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It is believed that insulin regulates metabolic functions of white adipose tissue

primarily at the post-translational level via the PI3K-Akt-mediated pathway. Still,

changes in transcription also play an important role in the response of white

adipocytes to insulin and environmental signals. One transcription factor that is

dramatically and rapidly induced in adipocytes by insulin and nutrients is called

Early Growth Response 1, or Egr1. Among other functions, it directly binds to

promoters of leptin and ATGL stimulating the former and inhibiting the latter.

Furthermore, expression of Egr1 in adipocytes demonstrates cell autonomous

circadian pattern suggesting that Egr1 not onlymediates the effect of insulin and

nutrients on lipolysis and leptin production but also, coordinates insulin action

with endogenous circadian rhythms of adipose tissue.
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Introduction

White adipose tissue (WAT) plays a key role in mammalian physiology and

pathophysiology (Sakers et al., 2022). There are at least three highly important

metabolic functions in the body that are attributed primarily (but not exclusively) to

WAT: dynamic storage of triglycerides (TG), secretion of adipokines, such as leptin, and

regulated glucose uptake. Each of these functions is controlled by insulin at the level of

transcription and translation as well as by post-translational mechanisms (Kandror, 2015;

Grabner et al., 2021). Although glucose transporter four mediated glucose uptake is

believed to be up-regulated by insulin exclusively at a post-translational level (Calejman

et al., 2022), preservation of the low level of glucose uptake in basal adipocytes not treated

with insulin requires continuous RNA- and protein biosynthesis de novo (Meriin et al., in

press). The details of the transcriptional control of glucose homeostasis in adipocytes are

not yet known; however, it has been established that effects of insulin on lipolysis and

leptin expression are mediated at least in part, by Early Growth Response transcription

factor, Egr1.

Egr1 (a.k.a. NGFI-A, Zif268, TIS8, and Krox24) is a zinc finger transcription factor

that belongs to the family of primary response genes (Fowler et al., 2011). Like other
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members of this family, Egr1 participates in growth control,

differentiation, and cancer progression (Thiel et al., 2010; Pagel

and Deindl, 2011; Wang et al., 2021). The role of Egr1 in

regulation of metabolism remains poorly explored and will be

the focus of this review.

Insulin and nutrients rapidly but transiently
induce Egr1 in adipocytes

Basal adipocytes maintain low, almost undetectable levels of

Egr1. Treatment of adipocytes with insulin causes a dramatic

induction of both Egr1 mRNA (Alexander-Bridges et al., 1992;

Sartipy and Loskutoff, 2003) and protein (Chakrabarti et al.,

2013; Mohtar et al., 2019) both in vivo and in vitro. Incubation of

cultured adipocytes with glucose (Supplementary Image S1) or

high fat feeding of mice in vivo (Chakrabarti et al., 2013) also

elevate expression of Egr1.

Similar to other primary response genes (Fowler et al., 2011),

expression of Egr1 in various cell types is regulated at the level of

transcription (Thiel and Cibelli, 2002; Thiel et al., 2010; Pagel and

Deindl, 2011). In adipocytes, the effect of insulin on the

Egr1 mRNA is mediated by Erk (Singh et al., 2015).

Interestingly, this increase in Egr1 mRNA contributes

relatively little to insulin-triggered up-regulation of the

Egr1 protein in adipocytes. The latter takes place primarily at

the level of translation via the mTORC1-4E-BP-mediated axis

(Singh et al., 2015) and depends on the highly structured 5′-UTR
of the Egr1 mRNA. To this end, we have deleted the 5′-UTR of

the Egr1 mRNA using the CRISPR/Cas9 technique. This

procedure alone brings up expression of the Egr1 protein to

the maximum, so that insulin does not have any additional

stimulatory effect (Mohtar et al., 2019).

Expression of the Egr1 protein reaches its maximum after 1 h

of insulin stimulation and goes back to the basal level after

approximately 4 h (Mohtar et al., 2019). Still, insulin does not

significantly stimulate degradation of Egr1 (Supplementary

Figure S2) and its rapid decline is most likely explained by

inherent instability of the Egr1 mRNA (Singh et al., 2015)

and protein.

Egr1 directly regulates expression of
adipose triglyceride lipase and lipolysis in
adipocytes

In mammalian organism, most energy is stored in adipose

tissue in a form of TG in distinct intracellular organelles called

lipid droplets (LDs). Upon TG hydrolysis, FA are circulated in

the blood to cells and tissues where they are taken up and used for

energy production and synthesis of complex lipids. Despite their

fundamental physiological importance, an oversupply of FA is

highly detrimental as it causes abnormal lipid partitioning and

lipotoxicity which in turn, impairs membrane function, induces

ER stress, mitochondrial dysfunction, inflammation, cell death,

insulin resistance, and other metabolic disease (Unger et al.,

2010). The fine balance between healthy and unhealthy levels of

circulating FA is maintained via a tight control of lipolysis

coordinated with food intake. Thus, an increase in circulating

levels of FA after food intake is normally compensated by insulin-

mediated suppression of lipolysis in adipose tissue. This may be

crucial for at least two reasons. First, dietary FAs in combination

with those FAs produced endogenously by lipolysis may

overcome all existing defense mechanisms of the body and

impose a significant nutritional stress on cells and tissues

leading to lipotoxicity and metabolic disease. Second, arrest of

lipolysis when nutrients are abundant protects valuable fat

reserves from unnecessary depletion. Failure of insulin to

restrain lipolysis is a serious metabolic defect that leads to

T2D and other health problems (McGarry, 1992; McGarry,

2002).

Complete lipolysis, i.e., hydrolysis of TG to glycerol and FA,

is performed jointly by tri-, di-, and monoacylglyceride lipases

(Grabner et al., 2021). The rate-limiting lipolytic enzyme, ATGL,

is responsible for the bulk of triacylglycerol hydrolase activity in

various cells. In other words, in every experimental model tested

thus far, elevated ATGL expression increases, while attenuated

ATGL expression decreases, both basal and cAMP-stimulated

lipolysis (Jenkins et al., 2004; Villena et al., 2004; Zimmermann

et al., 2004; Gronke et al., 2005; Haemmerle et al., 2006; Kershaw

et al., 2006; Kurat et al., 2006; Smirnova et al., 2006; Miyoshi et al.,

2008; Bezaire et al., 2009; Chakrabarti et al., 2010). ATGL has low

affinity for di- and monoacylglycerides (Grabner et al., 2021).

The major diacylglyceride lipase in adipocytes is hormone-

sensitive lipase, or HSL and monoacylglyceride products of

HSL are hydrolyzed by monoacylglyceride lipase (Grabner

et al., 2021).

According to current views, lipolysis is regulated by

catecholamines primarily at the post-translational level with

the cAMP/cGMP-mediated signaling pathways playing the key

role in this process. Briefly, phosphorylation of the lipid droplet

protein perilipin and HSL by PKA and/or PKG leads to the

recruitment of HSL to lipid droplets and activation of the

enzyme. At the same time, a protein co-factor of ATGL,

Abhd5 (a.k.a. CGI-58) dissociates from phosphorylated

perilipin and activates ATGL (Lafontan and Langin, 2009;

Grabner et al., 2021). Jointly, both processes rapidly and

significantly stimulate lipolysis. On the contrary, insulin

inhibits lipolysis and promotes accumulation of TG. Within

this model, the effect of insulin is attributed primarily to the

inhibition of cAMP-mediated signaling via Akt-dependent

(Kitamura et al., 1999; Duncan et al., 2007) and independent

(Choi et al., 2010) mechanisms.

In addition, regulation of lipolysis in vivo by such

physiological stimuli as feeding, fasting, hypoxia, and physical

exercise is accompanied and likely mediated by changes in the
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ATGL expression (Fortier et al., 2004; Villena et al., 2004; Lake

et al., 2005; Kershaw et al., 2006; Kim et al., 2006; Alsted et al.,

2009; Nielsen et al., 2011; Han et al., 2019). In particular,

Supplementary Figure S3 shows that insulin rapidly and

completely shuts ATGL transcription in cultured adipocytes.

Expression of the ATGL protein follows the levels of cognate

mRNA suggesting that expression of ATGL is controlled

primarily at the level of transcription.

Thus, not only post-translational regulation of the enzymatic

activity but also, precise control of the ATGL transcription

defines the rates of lipolysis and FA homeostasis. However,

unlike post-translational regulation that has been studied in

much detail, little has been known about regulation of ATGL

expression.

To this end, we have initiated a search for the pathways that

regulate transcription of ATGL by nutrients and insulin. We have

found two pathways: the Egr1-mediated pathway that inhibits

lipolysis by decreasing transcription of ATGL (Chakrabarti et al.,

2010; Chakrabarti et al., 2013; Singh et al., 2014) and the Sirt1/

FoxO1-mediated pathway that activates lipolysis by increasing

transcription of ATGL (Chakrabarti and Kandror, 2009;

Chakrabarti et al., 2011; Jung et al., 2019). Both Egr1 (but not

its close relative, Egr2) and FoxO1 directly bind to the ATGL

promoter with different outcomes: Egr1 inhibits while

FoxO1 stimulates its activity (Chakrabarti and Kandror, 2009;

Chakrabarti et al., 2013; Singh et al., 2015) leading to

corresponding changes in the ATGL expression and lipolysis.

Importantly, regulation of ATGL expression by Egr1 is conserved

in evolution from yeast to mammals and thus should be essential

for metabolic control (Chakrabarti et al., 2013).

Expression of ATGL can be regulated by other transcription

factors as well. Thus, early experiments have demonstrated that

expression of ATGL is stimulated by PPARγ (Kim et al., 2006;

Kershaw et al., 2007). Furthermore, interferon regulatory factor

4 induced in adipocytes by starvation via FoxO1 up-regulates

transcription of ATGL (Eguchi et al., 2011), while insulin-

induced transcription factor Snail1 suppresses its transcription

(Sun et al., 2016).

Apparently, transcriptional control of lipolysis works on a

different time scale, than the previously established mechanism

of the short-term insulin action by inhibition of cAMP-mediated

signaling to HSL and perilipin. The first one takes 4–6 h while the

latter occurs within minutes. Both types of regulation seem

essential for the physiological control of circulating FA.

Egr1 regulates leptin expression in
adipocytes

Leptin, a 16 kDa product of the ob gene (Zhang et al., 1994),

is synthesized predominantly in adipocytes and targets the

central nervous system. It has been established as a major

metabolic regulator that controls food intake, energy

expenditure, neuroendocrine functions, carbohydrate and lipid

metabolism, and several other important physiological functions

of the mammalian organism (Ahima and Flier, 2000; Friedman,

2009; Dalamaga et al., 2013; Zeng et al., 2015). The discovery of

leptin over two decades ago has completely changed the

landscape of metabolic research and opened a new era in

obesity studies.

Regardless of how leptin exerts its biological activity, it is

essential that leptin production in adipocytes is coupled to

nutrient uptake and energy status of the body. As circulating

leptin and insulin levels increase after feeding and decrease after

food deprivation (Frederich et al., 1995; Levy et al., 1997; Ahima

and Flier, 2000), the predominant hypothesis in the field has been

that leptin expression is controlled by insulin. Indeed, multiple

studies have shown that insulin increases leptin production by

adipose cells both in vivo and in vitro (Ahima and Flier, 2000).

Although this regulatory connection is central to all proposed

mechanisms of leptin action, its mechanism has remained

unknown. Recently, we have found that insulin and nutrients

activate leptin transcription in adipocytes via the same

mTORC1-Egr1 axis that plays the central role in

downregulation of ATGL (Mohtar et al., 2019). Very briefly,

Egr1 directly interacts not only with the ATGL promoter (see

above) but also, with the leptin promoter, suppressing the former

and activating the latter. This mechanism may explain the long-

known connection between food intake and circulating leptin

(Frederich et al., 1995; Levy et al., 1997; Ahima and Flier, 2000).

Multiple lines of evidence demonstrate that insulin and

nutrients control expression of leptin not exclusively at the

level of transcription but also, at the level of translation,

secretion, and even degradation (Lee and Fried, 2006; Lee and

Fried, 2009; Kandror, 2015). It has been shown that

mTORC1 plays a major role in the translation control of

leptin (Roh et al., 2003; Lee and Fried, 2006), but its input

into leptin secretion and degradation has not yet been studied.

In any case, a reverse regulation of ATGL and leptin by the

same mTORC1-Egr1 axis may help to coordinate and even to

synchronize changes in lipolysis (via ATGL) with food intake

and energy expenditure (via leptin). Counter-regulation of leptin

production and lipolysis may be maintained by other

mechanisms as well. Thus, it has been demonstrated that

hypoleptinemia may activate hypothalamic-pituitary-adrenal

axis to promote lipolysis in fat (Perry et al., 2018).

Other metabolic effects of Egr1

Two polymorphisms in Egr1 have been associated with

impaired lipid metabolism in humans (Brand et al., 2000),

and several recent reports have confirmed that Egr1 is

intimately involved in the regulation of lipid metabolism.

Thus, in addition to the regulation of ATGL and leptin

(Chakrabarti et al., 2013; Mohtar et al., 2019), Egr1 has been
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implicated in adipogenesis (Boyle et al., 2009) and browning of

white adipocytes (Milet et al., 2017). Interestingly, Egr1 has a

negative effect on adipose differentiation, while Egr2 is pro-

adipogenic (Boyle et al., 2009). It has also been reported that

Egr1 regulates insulin biosynthesis (Muller et al., 2012) and

resistance (Shen et al., 2011), and cholesterol biosynthesis

(Gokey et al., 2011). A comprehensive and balanced picture of

all metabolic effects of Egr1 and Egr2 has yet to be established.

A role of Egr1 in the circadian regulation of
ATGL and leptin

Circadian patterns of circulating free fatty acids in humans

have been known for a long time (Schlierf and Raetzer, 1972);

more recently, they have been attributed to oscillations of ATGL-

and less so, HSL-mediated lipolysis in white adipose tissue

(Shostak et al., 2013b). It has been also shown that in both

diurnal (humans, monkeys) and nocturnal (rats, mice) animals

food intake is regulated by circadian changes in plasma leptin

levels (reviewed in (Froy and Garaulet, 2018). In line with these

experiments, we have found that expression of ATGL and leptin

oscillates in synchronized adipocytes cultured in serum-free

media in the absence of any putative light or food entrainable

oscillator (Figures 1A,B).

In diverse organisms, the circadian clock coordinates

metabolism with day/night cycles. The core mechanism of the

mammalian clock consists of heteromeric transcription complex

BMAL1:CLOCK that transcribes cryptochrome (Cry1 & Cry2)

and period (Per1, Per2, and Per3) genes. CRYs and PERs

heterodimerize, translocate to the nucleus, repress BMAL1:

CLOCK transcriptional activity and undergo proteasomal

degradation. This transcription-translation feedback loop takes

about 24 h. In addition, BMAL1:CLOCK drive expression of

REV-ERBα/β that inhibit transcription of Bmal1.

As is seen in Figure 1C, expression of Bmal1 and Per1

oscillates in synchronized cultured adipocytes in a cell

autonomous fashion, and their phases are, as expected,

reverse. Expression of Egr1 also demonstrates self-sustained

FIGURE 1
Cell autonomous oscillations in synchronized 3T3-L1
adipocytes. Cells were serum starved for 2 h, treated with 50%
horse serum for 2 h, washed, and monitored for the next 48 h
under normal culturing conditions without serum. Panels
(A–D): levels of various mRNAs were determined by qPCR data in

(Continued )

FIGURE 1 (Continued)
three independent experiments; mean values ± SE are
shown. Panel (E): lysates of two biological replicates were analyzed
by Western blotting; both are shown. The following antibodies
from Cell Signaling Technology have been used: rabbit
monoclonal antibody against Egr1 (Catalog #4153), mouse
monoclonal antibody against β-Actin (Catalog #3700), rabbit
monoclonal antibody against phospho-MEK1/2 (Catalog #9154),
rabbit monoclonal antibody against MEK1/2 (Catalog #8727),
rabbit monoclonal antibody against phospho-Erk1/2 (Catalog
#4370), rabbit monoclonal antibody against Erk1/2 (Catalog #
4695), rabbit monoclonal antibody against phospho-S6 Kinase
(Catalog # 9208), rabbit monoclonal antibody against S6 Kinase
(Catalog # 2708).

Frontiers in Cell and Developmental Biology frontiersin.org04

Meriin et al. 10.3389/fcell.2022.1003030

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2022.1003030


circadian pattern in synchronized cultured 3T3-L1 adipocytes

(Figure 1D). Noteworthy, circadian phases of Bmal1 and Per1,

are different from that of Egr1. Clearly, there should be other

factors that are responsible for the circadian rhythm of the Egr1

expression. To this end, various actinomycin D- and α-

Amanitin-resistant (i.e., non-transcriptional) circadian clocks

have been described by many research groups in the course of

the years [reviewed in (Reddy and Rey, 2014)].

We have found that oscillations in the Egr1 mRNA and

protein in synchronized adipocytes correlate with rhythmic

changes in the activity of the MEK/Erk and

mTORC1 pathways (Figure 1E). Indeed, there are distinct

peaks in phosphorylation of MEK, Erk, and S6K1 at 6, 18, and

36–42 h that overlap with or slightly precede peaks of the

Egr1 mRNA and protein. Since both MEK/Erk &

mTORC1 pathways directly control expression of Egr1, a

close correlation between these events may prove to have a

causative connection. Furthermore, oscillations of the MEK/

Erk and/or mTORC1 pathways may represent a totally novel

type of an endogenous circadian regulator or may be linked to

the autonomous cycling of the known “core” clock genes via

an as yet unknown mechanism. In any case, understanding

their molecular nature seems warranted.

Strong evidence supports the idea that BMAL1 contributes to

the circadian pattern of the ATGL (Shostak et al., 2013b) and

leptin (Paschos et al., 2012) expression in adipocytes. An

interesting question is whether and to what extent Egr1 can

also regulate insulin-independent circadian expression of its

direct transcriptional targets, ATGL and leptin. Oscillation

patterns of either leptin or ATGL mRNA do not apparently

overlap with cycling of Egr1 or Bmal1. This is to be expected as

both leptin and ATGL promoters are regulated by various

transcription factors with their own cycling patterns, so the

resulting picture may be complex. Most genes in various

tissues demonstrate the same phenomenon (Fang et al., 2014;

Shostak and Brunner, 2019), and its biological sense is not

completely understood.

Importantly, both FA and leptin represent signaling

molecules that work on hypothalamic neurons to regulate

physiological rhythms of the whole organism (Ahima and

Flier, 2000; Lam et al., 2005). Therefore, further studies of the

cell autonomous biological clock in adipocytes that regulate

expression of FA and leptin should have a global physiological

significance.

Discussion

As is pointed out in the previous section, both lipolysis and

food intake are regulated by nutrients/insulin as well as by

endogenous circadian rhythms. It is essential to inhibit

lipolysis at the time of food abundance and to activate

lipolysis upon fasting and to coordinate these responses with

endogenous circadian rhythm that adapts the organism to cyclic

changes of the environment.

Disruption of insulin (McGarry, 2002) and circadian

(Shostak et al., 2013a; Froy and Garaulet, 2018; Kolbe et al.,

2018; Lemmer and Oster, 2018; Pilorz et al., 2018) regulation of

lipolysis and food intake is associated with obesity, insulin

resistance, and metabolic diseases. Although a temporal

misalignment of feeding time and circadian rhythms may be

metabolically acceptable, there is no question that systemic

ignoring and abuse of circadian rhythms disrupts metabolic

homeostasis (Cederroth et al., 2019). At present, there is little

understanding of the interplay between circadian rhythms and

metabolic regulation. This question is directly related to human

health and thus represents a high priority direction of research

(Eckel-Mahan et al., 2013; Asher and Sassone-Corsi, 2015;

Cederroth et al., 2019; Duglan and Lamia, 2019).

Since Egr1 responds not only to metabolic signals

(i.e., nutrients and insulin) but also, to an endogenous

circadian pacemaker in adipocytes, it is well suited to

coordinate metabolic and circadian regulation of lipolysis,

food intake, and energy expenditure (Figure 2). This robust

FIGURE 2
In fat tissue, Egr1 receives regulatory inputs from nutrients/
insulin and circadian regulator andmaintains metabolic health and
longevity by suppressing ATGL and activating leptin expression.
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system may have evolved to provide metabolic stability to the

organism under unpredictable life conditions. For example, in

the past, animals used to live in the same time zone, but food was

scarce and its availability was random. Therefore, strong

circadian regulation of Egr1 in both nocturnal and diurnal

animals could play the primary role in the adjustment of their

metabolism to dark/light cycles regardless of food supply.

In modern humans the situation is reversed. Counter to

our diurnal nature, we often work night shifts or travel

through multiple time zones. At the same time, food has

become more available, and we can take advantage of time-

restricted feeding to correct negative metabolic consequences

of disordered molecular clock (Vollmers et al., 2009; Hatori

et al., 2012; Sherman et al., 2012; Chaix et al., 2014). Thus,

dysregulation of the circadian pattern of Egr1 expression may

be compensated by strengthening the nutrient-based

regulatory axis (in particular, by time-restricted feeding)

and vice versa.
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SUPPLEMENTARY FIGURE S1
Incubation of cultured 3T3-L1 adipocytes with glucose increases
expression of Egr1. Panel (A): Cells were incubated in the glucose-free
medium for 2.5 h, then glucose (20 mM) or insulin (100 nM) were
added for 1.5 h and the Egr1 mRNAwasmeasured by RT-qPCR. Panel (B):
Cells were incubated in the glucose-free medium for 6 h, then glucose
(Glu, 20 mM) or insulin (Ins, 100 nM) were added for the indicated time,
and total cell extracts were analyzed by Western blotting. Dotted lines
indicate that irrelevant bands have been spliced out. The experiment was
repeated twice. The following antibodies from Cell Signaling
Technology have been used: rabbit monoclonal antibody against Egr1
(Catalog #4153), mouse monoclonal antibody against β-Actin (Catalog
#3700).

SUPPLEMENTARY FIGURE S2
Insulin does not stimulate degradation of Egr1. 3T3-L1 adipocytes were
labeled with a mixture of [35S]-labeled cysteine and methionine for 1 h,
after which the cells were harvested or chased with 2 mM of unlabeled
amino acids in the absence and in the presence of 100 nM insulin for the
indicated amounts of time. Panel (A): Egr1 was immunoprecipitated
from cell lysates using rabbit monoclonal antibody against Egr1 (Cell
Signaling Technology, Catalog #4153) or normal rabbit IgG (Cell Signaling
Technology, Catalog #2729) (CON) and analyzed by SDS
electrophoresis and autoradiography. Panel (B): The membrane shown
in Panel (A) was further blotted with HRP-linked secondary anti-rabbit
IgG (Cell Signaling Technology, Catalog #7074) for the IgG Heavy Chain
to confirm that equal amounts of the anti-Egr1 antibodies were used in
the experiment. Panel (C): Prior to immunoprecipitation, total cell
extracts (TE) were analyzed by SDS electrophoresis and
autoradiography.

SUPPLEMENTARY FIGURE S3
The inhibitory effects of insulin and Actinomycin D on ATGL transcription
in cultured 3T3-L1 adipocytes. Differentiated 3T3-L1 adipocytes were
incubated with or without insulin (100 nM) and Actinomycin D (5 μM)
for the indicated amounts of time. Panel (A): AtglmRNAwasmeasured by
RT-qPCR in three independent experiments; mean values +/− SE are
shown. Panel (B): Total cell extracts were analyzed by Western blotting
with rabbit polyclonal antibody against ATGL (Cell Signaling Technology,
Catalog #2138) and mouse monoclonal antibody against β-Actin (Cell
Signaling Technology, Catalog #3700).
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