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Glucagon-like peptide-1 (GLP-1) is an incretin hormone that has undergone a revolu-

tionary turnaround from discovery to clinically approved therapeutic. Rapid progress in

drug design and formulation has led from initial development of short- and long-acting

drugs suitable for daily or weekly parenteral administration, respectively, through to the

most recent approval of an orally active GLP-1 agent. The current review outlines the

biological action profile of GLP-1 including the various beneficial metabolic responses

in pancreatic and extra-pancreatic tissues, including the gastrointestinal tract, liver,

bone and kidney as well as the reproductive cardiovascular and CNS. We then briefly

consider clinically approved GLP-1 receptor ligands and recent advances in this field.

Given the sustained evolution in the area of GLP-1 drug development and excellent

safety profile, as well as the plethora of metabolic benefits, clinical approval for use in

diseases beyond diabetes and obesity is very much conceivable.

LINKED ARTICLES: This article is part of a themed issue on GLP1 receptor ligands

(BJP 75th Anniversary). To view the other articles in this section visit http://

onlinelibrary.wiley.com/doi/10.1111/bph.v179.4/issuetoc
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1 | INTRODUCTION

The physiological role of the gastrointestinal tract was traditionally

thought to involve nutrient digestion and absorption, but it is now

known to be the source of a plethora of peptide hormones involved in

the regulation of metabolism and other body functions (Baggio &

Drucker, 2007). Seminal work in the late 1960s led to the identifica-

tion of peptide hormones with glucagon-like immunoreactivity

following gastrointestinal tract stimulation by glucose (Samols &

Marks, 1967). Since then, two major gastrointestinal tract-derived

hormones involved in regulation of postprandial glucose have been

identified, namely, glucagon-like peptide-1 (GLP-1) and glucose-

dependent insulinotropic polypeptide (gastric inhibitory polypeptide;

GIP), secreted from L-cells and K-cells of the gastrointestinal tract,

respectively. Collectively, these two hormones account for 50%–70%

of insulin secretion in response to a meal (Baggio & Drucker, 2007),

with this action termed ‘the incretin effect’. Given the glucose-

dependent nature of GLP-1 induced insulin secretion and retention of

bioactivity in type 2 diabetes (Nauck, Kleine, et al., 1993), drugs based

on the biological action of this hormone were rapidly translated to

benefits in humans (Baggio & Drucker, 2007). Thus, the amino acid

peptide sequence of GLP-1 was first discovered by Habener and

Abbreviations: ANP, atrial natriuretic hormone; ApoE, apolipoprotein E; CCK,

cholecystokinin; FFA, free fatty acid; GIP, gastric inhibitory polypeptide; GLP-1, glucagon-like

peptide-1; TAP1/ABCD2, peptide transporter 1; SNAC, sodium N-(8-[2-hydroybenzoyl]

amino) caprylate.
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colleagues in the early 1980s through decoding of recombinant cDNA

clones in anglerfish (Lund et al., 1982) and subsequently found to

enhance insulin secretion in the perfused rat pancreas (Mojsov

et al., 1987), with clinical approval of GLP-1 mimetic for the treatment

of type 2 diabetes mellitus (T2DM) following in 2005 (Kolterman

et al., 2005). Although this original approval was largely based on the

potent glucose-dependent insulinotropic properties of GLP-1 receptor

(GLP-1 receptor) activation on pancreatic beta-cells, it is now clear

that the GLP-1 receptor is expressed on various other metabolically

active tissues eliciting a range of biological effects across diverse

organ systems (Figure 1).

2 | GLP-1 SECRETION

In terms of endogenous secretion, GLP-1 producing L-cells are predomi-

nantly located along the ileum and colon of the gastrointestinal tract

(Eissele et al., 1992). With the apical surface of the L-cell in contact with

the gut lumen, GLP-1 secretion is stimulated by the presence of intestinal

nutrients (Eissele et al., 1992), albeit via distinct mechanisms. Thus, glu-

cose absorption within the L-cell leads to ATP production, subsequent

closure of KATP channels and opening of voltage-gated Ca2+ channels, a

process known to be linked to sodium-coupled glucose transporters

(SGLT1) that sense ingested glucose (Parker et al., 2012). The resulting

Ca2+ influx triggers exocytosis of GLP-1 containing vesicles into the circu-

lation. Alternatively, free fatty acids bind to and activate their respective

free fatty acid L-cell receptors, for example FFA1 (GPR40) and FFA4

(GPR120) to increase intracellular Ca2+ via Gq signalling pathways that

stimulate PKC signalling leading to GLP-1 secretion (Tolhurst et al., 2011).

In particular, activation of the GPCR, bile acid (GPBA) receptor, increases

L-cell differentiation and elicits substantial GLP-1 secretion (Lund

et al., 2020).

In addition to this, proteins and amino acids are consistently shown

to elicit L-cell GLP-1 secretion in vitro (Tolhurst et al., 2011), in rodents

(Clemmensen et al., 2013) and in humans (Lejeune et al., 2006). This

action is mediated by activation of Ca2+/calmodulin-dependent kinase

II (CaMKII), calcium-sensing (CaS) receptor and peptide transporter

1 (TAP1 or ABCD2), leading to a rise in intracellular Ca2+ and subse-

quent GLP-1 secretion (Diakogiannaki et al., 2013). Furthermore,

intestinal L-cells are situated in close proximity to enteric neurons and

microvasculature, suggesting that GLP-1 secretion is also influenced

by neuronal and endocrine factors (Anini et al., 2002). As such, GIP

and cholecystokinin (CCK-8) are the two gut-derived hormones impli-

cated in GLP-1 secretion. In rodents, intravenous treatment with GIP

is associated with an increase in glucagon-like immunoreactivity via a

GIP-GLP-1 vagal axis Rocca and Brubaker (1999). Whether such a

GIP-GLP-1 axis operates in humans is questionable, given that phar-

macological doses of GIP fail to elicit GLP-1 secretion in man (Mentis

et al., 2011). In addition to these pharmacological stimuli, murine L-

cells display a circadian pattern of GLP-1 secretion that peaks prior to

the onset of feeding periods (Biancolin et al., 2020).

Contrary to extensive and growing knowledge around the stimulation

of GLP-1 secretion from enteroendocrine L-cells, much less is known

about potential mediators that provide feedback inhibition to GLP-1

secretion. In this regard, the neuropeptide galanin has been shown to

inhibit GLP-1 secretion via action of the Gi-linked GAL1 receptor

expressed on L-cells (Psichas et al., 2015). Likewise, somatostatin (SRIF-

28) has been shown to inhibit GLP-1 secretion, likely via modulation of

F IGURE 1 The metabolic actions of
GLP-1 across diverse organs including the
pancreas, brain, gastrointestinal (GI) tract,
liver, muscle, bone, kidney as well as the
cardiovascular and reproductive systems
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the somatostatin 5 (SST5) receptor (Chisholm & Greenberg, 2002). Exploi-

ting this knowledge, selective SST5 antagonists have been shown to aug-

ment circulating GLP-1 levels in mice (Farb et al., 2017). Indeed, more

recent evidence reveals that selective stimulation of colonic L-cells leads

to significant improvements in metabolic control, with obvious possible

therapeutic implications (Lewis et al., 2020).

Once secreted, GLP-1 has a short duration of biological action

due enzymatic degradation by the ubiquitous enzyme dipeptidyl

peptidase-4 (DPP-4) and efficient renal clearance, resulting in an

in vivo t½ of around 5–10 min (Deacon et al., 1996). It is suggested

that up to 75% of secreted GLP-1 is degraded within the gut, with an

additional 50% then degraded in the liver, before even entering the

general circulation (Deacon et al., 1996). Within the circulation, GLP-1

binds and activates the GLP-1R expressed on various sites throughout

the body. The GLP-1 receptor is a membrane bound GPCR, coupled

to Gαs that activates AC to increase cAMP and triggers intracellular

cascades leading to various responses within each cell type (Mayo

et al., 2003). However, there has been some controversy around the

specificity of commercially available antibodies directed against

the GLP-1 receptor (Pyke & Knudsen, 2013), generating debate on

the exact location of GLP-1 receptor expression in the body (Pyke &

Knudsen, 2013). Fortunately, the use of molecular biology techniques,

alongside recent advances in monoclonal antibody development, has

allowed for clearer identification of the GLP-1 receptor, distinct from

that of GLP-2, GIP and glucagon receptors (Biggs et al., 2018; Pyke

et al., 2014;). Further to this, the development of fluorescent probes,

such as LUXendin645, allows for super-resolution microscopic

detection of the GLP-1 receptor both in vitro and in vivo (Ast

et al., 2020). As such, monoclonal antibodies with improved selectivity

for GLP-1 receptor have now been developed confirming true GLP-1

receptor expression in the pancreas, brain, kidney, lung, heart and

stomach (Pyke et al., 2014). Furthermore, transgenic mice expressing

fluorescent markers in tissues that express the GLP-1 receptor largely

confirm these findings (Richards et al., 2014). In addition, mRNA

expression of the GLP-1 receptor has been observed in osteoblastic

cell lines (Pacheco-Pantoja et al., 2011), but there is limited evidence

for presence of GLP-1 receptor on human bone. Centrally, the GLP-1

receptor is expressed within the following brain regions: cerebral

cortex, +hypothalamus, hippocampus, thalamus, caudate-putamen

and globus pallidum (Alvarez et al., 2005). Finally, GLP-1 receptor

mimetic therapy has consistently shown to improve liver disease,

possibly indirectly via anti-inflammatory and weight-reducing actions.

3 | GLP-1 AND THE ENDOCRINE
PANCREAS

Glucose-stimulated insulin release from pancreatic beta-cells is a tightly

regulated process, that involves many complementary pathways. +In the

case of GLP-1, activation of the GLP-1 receptor on beta-cells triggers an

intracellular signalling cascade that potentiates glucose-stimulated insulin

secretion, whilst also exerting more longer-term benefits on beta-cell

growth and survival, ultimately leading to improvements in overall beta-

cell sensitivity and insulin production (Figure 2; Campbell &

F IGURE 2 Actions of GLP-1 within pancreatic alpha-, beta- and delta-cells. In beta-cells, GLP-1 binding to its receptor (GLP-1R) triggers
intracellular signalling cascades that positively influence insulin synthesis and secretion as well as beta-cell proliferation and survival. The direct
and indirect effects, mediated through the delta-cell, of GLP-1 receptor (GLP-1R) activation on inhibition of alpha-cell derived glucagon is also
considered
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Drucker, 2013). Advances in islet cell lineage tracing technologies have

also highlighted the importance of GLP-1 receptor in maintaining beta-

cell identity and preventing beta-cell de-differentiation under situations

of pancreatic islet stress (Tanday et al., 2020). In terms of the pancreatic

alpha-cell, GLP-1 consistently suppresses glucagon secretion (Hare

et al., 2009). Indeed, this glucagonostatic action is suggested to account

for 50% of the blood glucose lowering ability of GLP-1 (Hare, 2010). The

exact mechanisms underlying this action are uncertain; however, there

are two major theories (Figure 2). The ‘direct’ theory relies on alpha-cells

expressing the GLP-1 receptor with GLP-1 exerting a direct inhibitory

action on alpha-cells (De Marinis et al., 2010). However, even with the

use of more specific antibodies and probes to accurately detect the

GLP-1 receptor, there are still conflicting reports on whether alpha-cells

express GLP-1 receptor. Studies have demonstrated that only a small

proportion, at most approximately 10%–12%, of mouse alpha-cells

express the GLP-1 receptor (Ast et al., 2020), whereas others have failed

to detect the GLP-1 receptor on human alpha-cells (Waser et al., 2015).

Whether GLP-1 receptor present on alpha-cells make any meaningful

contribution to the glucagonostatic effects of GLP-1 receptor mimetics is

questionable. Due to the lack of clear evidence regarding alpha-cell

GLP-1 receptor expression, a second ‘indirect’ theory has emerged

(Figure 2). This indirect theory ascribes to the idea that GLP-1 mediates

its glucagonostatic effect indirectly through stimulation of somatostatin

secretion from pancreatic delta-cells, that express functional GLP-1

receptor (Ørgaard & Holst, 2017). In this regard, somatostatin consis-

tently inhibits glucagon, insulin and GLP-1 across all species. Given that

GLP-1 is known to stimulate delta-cell secretions (Ørgaard &

Holst, 2017), it is feasible that somatostatin exerts a paracrine inhibitory

effect on neighbouring alpha-cells. Indeed, in a perfused mouse pancreas

model, administration of GLP-1 suppressed glucagon secretion, with this

inhibitory effect annulled in the presence of a specific somatostatin

(SST2) receptor antagonist (Ørgaard & Holst, 2017). In similar fashion,

the ability of liraglutide to reduce dapagliflozin-induced

hyperglucagonaemia is abolished in somatostatin receptor knockout mice

(Saponaro et al., 2019). Collectively, these findings present strong evi-

dence for the indirect theory of GLP-1 mediated glucagon inhibition

(Figure 2). In reality, GLP-1 induced inhibition of glucagon secretion is a

complicated process that requires further investigation, especially

because GLP-1 is known to stimulate release of amylin (Gedulin

et al., 1997), GABA (Wendt et al., 2004) and zinc (Zhou et al., 2007),

which can all independently modulate glucagon secretion. Nonetheless,

the promotion of glucose-dependent insulin secretion, coupled with

reduced glucagon release, represents an ideal paradigm for diabetes

therapy.

In contrast to GLP-1 actions on alpha-cells, the molecular actions

underpinning potentiation of beta-cell insulin secretion have been

explored in depth (Figure 2). Upon GLP-1 receptor binding and

activation, the enzyme AC increases cAMP levels, which in turn stimu-

lates PKA and Epac activity (Holz, 2004). PKA closes the beta-cell

ATP-sensitive K+ (KATP) channel to depolarise the cell membrane

(Light et al., 2002). This depolarisation opens voltage-dependant Ca2+

channels leading to increased Ca2+ influx, essential for exocytosis of

insulin granules (MacDonald & Wheeler, 2003). In harmony with this,

Epac proteins sensitise the K+ channel, lowering its ATP threshold for

activation and further act on the endoplasmic reticulum to release Ca2+

cellular stores (Doyle & Egan, 2007). These pathways are critical

for GLP-1 mediated insulin secretory activity, as blocking cAMP

accumulation (Härndahl et al., 2002) or PKA activity (Wang

et al., 2001) eliminates GLP-1 induced insulin secretion.

As well as stimulating glucose-dependent insulin secretion, GLP-1

exerts additional effects of pancreatic beta-cells with obvious thera-

peutic benefits in diabetes. As such, GLP-1 is able to slow the loss of

beta-cell mass in diabetes through its ability to increase proliferation

(Arakawa et al., 2009) and protect against apoptosis (Li et al., 2003).

Specifically, activation of PKA by GLP-1 leads to an increase in pan-

creatic and duodenal homeobox 1, a transcription factor critical for

maintenance of beta-cell function and PKB (Akt) induced beta-cell

proliferation (Wang et al., 2001). However, it should be noted that

adult human beta-cells appear to have somewhat limited proliferative

capacity, when compared with juvenile mouse or human cells (Dai

et al., 2017), with important therapeutic implications. Interestingly,

up-regulation of beta-cell pancreatic and duodenal homeobox

1 expression is also attributed to GLP-1 mediated benefits on the

maintenance of beta-cell identity and prevention of beta-cell

de-differentiation in situations of islet stress (Tanday et al., 2020). In

addition to this, GLP-1 receptor-mediated intracellular beta-cell

signalling also leads to up-regulation of anti-apoptotic proteins, such

as B-cell lymphoma 2 (Bcl-2) and B-cell lymphoma-extra large (BcL-xL),

as well as inhibition of caspase activation and NF-κB to ultimately

encourage beta-cell survival and resistance to endoplasmic reticulum

stress (Tsunekawa et al., 2007). Taken together, the compilation of

these GLP-1 induced benefits on pancreatic islet cells highlights the

clinical benefits of GLP-1 mimetics in diabetes.

3.1 | GLP-1 and the gastrointestinal tract

Activation of the GLP-1 receptor within the CNS reduces gut contrac-

tility, slowing gastric motility and emptying (Goyal et al., 2019). By

reducing gastric motility, nutrients are absorbed into the circulation at

a slower rate, decreasing the postprandial spike in blood glucose

(Smits et al., 2016), with obvious benefit in diabetes. The mechanism

behind this action is multifaceted and involves vagal (parasympathetic)

innervation, noradrenergic (sympathetic) innervation and NO

signalling (Tolessa et al., 1998). This gastrointestinal tract effect is

consistent across species, is observed in healthy and diabetic (Meier

et al., 2003) humans and amplifies the antidiabetic actions of GLP-1.

3.2 | GLP-1 and the cardiovascular system

Type 2 diabetes is strongly associated with increased cardiovascular

disease risk (Marso, Bain, et al., 2016; Marso, Daniels, et al., 2016),

and there has been recent strong emphasis on the ability current and

future antidiabetic drugs to reduce cardiovascular disease mortality in

diabetes (Marso, Bain, et al., 2016; Marso, Daniels, et al., 2016).
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Notably, the expression of GLP-1 receptor has been detected within

all four chambers of the heart, sinoatrial node and arteriole smooth

muscle cells (Baggio et al., 2018; Pyke et al., 2014). In this regard,

GLP-1 infusion has been shown to improve endothelial function

(Nystrom et al., 2004), with GLP-1 mimetic therapy known to reduce

arertial blood pressure (Sun et al., 2015) and offer overall car-

diomyocyte protection (Asmar et al., 2017; Sjøberg et al., 2014; Wang

et al., 2013). Collectively, these actions benefit cardiovascular health,

as has been demonstrated in recent cardiovascular outcome trials

using various GLP-1 mimetics (Marso, Bain, et al., 2016; Marso,

Daniels, et al., 2016). Specifically, in the SUSTAIN-6 trial, patients with

type 2 diabetes and cardiovascular disease risk had a reduced rate of

cardiovascular death, non-fatal myocardial infarction and non-fatal

stroke when treated with the recently approved GLP-1 mimetic

semaglutide (Marso, Bain, et al., 2016). Likewise, the LEADER trial

concluded that a related GLP-1 mimetic, namely, liraglutide, was ben-

eficial in reducing the rate of non-fatal myocardial infarction, stroke

and first occurrence of death from cardiovascular causes (Marso,

Daniels, et al., 2016). However, this cardiovascular disease benefit

may be GLP-1 mimetic specific, given that other trials using GLP-1

mimetics with shorter half-lives and lower homology to native GLP-1,

such as lixisenatide (ELIXSA) or exenatide (EXSCEL), failed to show a

significant cardiovascular disease benefit (Holman et al., 2017).

Despite this variation, a more recent meta-analysis of all these trials

confirmed the beneficial actions of GLP-1 mimetics through a 13%

relative risk reduction in cardiovascular disease mortality, 12% risk

reduction in all-cause mortality and 10% relative risk reduction in

cardiovascular death, non-fatal myocardial infarction and non-fatal

stroke (Bethel et al., 2018). Ultimately, clinical trials such as these

have confirmed that, similar to sodium/glucose cotransporters 2

(SGLT2) inhibitors, GLP-1 mimetics have established cardiovascular

disease benefits in diabetes.

The mechanisms underpinning the cardiovascular benefit of

GLP-1 mimetics are multifaceted. GLP-1 mimetics can reduce tradi-

tional cardiovascular disease risk factors such as obesity, whilst also

exerting anti-inflammatory and anti-atherosclerotic effects as well as

having positive direct modulatory effects on endothelial, cardiac and

renal function (Garg et al., 2019). In type 2 diabetes mellitus, GLP-1

receptor activation has been shown to reduce arterial blood pressure,

due to a direct vasodilatory action combined with indirect actions on

lowering body weight and inducing kidney natriuresis (Asmar

et al., 2019). In all four major cardiovascular outcome trials, namely

SUSTAIN-6, LEADER, ELIXA, EXCSEL, systolic BP was significantly

reduced with GLP-1 mimetic therapy, with the greatest mean reduc-

tion (5.4 mmHg) associated with 1 mg once-weekly semaglutide treat-

ment (Marso, Bain, et al., 2016). Similarly, all four trials highlighted

GLP-1 mimetic induced weight loss, again with the greatest effect

(4.3 kg weight loss) observed in the semaglutide treated group

(Marso, Bain, et al., 2016). GLP-1 mimetics, such as liraglutide and

exenatide, have also been shown to reduce LDL cholesterol, total cho-

lesterol and triglyceride levels (Sun et al., 2015). Collectively, these

actions account for at least some of the cardiovascular disease bene-

fits observed with GLP-1 mimetic therapy.

Given that the GLP-1 receptor is expressed on all four chambers

of the heart as well as the sinoatrial node, it is likely that GLP-1 and

its mimetics exert a direct action on cardiac cells (Baggio et al., 2018).

In agreement with this, GLP-1 therapy has a protective effect on

cardiomyocytes during myocardial infarction in mice (Nikolaidis

et al., 2004). Interestingly, this beneficial action is still present in

cardiac-specific GLP-1 receptor knockout mice, implying possible

important indirect effects (Ussher et al., 2014). GLP-1 and associated

mimetics have also been shown to increase heart rate (Robinson

et al., 2013) via direct receptor mediated actions (Baggio et al., 2017),

but this effect was variable between mimetics. As such, in a head-to-

head study with lixisenatide and liraglutide, the shorter-acting agent

lixisenatide produced a modest, transient 1–3 beat per minute

increase in HR, whilst the longer acting GLP-1 mimetic liraglutide was

associated with a more distinct and sustained 6–10 beats per minute

elevation (Meier et al., 2015). The potential impact of elevated heart

rate in patients with heart failure does need to be carefully considered

(Marso, Bain, et al., 2016). Furthermore, heart rate is well known to

increase postprandially, and GLP-1 mimetic mediated elevations of

heart rate could also be a compensatory consequence of GLP-

1-induced vasodilation in specific tissues (Asmar et al., 2017), but such

a GLP-1 mimetic effect still needs to be confirmed.

3.3 | GLP-1 and inflammation

Further to this, GLP-1 therapy has also been shown to augment anti-

inflammatory and anti-atherosclerotic processes, demonstrated by

their ability to reduce occurrence of myocardial infarctions and stro-

kes (Tanaka & Node, 2018). In this regard, GLP-1 mimetics have been

shown to impede inflammatory responses and reduce atherosclerosis

development (Figure 3a). Specifically, in animal models of atheroscle-

rosis, namely, ApoE�/� and LDL receptor�/� knockout mice, GLP-1

treatment reduced plaque size (Bjørnholm et al., 2020). The GLP-1

mimetics exendin-4 and semaglutide have also been shown to reduce

cerebrovascular infarct size in rodent models of cerebral ischaemia

(Basalay et al., 2019). In patients with acute myocardial infarction,

administration of GLP-1 or its mimetics improved ventricular function

and reduced reperfusion injury (Nikolaidis et al., 2004). Improvement

of endothelial dysfunction is another mechanism through which

GLP-1 mimetics exert their cardiovascular disease benefit (Nystrom

et al., 2004). As such, liraglutide is known to ameliorate vascular endo-

thelial dysfunction via suppression of oxidative stress and direct pro-

motion of endothelial-derived NOS (eNOS) mediated NO production

and vasodilation (Figure 3a; Li et al., 2020). However, it should be

noted that others have failed to observe clear beneficial effects of

GLP-1 mimetics on endothelial function (Faber et al., 2015).

GLP-1 and associated mimetics also have established anti-

inflammatory benefits beyond cardiovascular disease (Lee &

Jun, 2016). As such, intraepithelial lymphocytes (IELs) of the gastroin-

testinal tract express GLP-1 receptor, with activation resulting in

reduced cytokine production to positively control innate immunity

and gut barrier function (Yusta et al., 2015). In this regard, liraglutide
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improves aspects of inflammatory skin diseases, such as psoriasis,

through beneficial anti-inflammatory actions on immune cells (Hogan

et al., 2011). Likewise, liraglutide has been shown to reduce lung

fibrosis in a bleomycin-induced rodent model of lung disease, by

directly decreasing the expression of pro-fibrotic cytokines markers

(Fandiño et al., 2020). Collectively, these studies highlight the poten-

tial of GLP-1 mimetics for the treatment of diseases and disorders

driven by chronic inflammation.

3.4 | GLP-1 and the kidney

GLP-1 and associated mimetics elicit actions on the renal system, but

effects may be dependent on species studied, renal health status and

concentration of GLP-1 mimetic employed (Hviid & Sørensen, 2020).

In rodents, GLP-1 acts on kidney GLP-1 receptors located on renal

vascular smooth muscle (Pyke et al., 2014), to increase renal plasma

flow and glomerular filtration rate as well as diuresis and natriuresis

whilst reducing renal inflammation, fibrosis and oxidative stress, via

cAMP and PKA signalling pathways (Lee & Jun, 2016). The presence

of SGLT1 on L-cells of the gastrointestinal tract (Parker et al., 2012)

may also represent sodium sensing capability within the gut and sug-

gest important gut-kidney crosstalk in relation to regulation of

ingested sodium (Asmar et al., 2020). Tensive status also seems to be

an important factor in determining the renal actions of GLP-1. As

such, when compared with normotensive rats, hypertensive rats

exhibit reduced renal GLP-1 receptor expression and related effects

(Ronn et al., 2017). In addition, renal output is closely associated with

cardiac function, with GLP-1 receptor activation at both sites deter-

mining overall responses. In humans, GLP-1 infusion has recently been

shown to exert a natriuretic effect as well as suppress angiotensin II

release independent of renal plasma flow and glomerular filtration rate

(Asmar et al., 2021), but the specific site of GLP-1 receptor expression

required for these effects still to be determined. Alternatively, in

rodents, a GLP-1/atrial natriuretic peptide (ANP) axis exists, whereby

activation of the GLP-1 receptor in cardiac tissue stimulates ANP

secretion to evoke renal natriuresis and reduced BP (Kim et al., 2013).

GLP-1 has also been shown to exert positive actions on the renal sys-

tem in the treatment of both diabetic and non-diabetic kidney disease

(Roscioni et al., 2014). In addition to cytoprotective and anti-

inflammatory actions, GLP-1 also acts to increase renal plasma flow,

glomerular filtration rate, renal interstitial fluids and urinary flow rate,

whilst reducing tubular necrosis (Skov et al., 2013). The importance of

GLP-1 receptor action within the kidney is exemplified in GLP-1

receptor knockout mice that display increased renal oxidative stress

(Fujita et al., 2014). Together, these actions highlight the potential of

GLP-1 receptor mimetics for treating kidney disease and improving

kidney function in diabetes.

3.5 | GLP-1 and bone

Type 2 diabetes mellitus is associated with increased bone fracture

risk, but the mechanisms behind this effect are still to be fully eluci-

dated (Mabilleau, Pereira, & Chenu, 2018). Diabetic animal models

present with a loss of bone mineral density, which can be restored

through administration of GLP-1 receptor mimetics (Mansur

et al., 2015, 2019a). In addition, exenatide has been shown to

stimulate osteoblast activation and restore bone formation in an

ovariectomy-induced model of bone loss (Mabilleau et al., 2013).

Whether these beneficial effects are linked to direct activation of

GLP-1 receptor on bone remains to be determined, given conflicting

reports GLP-1 receptor expression on bone (Jeon et al., 2014). One

theory suggests that GLP-1 acts on bone marrow stromal cells, with

transcription of genes to promote osteoblast differentiation and

inhibit adipocyte differentiation to ultimately favour bone formation,

although this concept and presence of GLP-1 receptor on marrow

stromal cells still requires further clarification (Figure 3b). GLP-1

F IGURE 3 Actions of GLP-1
on (a) endothelial cells and
(b) bone. (a) GLP-1 triggers a
signalling cascade inside
endothelial cells to mediate
vasodilation and reduce
atherosclerosis, to collectively
improve cardiovascular health.
(b) GLP-1 binds to its receptor

(GLP-1R) on bone marrow stromal
cells to activate intracellular
signalling cascades that prevent
the breakdown of B-catenin. This
augments gene expression to
favour differentiation of the bone
marrow stromal cell into pre-
osteoblasts, rather than pre-
adipocytes, and increase bone
formation
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receptor mediated improvements in bone strength and quality have

also been demonstrated in various distinct forms of diabetes including

insulin-deficient type 1 diabetic mice (Mansur et al., 2015), insulin-

resistant high fat fed diabetic mice (Mansur et al., 2019a) as well as

genetically induced type 2 diabetic animal models (Sun, Lu,

et al., 2016). The observed positive actions of sitagliptin on bone are

likely due to the elevations of both GLP-1 and GIP levels (Mansur

et al., 2019b), given that GIP has well documented benefits on bone

in animals and humans (Gobron et al., 2020; Mabilleau et al., 2016;

Mabilleau, Gobron, et al., 2018; Stensen et al., 2020; Vyavahare

et al., 2020). In the clinic, recent reports show exenatide to have no

impact on bone fractures, whereas lixisenatide and liraglutide reduce

fracture occurrence (Cheng et al., 2019).

3.6 | GLP-1 and liver

Despite conflicting reports on whether hepatocytes express the

GLP-1 receptor (Gupta et al., 2010; Pyke et al., 2014), GLP-1 has been

shown to positively impact hepatic gluconeogenesis, glycogen synthe-

sis and glycolysis (Gupta et al., 2010). In this regard, the impact of

GLP-1 mimetics on liver function is likely to be linked to activation of

GLP-1 receptor on immune macrophages to attenuate T-cell mediated

inflammation (Nagashima et al., 2011). In disease states, GLP-1 recep-

tor mimetics reduce hyperlipidaemia, liver fibrosis and inflammation in

non-alcoholic fatty liver disease (NAFLD) (Armstrong et al., 2016;

Newsome et al., 2020) as well as liver fat content in type 2 diabetes

(Petit et al., 2017). Similarly, in animal models, GLP-1 also imparts

beneficial effects on the liver, with exendin-4 reducing oxidative

stress and improving hepatic steatosis and inflammation in diabetic

and atherosclerotic animal models, respectively (Sharma et al., 2011).

In animal models of both acute and chronic liver injury, liraglutide

protected against hepatotoxicity, associated with a reduction in

oxidative stress, improved liver mitochondrial function and insulin

resistance (Guo et al., 2018; Wang et al., 2017). Further research is

required to demonstrate whether these hepatic benefits are mediated

through direct GLP-1 receptor action on hepatocytes or indirectly

though GLP-1 receptor induced weight loss, reduction in HbA1c and

augmented lipid metabolism and insulin sensitivity.

3.7 | GLP-1 and fertility

Gut hormones, including GLP-1, have been shown to impact the

reproductive system and effect fertility (Moffett & Naughton, 2020).

Thus, GLP-1 receptor signalling increases menstrual frequency and

chance of pregnancy in women with polycystic ovary syndrome

(PCOS) (Liu et al., 2017). Additional actions have been identified in

animal studies showing that GLP-1 mimetics can restore ovarian mor-

phology (Sun, Ji, et al., 2016) and improve development of ovarian fol-

licles (Yang & Wang, 2016). Moreover, GLP-1 mimetics can reduce

testicular inflammation, leading to improved sperm motility and activ-

ity in diet-induced obese mice (Zhang et al., 2015). Further to this,

and although not directly related to GLP-1 receptor mediated effects

on fertility, the expansion in beta-cell mass that occurs during preg-

nancy is linked to pancreatic alpha-cell production of GLP-1, which

exerts a positive paracrine effect on neighbouring beta-cells to

encourage growth and proliferation (Moffett et al., 2014). In harmony

with these findings, GLP-1 receptor knockout mice exhibit delayed

puberty, irregular oestrus cycles, impaired fertility and reduced litter

sizes (MacLusky et al., 2000). The actions of GLP-1 on fertility have

yet to be fully exploited in the clinic, and further research is required

to develop a suitable treatment options in respect to polycystic ovary

syndrome and infertility.

3.8 | GLP-1 and the brain

The GLP-1 receptor is expressed throughout many regions of the

brain including the brainstem, cerebellum, cerebral cortex, hippo-

campus, hypothalamus, substantia nigra and thalamus (Cork

et al., 2015). As a result, GLP-1 receptors have important and

potential pharmacologically exploitable effects within the CNS. The

discussion of GLP-1 receptor mediated CNS actions, including

aspects of neuroprotection, hypothalamic regulation of food intake,

stress response as well as locally produced GLP-1, is largely outside

the scope of our current review and is covered in detail within

other reviews in this themed issue.

4 | CLINICALLY APPROVED GLP-1
RECEPTOR LIGANDS

The extensive biological action profile of GLP-1 detailed above, with

notable benefits in various disease states, promotes the wide thera-

peutic use of enzymatically stable, longer acting GLP-1 analogues.

However, to date, the use of GLP-1 receptor-based therapies has

only been approved in the treatment of obesity and diabetes. In this

regard, GLP-1 receptor drugs can be subdivided pharmacologically

by their duration of action into short-acting and long-acting classes

(Aroda, 2018). Short-acting GLP-1 receptor ligands, namely,

exenatide and lixisenatide, provide shorter elevations in circulating

GLP-1 levels (2–3 h) that act quickly to delay gastric emptying and

reduce postprandial blood glucose levels (Nauck et al., 2011).

Whereas long-acting GLP-1 receptor ligands, namely, liraglutide,

albiglutide, dulaglutide and exenatide-LAR, lead to more prolonged

periods of GLP-1 receptor activation (>24 h) to reduce fasting blood

glucose (Buse et al., 2009). This more consistent elevation in plasma

GLP-1 levels, and therefore potential for an uninterrupted receptor

activation profile, appears to result in greater improvements in

HbA1c levels when compared with short-acting GLP-1 compounds

(Buse et al., 2009). However, longer acting GLP-1 receptor ligands

have been shown to induce some tachyphylaxis and as such have a

more limited impact on gastric motility and are therefore unable to

reduce postprandial hyperglycaemia as effectively as their short-

acting counterparts (Nauck et al., 2011). Both short and long-acting
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GLP-1 receptor ligands induce weight loss, confirming that this

action is not secondary to delaying gastric motility but rather due to

direct actions within the CNS and hypothalamus. In addition,

although highly likely, it is still unknown whether a more consistent

GLP-1 receptor activation profile is observed with longer acting

GLP-1 receptor mimetics.

4.1 | Early progress with clinically approved GLP-1
receptor mimetics

The progress with developing new and enhanced clinically approved

GLP-1 receptor mimetics has been frequent over the years (Figure 4).

As such, exenatide was the first GLP-1 receptor ligand drug approved

for type 2 diabetes in 2005 as a twice-daily preparation (Nielsen

et al., 2004) and was swiftly followed by approval of once-daily

liraglutide (Drucker et al., 2010). Exenatide extended-release

(exenatide-LAR) was the first approved once-weekly GLP-1 receptor

mimetic in 2012, followed by albiglutide, dulaglutide and semaglutide

(Dhillon, 2018), with lixisenatide also gaining approval in 2016 as

another once-daily administered drug option (Heimbürger

et al., 2019). It should however be noted that albiglutide was globally

withdrawn from the market in July 2018 for economic reasons. None-

theless, all these GLP-1 have proven clinical effectiveness, but each

requires parenteral administration due to peptidic nature of GLP-1,

with obvious patient compliance issues. To date, liraglutide is the only

GLP-1 mimetic approved for the treatment of obesity, albeit at a

slightly increased dose than that used for diabetes therapy (Figure 4).

4.2 | Recent advance with GLP-1 receptor
mimetics

Semaglutide represents the most recently approved once-weekly for-

mulation, first gaining clinical approval in 2017. Semaglutide is com-

posed of human GLP-1 molecule with C-18 acylation at Lys26 and,

amino acid substitution of Ala2 with Abu2 to impart full DPP-4 resis-

tance and an additional Lys34 for Arg34 amino acid replacement

(Buckley et al., 2018). Collectively, these alterations result in a biologi-

cal half-life of approximately 7 days allowing for once-weekly adminis-

tration (Dhillon, 2018). More strikingly, recent advances in peptide

formulation and delivery led to the generation of a semaglutide drug

that that can be delivered orally. As such, oral semaglutide (Rybelsus)

was FDA approved in 2019 (with EMA approval in early 2020) as the

first non-injectable GLP-1 mimetic suitable for once-daily oral adminis-

tration in humans (Hedrington & Davis, 2019). Orally active

semaglutide is formulated with an absorption enhancer, namely,

sodium N-(8-[2-hydroybenzoyl] amino) caprylate (SNAC), to encourage

F IGURE 4 Clinically approved GLP-1 mimetics prescribed for the treatment of diabetes. Structural modifications of GLP-1 mimetics,
compared with native GLP-1, are highlighted in gold. Information on drug half-lives, dosage and date of initial approval is also included.
*Withdrawn from the market in 2018
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transcellular absorption of intact semaglutide through the gastric mem-

brane by causing a localised increase in pH (Buckley et al., 2018). This

represents a major milestone for GLP-1 therapeutics and will likely

herald further unprecedented progress in this field. As a monotherapy,

oral semaglutide promotes dose-dependent reductions in HbA1c and

weight loss (Aroda et al., 2019). Compared with injectable liraglutide,

oral semaglutide was equally effective at reducing HbA1c during a

26 week treatment regimen and actually exhibited superior efficacy

over liraglutide following 52 weeks treatment (Pratley et al., 2019).

Moreover, in a similar head-to-head comparison (SUSTAIN-10), oral

semaglutide was superior to liraglutide in reducing weight and HbA1c

but was associated with gastrointestinal adverse events (Capehorn

et al., 2020). In that regard, gastrointestinal tract-related side effects

associated with oral semaglutide resulted in 6%–7% of patients

discontinuing during these trials (Aroda et al., 2019; Pratley

et al., 2019), but this is similar to other previously approved GLP-1

mimetics. Further to its clinical use in diabetes, once-weekly injection

of 2.4 mg semaglutide has shown significant promise as an anti-obesity

agent by reducing body weight by up to 15% in overweight adults

(Wilding et al., 2021). Additional clinical trials, namely, PIONEER

11 and PIONEER 12, are currently ongoing to assess the safety and

efficacy of oral semaglutide monotherapy or when combined with

sitagliptin respectively, with data expected in 2021.

Other recent notable advances in the area of GLP-1 therapy

relate to simultaneously supplementing GLP-1 receptor signalling with

activation of receptors for related hormones, which exhibit comple-

mentary mechanisms of action (Irwin & Flatt, 2009a). The most obvi-

ous companion for GLP-1 in this regard is its sister incretin hormone

GIP (Stumvoll & Tschöp, 2018). Thus, like GLP-1, GIP exhibits promi-

nent glucose-dependent insulinotropic actions in addition to numer-

ous other beneficial extrapancreatic glucose-lowering actions (Irwin &

Flatt, 2015). Initially, the hypoglycaemic effectiveness of GIP was

believed to be severely impaired in patients with type 2 diabetes

mellitus (Nauck, Heimesaat, et al., 1993), with preclinical studies in

animal models of diabetes revealing limited additive positive effects

of combination therapy using long-acting, enzymatically stable GIP

and GLP-1 compounds (Irwin, McClean, Cassidy, et al., 2007; Irwin,

McClean, & Flatt, 2007). However, clinical studies clearly demon-

strated that GIP insensitivity in type 2 diabetes mellitus is

surmountable (Højberg et al., 2009), suggesting potential for additive

antidiabetic benefits of GIP alongside GLP-1 in humans. This area of

research was ultimately brought to the fore by the generation of sin-

gle peptide molecules capable of co-activating GIP and GLP-1 recep-

tors, dubbed the dual-acting ‘twincretin’ unimolecular drugs (Finan

et al., 2013; Gault et al., 2013). One such dual-acting drug developed

by Lilly, namely, tirzepatide, with bias towards the GIP receptor (over

GLP-1 receptor (Coskun et al., 2018), is currently in Phase 3 clinical

trials. In this regard, tirzepatide appears to exert remarkable positive

effects on glycaemic control and body weight loss in type 2 diabetes

mellitus, with benefits well beyond that observed in patients treated

with GLP-1 receptor mimetic therapy alone (Frías, 2020).

Interestingly, there is also a suggestion that inhibition of GIP

receptor signalling can induce benefits in obesity and related diabetes

(Irwin & Flatt, 2009b). As such, activation of GIP receptor leads to

accumulation of lipids in peripheral tissues (Irwin et al., 2020). It

follows that blockade of GIP receptor action could counter insulin

resistance and improve metabolic status through prevention of fat

deposition. Indeed, a recent observation reveals that sustained GIP

receptor agonism actually leads to desensitisation of the GIP receptor

to impart metabolic benefits (Killion et al., 2020). The therapeutic ben-

efits of combined GLP-1 receptor agonism and GIP receptor antago-

nism have also been investigated, with largely positive outcomes

observed in preclinical studies (Irwin et al., 2009; Killion et al., 2018).

Encouragingly, several other dual-, or even triple-acting, compounds

with a GLP-1 backbone have been produced, and many of these

reveal clear metabolic benefits over GLP-1 receptor agonism alone

(Bhat et al., 2013; Hasib et al., 2018; Irwin et al., 2015; Jall

et al., 2017; Khajavi et al., 2018; Pathak et al., 2018). In brief, it

appears that combinatorial unimolecular therapies, which incorporate

GLP-1 receptor benefits together with the metabolic advantages of

other related gastrointestinal tract-derived hormones, have

unmistakeable therapeutic potential for obesity, diabetes and beyond.

5 | CLOSING REMARKS

It is somewhat hard to fathom that a single gut-derived hormone like

GLP-1 can exert such significant beneficial actions across multiple

organ systems, with clear therapeutic potential. Correctly utilising this

hormone to take full advantage of all such biological actions has the

potential to treat multiple pathologies and provide benefit to many

patients. To date, approval for use of GLP-1 mimetics has only be

gained in diabetes and obesity. However, additional positive effects of

GLP-1 receptor activation in the gastrointestinal tract, liver, bone and

kidney as well as the reproductive, cardiovascular and central nervous

systems, whether direct or indirect, suggests further readily exploit-

able clinical potential. Finally, significant advancements in the pharma-

ceutical development of GLP-1-based drugs, leading from initial

generation of injectable short- and long-acting mimetics to now orally

active GLP-1 receptor ligands, opens up the therapeutic benefits of

this class of drugs to a much wider cohort of patients. It is clear that

GLP-1 receptor mimetics have had a dramatic and positive impact on

diabetes and obesity treatment regimens within a relatively short time

period, and we await further progress on the therapeutic utility of

GLP-1-based drugs with real optimism. This may ultimately involve

exploitation with other metabolically active gut hormones in the form

of unimolecular dual or triple acting receptor agonists.

5.1 | Nomenclature of targets and ligands

Key protein targets and ligands in this article are hyperlinked to

corresponding entries in the IUPHAR/BPS Guide to PHARMACOL-

OGY http://www.guidetopharmacology.org and are permanently

archived in the Concise Guide to PHARMACOLOGY 2019/20

(Alexander et al., 2019).
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