropenia (16%), pneumonia 
(7%), anemia (5%), and lower respiratory tract infections 
[38]. Similar to zanubrutinib, only 5% of the patients devel-
oped AF.

Tirabrutinib’s most common AEs were rash (44%), neu-
tropenia (26%), leukopenia (22%), stomatitis (15%) and 
thrombocytopenia (11%). Three patients required dose 
reduction due to bleeding events and one patient discontin-
ued treatment due to atypical mycobacterial infection [39].

BTKi should be administered continuously until disease 
progression or severe toxicity, as patients who discontinued 
their treatment had a poor prognosis [52, 53]. In case of 
severe AEs, dose reduction and/or the use of other treatment 
without dropping the BTKi might be preferred. It should be 
noted that dose reduction resulted in improved or resolved 
AEs with no effect on treatment efficacy [54]. Table 3 sum-
marizes some of the most important AEs across different 
BTKi.

6 � Special Considerations

Currently, BTKi have been used in WM indefinitely with 
discontinuation only upon disease progression or intolerable 
toxicity. This approach could potentially increase the risk of 
acquired treatment resistance, as well as the occurrence of 
AEs. Alternative treatment schedules that include fixed dura-
tion of BTKi treatment, which is currently being investigated 
in chronic lymphocytic leukemia, can be further studied in 
the future [55, 56].

The use of BTKi can be associated with an IgM rebound 
phenomenon, which can manifest as symptomatic hypervis-
cosity, cold agglutinin disease, cryoglobulinemia, or periph-
eral neuropathy. The IgM rebound phenomenon is defined as 
a rise in IgM by 25% after treatment discontinuation, with 
an absolute increase of at least 5 g/L within three months 
after discontinuation of treatment in the absence of disease 
progression [52, 53]. BTK constitutively activates STAT5A 
and STAT5B, which increase IgM secretion in WM cells, 
which might explain the IgM rebound following ibrutinib 
discontinuation [57, 58]. In a retrospective study, 73% of 
the patients who discontinued ibrutinib had an IgM rebound 
[52]. In addition, 16% developed symptomatic hyperviscos-
ity and required plasmapheresis. In another study, 60% of 
patients had an IgM rebound after ibrutinib discontinuation 
with 34% developing symptomatic hyperviscosity [59]. One 
study found that the median IgM level at the time of sympto-
matic hyperviscosity was 61.8 g/L (range 31–124 g/L) [60]. 
Thus, the abrupt discontinuation of ibrutinib even for disease 
progression or AEs should be avoided. Close monitoring 
of IgM levels after ibrutinib discontinuation is warranted. 
According to the consensus treatment recommendations 

Table 3   Summary of common adverse events in clinical trials using BTKi

NR not reported, R/R refractory/relapsed, TN treatment-naïve
a Only grade 2–4 adverse events were available
b Studies report detailed infectious events and as a result a patient could experience two or more infections (eg: pneumonia and urinary tract 
infection)

Drug Previous 
Therapy 
Status

Atrial Fibrillation Infectionb Hypertension Neutropenia Anemia References

Ibrutinib R/R: 100% All grade: 12.7%
Grade 3–4: 1.6%

All grade: 27%
Grade 3–4: 6.3%

All grade: 6.3%
Grade 3–4: 0%

All gradea (2–4): 
23.8%

Grade 3–4: 15.9%

All gradea (2–4): 
4.8%

Grade 3–4: 1.6%

[40]

Ibrutinib + Rituxi-
mab

TN: 45%
R/R: 55%

All grade: 19%
Grade 3–4: 16%

All grade: NR
Grade 3–4: 29%

All grade: 25%
Grade 3–4: 15%

All grade: NR
Grade 3–4: 9%

All grade: 19%
Grade 3–4: 11%

[34]

Zanubrutinib TN: 19%
R/R: 81%

All grade: 2%
Grade 3–4: 0%

All grade: 24%
Grade 3–4: 10%

All grade: 11%
Grade 3–4: 6%

All grade: 29%
Grade 3–4: 20%

All grade: 12%
Grade 3–4: 5%

[35]

Acalabrutinb TN: 13.2%
R/R: 86.8%

All grade: 5%
Grade 3–4: 1%

All grade:
84%
Grade 3–4:
23%

All grade: 5%
Grade 3–4: 2%

All grade: 17%
Grade 3–4: 16%

All grade: 10%
Grade 3–4: 5%

[38]
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from the 10th International Workshop for Waldenström’s 
Macroglobulinaemia, bridging therapy with ibrutinib in 
combination with the next-line of treatment should be con-
sidered before completely stopping ibrutinib [61]. Due to 
the increased risk of bleeding, it is recommended to sus-
pend ibrutinib 3–7 days before surgery and resume treatment 
1–3 days after the procedure [62].

Bing–Neel syndrome (BNS) is a rare condition with cen-
tral nervous system involvement of WM cells [63]. There 
is currently no standard treatment of BNS, and agents with 
good central nervous system penetration can be considered 
[64]. A multicenter cohort study of 28 BNS patients treated 
with ibrutinib demonstrated a 5-year OS rate of 86% [65]. 
Other BTKi are used less frequently, with case reports show-
ing some efficacy of zanubrutinib and tirabrutinib [66, 67].

The use of CIT strategies such as rituximab-dexametha-
sone-cyclophosphamide and bendamustine-rituximab have 
previously demonstrated substantial efficacy in WM [68, 
69]. However, experience with CIT over BTKi or vice versa 
as primary therapy to treat WM is still lacking. There are 
no published head-to-head trials comparing CIT with BTKi 
in WM. Currently, the RAINBOW trial (NCT04061512) 
is comparing Rituximab-Ibrutinib with Dexamethasone-
Rituximab-Cyclophosphamide in TN WM. Altered TP53 
has been associated with chemoresistance in CLL [70, 71]. 
TP53 aberrations were associated with poor prognosis in 
one cohort where 78% were treated with a chemo-containing 
regimen in TN WM [28]. It has been suggested that ibrutinib 
can bypass TP53 mutation in WM cells [72]. Real-world 
data powered by next-generation sequencing revealed ibru-
tinib as optimal therapy in TN patients [73]. Taken together, 
patients with the MYD88 mutation regardless of CXCR4 
and TP53 status are likely to benefit from BTKi-containing 
regimens. Clinical trials comparing BTKi with CIT should 
incorporate TP53 status to inspect this claim.

7 � Future Directions

Future studies should aim to address treatment options post 
BTKi therapy. Acquired resistance to BTKi is a challenge 
[74]. The use of daratumumab and veneteclax is currently 
under investigation (NCT02677324) [75]. Minimizing AEs 
related to BTKi is important, and this can be done by prefer-
ential use of either first or second generation BTKi accord-
ing to patients’ comorbidities, and with more focus on qual-
ity of life [76, 77]. Ongoing studies are exploring the role of 
combination therapies that include ulocuplumab, a monoclo-
nal antibody that inhibits the binding of CXCR4 to CXCL12 
[78]. A recent phase I trial evaluated the combination of 
ulocuplumab-ibrutinib in WM patients with CXCR4 muta-
tion, with preliminary results showing a good safety profile 
and an estimated 2-year PFS of 90% [79]. Mavorixafor is 

another highly selective anti-CXCR4, with a recent study 
in combination of ibrutinib that showed rapid and clinically 
meaningful reduction in IgM levels in WM patients with 
CXCR4 mutation [80].

The optimum salvage therapy after BTKi resistance is 
not established. The use of CIT in alkylator-based regimens, 
such as bendamustine-rituximab and dexamethasone-ritux-
imab-cyclophosphamide can be considered as salvage ther-
apy following ibrutinib [59]. A resent phase II trial showed 
promising efficacy of orelabrutinib in R/R WM [81]. Ongo-
ing trials are testing next-generation, non-covalent reversible 
BTKi, such as pirtobrutinib (NCT03740529) and nemta-
brutinib (NCT03162536) that bind to non-BTKC481. The 
development of effective agents for patients who progress 
on BTKi is undergoing.
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