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Respiratory syncytial virus (RSV) is a leading cause of severe lower respiratory tract

disease in young children and a substantial contributor to respiratory tract disease

throughout life and as such a high priority for vaccine development. However, after

nearly 60 years of research no vaccine is yet available. The challenges to developing

an RSV vaccine include the young age, 2-4 months of age, for the peak of disease, the

enhanced RSV disease associated with the first RSV vaccine, formalin-inactivated RSV

with an alum adjuvant (FI-RSV), and difficulty achieving protection as illustrated by repeat

infections with disease that occur throughout life. Understanding the biology of infection

and disease pathogenesis has and will continue to guide vaccine development. In this

paper, we review the roles that RSV proteins play in the biology of infection and disease

pathogenesis and the corresponding contribution to live attenuated and subunit RSV

vaccines. Each of RSV’s 11 proteins are in the design of one or more vaccines. The G

protein’s contribution to disease pathogenesis through altering host immune responses

as well as its role in the biology of infection suggest it can make a unique contribution

to an RSV vaccine, both live attenuated and subunit vaccines. One of G’s potential

unique contributions to a vaccine is the potential for anti-G immunity to have an anti-

inflammatory effect independent of virus replication. Though an anti-viral effect is essential

to an effective RSV vaccine, it is important to remember that the goal of a vaccine is to

prevent disease. Thus, other effects of the infection, such as G’s alteration of the host

immune response may provide opportunities to induce responses that block this effect

and improve an RSV vaccine. Keeping in mind the goal of a vaccine is to prevent disease

and not virus replication may help identify new strategies for other vaccine challenges,

such as improving influenza vaccines and developing HIV vaccines.

Keywords: pathogenesis, RSV (respiratory syncytial virus), vaccine development, biology of infection, protective

immunity

BACKGROUND

Respiratory syncytial virus (RSV) is estimated to cause 3.4 million hospitalizations and
95,000–150,000 deaths globally and up to 175,000 hospitalizations in the United States in children
<5 years of age each year (1, 2). It is also estimated to cause 14,000 deaths each year in adults in the
United States (3). Its disease burden has made RSV a priority for vaccine development for over 50
years but no vaccine is yet available for any of groups targeted for an RSV vaccine including young
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children (∼ <6 months of age), older children (∼ 6 months to
24 months of age), pregnant women, and elderly adults (∼ >65
years of age) (4, 5). The challenges to developing an RSV vaccine
include: concern that a non-live virus vaccine in young children
may predispose to enhanced RSV disease (ERD) in RSV-infected
young children who earlier received a formalin-inactivated RSV
plus alum vaccine; difficulty in inducing and assessing protective
immunity; cost of clinical vaccine trials; and the young age, 2–
4 months of age, for peak of disease. The first RSV vaccine,
formalin-inactivated RSV with alum adjuvant (FI-RSV), given
to young, likely RSV naïve, but not older, RSV primed children,
led to enhanced RSV disease (ERD) with later infection, i.e., a
high rate of hospitalization and two deaths (6–9). This experience
raised concern that any non-live virus vaccine may induce an
aberrant immune response that predisposes to ERD in young
children and a focus on live attenuated RSV or virus vector
vaccines for this target population. Since ERD is not a concern
for RSV-primed older children and adults and live attenuated
RSV replicates poorly in primed persons, subunit vaccines are
under development for older children and adults. The difficulty in
inducing protective immunity is highlighted by repeat infections
and disease throughout life (3, 10).

The fact that prior infection and high titers of neutralizing
antibodies, e.g., maternally derived antibodies or from an earlier
infection, are associated with some protection suggest that a
vaccine should be achievable (11–17). In addition, immune
globulin with a high RSV neutralizing antibody titer and a
neutralizing monoclonal antibody are effective in preventing
serious disease in high-risk young infants (18, 19).

The past failures, however, suggest that novel vaccines may
be required for success. In considering novel vaccines, it is
useful to remember that the goal of a vaccine is to prevent
disease caused by the infection. Though obviously important
to an effective vaccine, a singular focus on induction of
neutralizing antibodies or preventing virus replication, may
lead to missing other, important effects of a vaccine. For
example, if a vaccine does not induce sterilizing immunity,
as is likely for RSV, other effects such as virus-induced
inflammation become relevant. The pathogenesis of RSV
disease, reviewed elsewhere (20, 21), is the foundation for
designing a vaccine that addresses disease pathogenesis. The
prominence of wheezing as a manifestation of infection (10)
with its similarity to asthma and the association between
mucus production and disease severity (22) suggest a
prominent role of host inflammatory responses in disease
pathogenesis. Blocking such effects could be important to a
successful vaccine.

The role of RSV’s proteins in biology of infection and disease
pathogenesis provides clues to their potential contribution to a
vaccine. RSV has 10 genes that encode for 11 proteins (23). RSV
has two major antigenic groups of strains, A and B, and multiple
genotypes within the two groups (24–27). Though only two RSV
proteins induce in vitro neutralizing antibodies, F and G (28), as
illustrated inTable 1, all RSV proteins have played a role in design
of one or more vaccines. The type of vaccine under development
varies among the target populations. Live attenuated or virus-
vector subunit vaccines are under development for infants and

young children and non-live or virus-vector subunit vaccines for
older children and adults.

LIVE VIRUS VACCINES

A live attenuated RSV vaccine needs to both have mutations
that attenuate virus replication for safety while maintaining
sufficient replication to maintain immunogenicity. The first
attenuated vaccines were generated by chemical mutagenesis
and low temperature passage. Subsequently, reverse genetics
has identified specific mutations associated with temperature
sensitivity and attenuation (30, 31). A set of five mutations,
one in the N, two in the F, and two in the L protein genes,
are associated with attenuation in primates and designated
“cp” for cold passage. Six additional mutations, 5 in L and
1 in the gene-start transcription signal for M2, contribute
independently to temperature sensitivity and attenuation. Five
RSV genes, i.e., NS1, NS2, SH, G, and M2-2, can be deleted
and virus recovered. All viruses are attenuated in animals.
Live attenuated RSV candidate vaccines with deletions of NS2,
G, or M2-2 are in clinical trials (32). A live attenuated RSV
candidate vaccine with the 5 cp mutations, two other attenuating
mutations, and deletion of the SH gene was also in a clinical
trial (33, 34).

A virus vector vaccine’s safety is likely not dependent on
the RSV antigen present but the vector. Since the virus vectors
present antigen to the immune system similar to the way that live
RSV does, they are likely safe from ERD risk. A parainfluenza
virus that expressed the RSV F protein did not led to ERD in RSV
naïve children (35).

Codon pair de-optimization is another way to attenuate RSV
and different combinations of RSV proteins including NS1 and
NS2; NS1, NS2, N, P, M, and SH; G and F; L; or all proteins except
M2-1 and M2-2 have been codon de-optimized to attenuate
the virus (36, 37). With codon pair de-optimization, the level
of attenuation can be fine-tuned by varying levels of protein
production and makes it possible to attenuate through changes
to any protein without relying on specific attenuating mutations
or gene deletion.

Several live attenuated RSV vaccines show promise in early
clinical trials (38). It is yet uncertain if they will achieve the
balance between safety and immunogenicity needed for the
young child. Maternal vaccination, or longer lasting immune
prophylaxis, followed by vaccination at 4–6 months of age should
make safety easier to achieve. A safe virus vector is another
possible way to protect young children.

SUBUNIT VACCINES

With the exception of virus-vector subunit vaccines, subunit
vaccines are under development for RSV-primed older children
and adults. Virus vector vaccines are under development for
both. The goal for a subunit vaccine is to safely, induce a more
effective immune response than natural infection. One or both
of RSV proteins that induce neutralizing antibodies (F and G)
are likely required for an effective subunit vaccine. Proteins
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TABLE 1 | RSV proteins in live attenuated or subunit vaccines.

Protein Size aa Functions related to vaccine

design

Role in a live virus vaccine Role in a subunit vaccine

NS1 139 aa Inhibits type 1 interferon

production to block host response

to control infection

Attenuation when deleted or

codon de-optimized

None

NS2 124 aa Inhibits type 1 interferon

production to block host response

to control infection

Attenuation when deleted or

codon de-optimized

None

Nucleoprotein (N) 391 aa Nucleocapsid formation and T cell

epitopes

Attenuation or temperature

sensitivity when mutated

Induce T cell immunity

Phosphoprotein (P) 241 aa Nucleocapsid formation,

replication

Attenuation when codon pair

de-optimized

Platform for RSV VLPs

Matrix protein (M) 256 aa Envelop, virion assembly Attenuation and temperature

sensitivity when the gene start

signal mutated

Induce T cell immunity and platform for

RSV VLPs

Small hydrophobic (SH) 64 aa Ion channel Attenuation when deleted or

codon pair de-optimized

Induce ADCC antibodies to decrease virus

replication

G protein 292-319 aa Attachment and immune

modulation

Attenuation when deleted and

improved safety and

immunogenicity when mutated

Induce antibodies to inhibit virus

replication by blocking binding to the cell

surface receptors CX3CR1 and

glycosaminoglycans and/or ADCC and to

block virus-induced inflammation

F protein 574 aa Attachment, entry, fusion Attenuation when mutated or

codon pair de-optimized and

improved protective immunity and

virus stability when mutated

Induce antibodies to inhibit virus replication

by blocking fusion and possibly by ADCC

M2-1 protein 194 aa Anti-termination factor during

transcription

Attenuation when mutated Induce T cell immunity, platform for RSV

VLPs

M2-2 protein 90 aa Switch from transcription to

replication

Attenuation and enhanced

immunity when deleted

None

L protein 2,165 aa Viral polymerase Attenuation when mutated or

codon pair de-optimized

None

Adapted with permission from Anderson (29).

that induce T cell immunity (N, M2-1, and other proteins)
or antibody dependent cellular cytotoxic antibodies (ADCC)
including the F, G, and SH proteins are incorporated into subunit
vaccines (Table 1). Co-expression of theMprotein and P proteins
produces RSV virus-like-particle (VLPs) vaccine platform. A
number of subunit vaccines, some in a virus vectors, including
F protein; G protein; SH protein; F plus G; or F, G, and other RSV
proteins are under study in clinical trials (4, 32).

Several pre-fusion F subunit vaccines are in early clinical trials
and expected to induce higher titers of neutralizing antibodies
and be more effective than previous F protein vaccines.
Recently, two non-prefusion stabilized F protein vaccines were
ineffective in elderly adults in phase II or III clinical trials
(4). In a phase III maternal vaccination trial, one of these
F protein vaccines did not significantly decrease medically
significant RSV lower respiratory tract illness in infants (its
primary endpoint) but did significantly decrease hospitalization
in the infant (38), a result that suggests an F protein can
be an effective maternal vaccine. An extended half-life, anti-F
neutralizing monoclonal antibody is in phase II or III clinical
trials and a promising alternative to vaccination to protect
infants (39).

FUNCTION AND ROLE OF RSV PROTEINS
IN VACCINE DESIGN

As noted above and outlined in Table 1, all RSV proteins are
included in design of one or more vaccines. Understanding the
role of RSV proteins in the biology of infection and disease
pathogenesis helps determine if, and how, individual proteins
might contribute to a vaccine.

Below we discuss each proteins function relative to vaccine
design with an emphasis on the F and G proteins. F and G
are most effective at inducing protective immunity and one or
both likely needs to be included in a RSV vaccine. Though G
is often not included in candidate vaccines, its role in disease
pathogenesis suggest it might make important contributions to
a vaccine.

NS1 and NS2 Proteins
NS1 is a 139 aa and NS2 is a 124 aa non-structural proteins,
i.e., not incorporated into the virus but produced during
transcription and replication. They both participate in virus
replication and antagonize host innate responses designed to
control infection (40–49). Deleting or codon de-optimizing
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he gene ability to alter host cell responses that control the
infection that reduces virus replication and attenuates the
virus (36, 37, 50–55).

N Protein
The 391-amino acid N protein binds to and encapsidates the
viral RNA generating an RNAse resistant nucleocapsid that is the
template for transcription and replication of RSV genome (56,
57). N also inhibits host cell down regulation of cellular and viral
protein production (58) and may impair dendritic cell and T cell
interactions (59). It does not induce neutralizing antibodies but
does induce T cell responses that protect animals at 4 weeks post
vaccination (28, 60, 61). Given its role in virus replication, de-
optimizing N gene codons should attenuate a live virus vaccine
and its induction of T cell responses might contribute to efficacy
of subunit vaccines.

P Protein
The P protein is a 214 aa protein that is part of the
ribonucleoprotein complex (RNP) (56, 57). The P protein
interacts with both the N and L proteins and is an essential co-
factor for L function. P also interacts with the M2-1 protein (62).
Since co-transfection of P and M proteins produces RSV VLPs
(63), it could be used in a subunit RSV VLP vaccine. P’s role
in virus replication suggest that de-optimizing P gene codons
should attenuate the virus (36).

M Protein
TheM protein is 256 aa and guides assembly, budding, and virion
formation (64). It lines the inner surface of the viral envelop,
helps determine the shape of virus particles, and, with P, forms
VLPs (63, 65–69). Since M induces T cell responses in vaccinated
animals and memory T cells in humans after natural infection
(70, 71), it might improve a subunit vaccines efficacy.

SH Protein
The SH, small hydrophobic protein is a 64–65 amino acid
type II protein located on the surface of the virus. It forms
a pentameric cation-selective ion channel, or a viroporin, and
can activate NLRP3 inflammasome leading to IL-1b expression
(72, 73). Deletion of the SH gene is often used to attenuate live
RSV candidate vaccine strains (74). Codon pair de-optimization
(CPD) (36, 75) might also attenuate the virus. Though SH does
not induce neutralizing (76), an SH vaccine induces antibody-
dependent cell-mediated cytotoxicity (ADCC) antibodies and
protection in animals (77, 78) and being studied in clinical
trials (4, 32).

G Protein
The G protein is a class II protein of 292-319 amino acids
(AA) long. The extracellular domain contains a variable, highly
glycosylated domain and a central conserved domain (CCD-
G) followed by a second variable, highly glycosylated domain.
Within the CCD-G are 13 aa conserved among all strains (aa
164-176) and a CX3C chemokine motif (aa 182-186). Through
the CX3C motif, G, like the one CX3C chemokine, fractalkine,
binds to the chemokine receptor CX3CR1 (79). G, as does F,
also binds to cell surface glycosaminoglycans (GAGs) through

its heparin binding domains and GAGs are one receptor for
RSV infection. In primary human airway epithelial cells, RSV
also uses CX3CR1, through the CX3C motif in G, as a receptor
for infection (80–82). G binding to CX3CR1 can also induce
fractalkine-like responses (79). CX3CR1 is expressed on the
surface of many cell types, including neurons and microglia
(83), smooth muscle (84), and various immune cells including
monocytes, dendritic, NK, T, and B cells (85–87) and binding
to it can induce a variety of downstream responses. In mice,
the G protein/CX3CR1 interaction is associated with depressed
respiratory rates (88), inhibition of migration of CX3CR1+ T
cells to RSV-infected lungs (89), induction of aberrant pulmonary
inflammation with RSV challenge after FI-RSV vaccination (90),
increased pulmonary inflammation and mucous production and
airway resistance during infection, and induction of Th2-type
immune responses in the lung with infection (91). In In vitro
studies, the G protein through its interaction with CX3CR1
dampens Type I IFN production by innate immune cells and
Type 1 cytokine responses of memory T cells (92). Recently,
the G-CX3CR1 interaction has been shown to induce IL-10 in
neonatal regulatory B cells (nBreg) resulting in downregulation
of Th1 cell responses (93).

The ability of the anti-G monoclonal antibody, 131-2G,
to block these effects of G (91, 94–97) suggests a role for
G in vaccine design. As illustrated in Figure 1, immunity
designed to block infection, if successful, will prevent disease.
However, if only partially successful, as occurs with naturally
acquired immunity, RSV will replicate and produce G leading
to G induced host immune/inflammatory responses that cause
disease. Vaccine-induced anti-G antibodies can block G-induced
disease and essentially have an anti-inflammatory effect that
decreases disease. Interestingly, the anti-inflammatory effect
of 131-2G is independent of its anti-viral effect, i.e., intact
131-2G has both an anti-viral effect and anti-inflammatory
effect while 131-2G F(ab’)2 has no anti-viral effect but a
similar anti-inflammatory effect (95, 96). Since CX3CR1 is an
important receptor in primary human airway epithelial cells,
likely in natural human infection, antibodies that block G’s
interaction with CX3CR1 should neutralize virus in humans
by a mechanism different from F. Finally, studies in mice
suggest that anti-G immunity, through passively administered
131-2G before RSV challenge or actively induced by a CCD-
G peptide vaccine given with FI-RSV, can block ERD in RSV-
challenge of FI-RSV vaccinated mice (98, 99). These data
suggest that including G, or a CCD-G containing peptide, in
an RSV vaccine might decrease the risk of ERD in infants and
young children.

Thus, G in a subunit vaccine can induce antibodies that
block binding to CX3CR1 that should enhance the antiviral
activity of an F protein subunit vaccine and uniquely add
an anti-inflammatory effect not present in an F only vaccine
(Figure 1). In a live attenuated vaccine, mutating G to
block binding to CX3CR1, from studies in mice, should
markedly decreased disease and maintain, or enhance, the
vaccine-induced immunity (100).This mutation by blocking
binding to CX3CR1 would also attenuate virus replication
in humans.
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FIGURE 1 | Enhanced disease prevention with the addition of G to an F

protein vaccine. The three schematics represent disease pathogenesis

associated with no vaccine (1st schematic), an F protein vaccine (2nd

schematic), and an F + G protein vaccine (3rd schematic). For all three, two

types of disease pathogenesis are represented, one associated with virus

replication and cytopathology (above the line) and the other induced by the

RSV G protein (below the line). In mice, G induced disease includes increased

inflammatory cells and mucus in the lungs and increased signs of obstructive

airway disease and is not dependent on level of virus replication (95–97). In the

second schematic, an F protein vaccine prevents much but not all virus

replication and much of the disease pathogenesis represented above the line.

In the third schematic, addition of G to an F protein also prevents disease

pathogenesis represented below the line. The width of the arrows indicate

level of virus replication, cytopathology/inflammation, G-inflammation, or

residual disease.

Thus, including G in RSV vaccine design could improve a
vaccine through multiple mechanisms. A number of G, or G
peptides that include CCD-G, vaccines have been effective in
preventing disease in animal studies (101–109). A G construct
based on CCD-G will likely need to account for antigenic
differences between groups A and B and not within the
two groups.

F Protein
The F protein is a class I fusion protein of 574 amino acids
(AA) long. It has two furin cleavages sites, at aa position 109
and the other at aa 136. Cleavage at these sites gives the 50 kDa
carboxy-terminal F1, the 20 kDa N-terminal F2, and a 27 aa
fragment. F1 and F2 form dimers and the F1-F2 dimers form
trimmers (110, 111). The F protein is highly conserved among
RSV strains with 25 AA differences between RSV subtypes A and
B and induces neutralizing antibodies and protection in animals
across the two groups (110, 112). F binds to glycosoaminoglycans
(113), nucleolin (114), and EGFR (115) on the cell surface with
GAGs and nucleolin presumed to be receptors for infection of
cells. F binding to EGFR is associated with induction of IL-13 and
mucin production.

The F protein mediates fusion of RSV with cellular
membranes which is essential to infection and requires F to
go from the metastable pre-fusion (pre-F) structure to a stable
post-fusion (post-F) structure (116, 117). Many neutralizing

epitopes on F are on the pre- and not post-fusion structure
and most of the neutralizing antibodies in humans react against
the pre- and not post-fusion form of F (118, 119). Pre-fusion
stabilized F protein constructs have been developed and these
F constructs, e.g., Ds-Cav1 and SC-TM, are highly effective
at inducing neutralizing antibodies (120). Anti-F antibodies
can also mediate antibody dependent cell-mediated cytotoxicity
(ADCC) (121, 122) though it is unknown what role ADCC
antibodies play in controlling natural infection. The initial two
neutralizing antigenic sites identified on F have been expanded
to at least five and more will likely be identified in the future
(24, 123). Anti-antigenic site Ø antibodies have high levels of
neutralizing activity and are a high proportion of neutralizing
antibodies in human serum specimens (118). Interesting, F
proteins in some circulating strains have been shown to have
increased stability of pre-fusion F, increased virus temperature
stability, inducemucus and airway resistance inmice, and bind to
EGFR (115, 124, 125).

Stabilization of pre-fusion F in subunit vaccines substantially
increases the neutralizing antibody response in animals and is
a promising development in design of RSV subunit vaccines.
In a live virus vaccine, mutations in F that increase pre-
fusion stability and temperature stability should be advantageous.
Mutations at other sites in F have been associated with virus
attenuation. It is possible that mutations that block F binding
to EGFR will attenuate disease and improve a live attenuated
RSV vaccine.

The F protein’s essential role in infection through fusion
suggest it is key to protection for both subunit and live
virus vaccines.

M2-1 and M2-2 Proteins
The internal viral matrix protein M2 is unique to the family
Pneumoviridae, plays a significant role in virus assembly (66),
and contains two overlapping translational open reading frames,
one for M2-1, a 194 aa protein, and one for M2-2, a 83-90aa
protein (126).

The M2-1 protein functions as an intragenic transcription
anti-termination factor allowing the synthesis of complete RNA
(127–129) and link the RNA/nucleocapsid with the M protein
just inside the virus surface (67, 130). M2-1 can induce short
term, T cell based RSV immunity (28, 70, 131) and could
be included in a subunit vaccine to enhance induction of T
cell immunity.

The M2-2 protein facilitates the shift from gene transcription
to production of viral RNA and infectious virus (126, 132).
Deletion of M2-2 results in a decrease genome replication
and increase in gene transcription and protein production
resulting in both attenuation and increased immunogenicity.
M2-2 deletion viruses are being evaluated in a phase 1 clinical
trials (34, 133).

L Protein
The L protein is a large, 2,165-amino acid, protein that mediates
transcription and replication of RSV RNA and capping and
methylation of mRNA (56, 57, 134). The active form of L is a
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heterodimer of the L and P proteins with P essential to L’s catalytic
activity. Given its central role in transcription and replication it is
not surprising that attenuating mutations, and likely codon pair
de-optimization of L, attenuate live RSV (30, 31).

COMMENT

Though a number of candidate RSV vaccines are under
development and some promising candidate vaccines have
moved into clinical trials, past failures suggest that we should
continue look for better candidate vaccines. Though the
composition of a successful RSV vaccine remains uncertain, it
likely will need to induce both antibody and Th1 biased T cell
memory responses. It is, also, useful to remember that the goal is
to prevent disease and not just to control infection. For example,
tetanus and diphtheria toxoid vaccines prevent the disease and
not pathogen growth. The RSV G protein has the potential to
enhance a vaccine by not only helping to control infection but
independently decreasing disease by controlling virus-induced
inflammation. Virus protein-specific contributions to biology of
infection and disease pathogenesis might also suggest ways to

decrease disease for other vaccine challenges such as improving
influenza vaccines and developing HIV vaccines.

AUTHOR’S NOTE

Respiratory syncytial virus is a high priority for vaccine
development but, despite nearly 60 years of research no vaccine
is yet available. Understanding the biology of infection and
pathogenesis of disease has and will continue to be key to
developing new vaccine strategies to finally achieve a successful
vaccine. New vaccines are being developed and their safety
and efficacy will ultimately be determined by clinical trials in
the target population. Given past failures it is important to
continue to pursue better candidate vaccines. In developing new
vaccines, it is useful to remember that the goal of a vaccine is to
prevent disease and not, though essential to an effective vaccine,
virus replication.
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