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Sepsis-associated encephalopathy (SAE) is a cognitive impairment associated

with sepsis that occurs in the absence of direct infection in the central nervous

system or structural brain damage. Microglia are thought to bemacrophages of

the central nervous system, devouring bits of neuronal cells and dead cells in

the brain. They are activated in various ways, and microglia-mediated

neuroinflammation is characteristic of central nervous system diseases,

including SAE. Here, we systematically described the pathogenesis of SAE

and demonstrated that microglia are closely related to the occurrence and

development of SAE. Furthermore, we comprehensively discussed the function

and phenotype of microglia and summarized their activation mechanism and

role in SAE pathogenesis. Finally, this review summarizes recent studies on

treating cognitive impairment in SAE by blocking microglial activation and toxic

factors produced after activation. We suggest that targeting microglial

activation may be a putative treatment for SAE.

KEYWORDS

sepsis-associated encephalopathy (SAE), sepsis, microglia, cognitive impairment,
inflammatory factors
Introduction

According to expert consensus guidelines in 2016, sepsis is defined as a life-

threatening organ dysfunction caused by the dysfunctional response of the body to a

pathogenic infection (1). Brain dysfunction caused by sepsis is not associated with direct

brain infection (2, 3) and occurs in approximately 70% of patients with sepsis (4, 5).

Sepsis-associated encephalopathy (SAE) is a cognitive impairment associated with sepsis
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resulting in diffuse brain dysfunction without direct central

nervous system infection or structural brain damage. Sepsis -

associated encephalopathy may be the first symptom of sepsis

(6), which is likely to have occurred before patients with sepsis

were admitted to general wards and intensive care units (ICU)

(6, 7). In an established murine model of sepsis, acute

encephalopathy followed by long-term cognitive impairment,

could be observed in the surviving mice (8). This long-term

cognitive impairment was observed in more than half of the

survivors, and their quality of life was significantly decreased (9).

Although attention has been brought to the harm caused by SAE,

its pathogenesis remains unclear. There is a lack of clear diagnostic

criteria and effective treatment measures. The SAE diagnostic criteria

are based on the detection of electroencephalogram (EEG)

abnormalities (10), cognitive impairment, and neuroimaging

evaluation (6, 7). SAE onset is characterized by changes in the

mental state that may range from delirium to coma. A wide range of

neurological changes can be observed, such as impaired cognitive

function and consciousness, inattention, personality changes, and the

onset of depressive mood. Some patients have occasional tremors,

stiffness, and EEG deviations (10, 11). Abnormal EEG waveform is

related to the presence and severity of encephalopathy (12).

Neuroinflammatory processes involve damage to the blood-brain

barrier, pathways of inflammatory mediators, and activation of

microglias, which amplify this process by releasing more

inflammatory factors (13). Sedation is not a viable treatment owing

to the complex pathophysiology of SAE (4, 14).

Therefore, the pathogenesis and pathophysiology of SAE

must be comprehensively investigated to develop effective

treatment measures to reduce the incidence of SAE and

improve the quality of life of survivors. In this review, we

describe the pathogenesis of SAE and demonstrate that

microglia are closely related to the pathogenesis of SAE.

Simultaneously, we systematically investigated the critical role

of microglia in SAE, focusing on the phenotype, state, and

function of microglia. Furthermore, we summarized the effects

of inhibiting microglial activation or toxic factors after activation

to alleviate cognitive impairment in SAE in recent years. Thus, it

is reasonable to envisage SAE treatment by targeting microglia.
Mechanism of sepsis-associated
encephalopathy

The pathophysiological mechanisms of SAE, including various

factors such as endothelial injury, inflammation, cerebral ischemia,

blood-brain barrier (BBB) injury, and excitatory toxicity, remain

unclear. Neuroinflammatory reactions, cerebral ischemic changes,

and excitatory toxicity are common manifestations of severe sepsis

(15). The comprehensive summary of several pathogenic

mechanisms underlying SAE underscored the crucial role of

microglia in these processes.
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Neuroinflammation

During sepsis, inflammatory factors and signals reach

different regions of the brain through various means, such as

body fluids and nerves (16). Neuroinflammation plays a vital

role in the pathogenesis of SAE, as uncontrolled inflammatory

responses are the main manifestations of sepsis. Additionally,

neuroinflammation is the primary cause of brain dysfunction

and apoptosis in brain cells (17).

When pro-inflammatory cytokines enter the brain,

microglia are activated to release nitric oxide (NO), active

nitrogen, and glutamate, further causing structural damage

and inflammation of the cell membranes. Increased

peroxynitrite production in the brain under the influence of

NO and free radicals may affect brain cell function, further

affecting glial cells, neurons, and the blood-brain barrier, leading

to SAE-induced brain dysfunction (18–21). In vivo pro-

inflammatory mediators promote the expression of brain

endothelial cell adhesion molecules and active transport across

the BBB through specific receptors, further promoting the entry

of neurotoxic and inflammatory factors into the brain tissue (22–

24). Pro-inflammatory cytokines that affect the brain include

interleukin-1a (IL-1a), IL-1b, IL-6 (25, 26), and high mobility

group box-1 protein (HMGB1). Tumor necrosis factor (TNF)

passes through the BBB via tumor necrosis factor receptor 1

(TNF-R1) and TNF-R2 (27). As TNF is directly associated with

BBB destruction, brain edema, neutrophil infiltration, astrocyte

proliferation, and brain cell apoptosis, TNF may be a crucial

mediator of SAE, and these manifestations do not occur in mice

lacking the TNFR gene (28). In animal models, TNFR, IL-6, and

IL-1 receptors antagonists (IL-1RA) are inversely associated with

memory, suggesting that inflammatory factors are closely

associated with cognitive impairment (29). In the later stages

of sepsis, HMGB1 levels significantly increase in different brain

regions (30). Antagonistic HMGB1 in the blood and brain

regions can improve SAE by preventing damage to the brain

cells and restoring neural cognitive function. This suggests that

inflammatory cytokines are vital for the pathogenesis of SAE

(30–32).
Changes in cerebral ischemia
and perfusion

In the pathological mechanism of sepsis, changes in blood

flow and inflammatory responses may be critical steps in SAE

development (33, 34). Impaired cerebral circulation during sepsis

can lead to insufficient cerebral blood flow, which may be

associated with electrophysiological and neurological changes

(35, 36). Inadequate cerebral blood flow can lead to a cascade of

cerebral ischemia which is controlled by three main processes: the

reduction of oxygen and energy delivery (37), enhancement of

stress signals (38), and activation of microglia (39). A decrease in
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energy supply can cause mitochondrial dysfunction, resulting in

neuronal apoptosis and the release of pro-inflammatory cytokines

(40). The increase of stress signals leads to the expression of

adhesive molecules, which enhance the expression of matrix

metalloproteinases (MMPs) signaling, which is related to an

increase BBB permeability (41). Peripheral immune cells

migrate to the brain and promote neuroinflammation (42, 43).

Microglia can protect neurons to a certain extent as well as

produce pro-inflammatory factors that cause neuronal

apoptosis. Hemodynamic changes precede cognitive impairment

and structural changes in the brain (14, 44, 45). Studies have

shown that a continuous decrease in cerebral blood flow in

patients with septic shock leads to impaired self-regulation and

is associated with the onset of delirium (46). Neurovascular

dysfunction is highly associated with decreased language and

memory (47, 48). Maintaining the integrity of blood vessels in

the brain is vital for cognitive function (34).
Neurotransmitter dysfunction

During sepsis, the dopaminergic,b-adrenergic, GBAB receptors,
andcholinergicnervous systemsare impaired to a certain extent (15).

An imbalance between the dopaminergic and cholinergic nerves is

associatedwith cognitive impairment (49).This is related to theonset

of SAE. Increased releaseofneurotransmitters, suchasglutamateand

acetylcholine, and reduced reuptake is one of the causes of

neurotoxicity (50). Glutamate plays a role in neuronal apoptosis

via excitatory toxicity (51). NO production may be related to

neurotransmission disorders (52) or the excessive release of

neurotoxic amino acids, such as ammonia, tyrosine, and

tryptophan, into circulation by the liver and muscles during sepsis

(53). Microglia express multiple neurotransmitter receptors,

including glutamate, tyrosine, and acetylcholine. They also release

glutamate, which induce neuronal apoptosis. Microglia

communicate with each other and work together to regulate

neuronal function.
Disruption of the blood-brain barrier

The entry of aromatic amino acids into the brain through the

damaged BBB leads to increased uptake of these amino acids by

the brain (54), which further causes SAE, leading to an altered

mental state (55). The BBB plays a vital role in stabilizing the brain

milieu and maintaining adequate neural function by regulating

the movement of ions and fluids between the blood and brain,

thereby providing certain nutrients to the brain (56–58). The

barrier also prevents external white blood cells from entering the

central nervous system and playing an immunogenic role in the

brain (59). Increased expression of complement activation,

inflammatory cytokines (60, 61), and adhesion molecules
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further increase BBB destruction and helps white blood cells

enter the brain, enhancing neuroinflammation.

During sepsis, inflammatory cytokines enter the central

nervous system through various pathways, including receptor-

mediated transcellular action, transcellular diffusion, and carrier

proteins (62, 63).Proinflammatory cytokines such as IL-1b, IL-6,
and lipopolysaccharide, reactive oxygen species, and NO act on

BBB to alter brain function, resulting in the disruption of brain

homeostasis and changes in BBB permeability (64–66). These

inflammatory factors enter the brain tissue and activate microglia

(49). Prior to the change in BBB permeability, microglia begin to

migrate to the cerebrovascular site and respond to the surrounding

inflammatory factors, which play a certain protective role in the

BBB in the early stage (67). However, further inflammation leads to

a more active microglial phenotype, increased phagocytosis of

astrocyte terminal feet, and increased BBB permeability. Microglia

can decrease paracellular connexins expression and further

enhance BBB permeability.

Overall, the pathogenesis of SAE is not caused by a single

factor but by the joint action of multiple factors. (Figure 1)

Microglial activation is essential in the pathogenesis of SAE. It is

involved in almost every stage of SAE pathogenesis. Moreover, it

interacts with various central nervous system components and

plays a vital role in maintaining brain function and integrity.

Furthermore, it is closely associated with cognitive dysfunction

in central nervous system diseases; therefore, we will focus on the

relationship between microglia and cognitive dysfunction in

different nervous system diseases.
Function, phenotype, and the role of
microglia in SAE

Microglia play a vital role and are closely related to SAE

pathogenesis. Therefore, we focused on the function, phenotype,

and phenotypic transformation of microglia. Finally, the

activation of microglia and their role in SAE development are

highlighted in this section.
Function of microglia

Microglia are the primary immune cells in the brain

parenchyma and differ from other macrophages in the brain

(68). Studies of ApoE4 alleles showed that microglia play an

important role in neurodegenerative diseases. E4-expressing

microglia showed higher innate immune reactivity after LPS

treatment, significantly reduced neuronal activity, and secreted

more elevated levels of TNF when co-cultured with neurons

(69). Microglia perform some critical functions in the brain (70)

synaptic genesis, modification, and plasticity changes (71); (2)

detection of local steady state (72); (3) immune function,
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including phagocytosis, antigen presentation, secretion of anti-

inflammatory (such as IL-10, IL-4) and pro-inflammatory (such

as IL-1b, IL-6) cytokines, and regulation of neuronal apoptosis

(73); (4) regulation of myelin sheath (74); (5) neurotrophic
Frontiers in Immunology 04
support (75); and (6) communicate with astrocytes to

regulate these functions (76). (Figure 2) Furthermore,

microglia are involved in synapses and neurogenesis, as well as

in the removal of unwanted neuronal and other cellular
FIGURE 2

Microglia perform functions in the central nervous system.
FIGURE 1

Proinflammatory cytokines, such as IL-1a, IL-1b, IL-1, and HMGB1, pass through the BBB through different receptors and activate microglia,
which further damage the BBB by releasing inflammatory factors, causing an inflammatory cascade. At the same time, microglia release ROS
and NO, causing damage and even apoptosis of neurons in the brain.
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waste. Monitoring the changes in the brain microenvironment

suggested that microglia alter both in shape and function

through microglial activation (77).

Microglia exist in resting and active states (78). In dynamic

homeostasis, microglia secrete neurotrophic factors and monitor

the microenvironment with scavenger receptors (SR) to remove

unnecessary cell debris and apoptotic neurons, thus further

maintaining the homeostasis and connection of neuronal

functions (72, 79). Microglia in dynamic equilibrium are rod-

shaped with many forked processes (73). Although they are in

equilibrium, they still monitor the state of their microenvironment

and surrounding tissues to acutely alert them to abnormal signals.

The morphology of microglia changes significantly after activation,

the cell body is enlarged, and the process is shortened (68). The

status of microglia can be assessed by their movement and

morphology in different environments (77).
Microglial phenotypes

Under different microenvironments, microglia undergo produce

phenotypic changes, including the M1 pro-inflammatory, M2 anti-

inflammatory and other phenotypes (75, 80). M1 microglia can lead

to neuroinflammation and neuronal apoptosis, whereas M2

microglia can protect neurons and repair brain tissues. M1 is

generally activated by interferon-g (IFN-g) and lipopolysaccharide

(LPS) to produce IL-6, and CC-chemokine ligand 2 (CCL2), which
Frontiers in Immunology 05
ultimately leads to neuronal damage and even apoptosis (68, 81). M2

microglia are generally induced by anti-inflammatory cell mediators,

including IL-13 and IL-3. It produces IL-10 and neurotrophic factors

to repair brain tissue and neurons (68, 75). (Figure 3)

Microglia can change their phenotype from M1 to M2 in the

following ways (82): (1) different signaling pathways, such as the Toll-

like receptor signaling pathway (83), Janus kinase/signal transducer

and activator of transcription (JAK/STAT) signaling pathway (84,

85), NF-kb signaling pathway (86, 87), and mitogen-activated

protein kinase signaling pathway (88); and (2) regulatory

transcription factors, such as PPAR-g (89), which exert anti-

inflammatory effects by inhibiting NF-kb, STAT, and other

transcription factors. These transcription factors are closely

associated with microglial polarization into type M1, a

transcription pro-inflammatory factor. Inhibition of these factors

increased the polarization ofmicroglia fromM1 toM2; (3) regulation

of microglial surface receptors, such as TREM2 (90)and a7 nicotinic
acetylcholine receptor (a7nAChR) (91); (3) regulation of different

cytokines, such as IL-4 (92), IL-10, TGF-b (75), neurotrophic factor;

(5; change in channels (93); (6) bioactive compounds and certain

drugs (94–96). The transformation of microglia from the M1 to M2

phenotype is not caused by a single process described in this section

but by a combination of several different mechanisms.

Microglial activation damages nearby healthy brain tissue,

while the affected nerve tissue may secrete substances that, in

turn, promote microglial activation. The activation of microglia by

chronic inflammation in the human body increases the occurrence
FIGURE 3

Most microglia can be divided into two opposite types: classical (M1) or alternative (M2). M1 microglia release inflammatory mediators, such as
IL-6 and CCL2, which induce inflammation and neurotoxicity. M2 microglia release anti-inflammatory mediators, such as IL-10 and
neurotrophic factor, which induce anti-inflammatory and neuroprotective effects.
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of synapses, resulting in enhanced phagocytosis and neuronal

apoptosis (97). Microglia, supported by neurotrophic factors,

contribute to the formation of synapses associated with learning

and memory, which are implicated in cognitive function (98).
Microglia in CNS-related cognitive
impairment

Microglial dysfunction, which affects the structure and function

of the brain, is associated with almost all brain diseases, including

neurodegenerative diseases (such as Alzheimer’s disease [AD], stroke,

and Parkinson’s disease), as well as inflammatory brain diseases (99,

100), that can cause long-term cognitive impairment (97).

Microglia are carriers of amyloid precursor protein and

promote Ab production in rat brain tissue, which is closely

related to AD (101). Microglia can bind to Ab by expressing the

corresponding receptors CD36, TLR2, and TLR4, induce the

release of IL-1b, and trigger neuroinflammation (102). In AD

mouse models, TLR and IL-1b deficiency can reduce Ab
deposition and prevent cognitive impairment (102). Datta et al.

believed that in neurodegeneration after stroke, an increase in

misfolded proteins and microglial activation can be found in the

thalamus, leading to neuronal loss and further deterioration of

cognitive function (103). Activation of microglia and increased

pro-inflammatory factors are also important mechanisms in

Parkinson’s disease (PD) (104, 105). Microglia were significantly

active in the substantia nigra pars compacta in the PD murine

model, and the secretion of inflammatory cytokines in this region

was also significantly enhanced. These inflammatory cytokines can

cause neuronal damage and even apoptosis (106) and lead to the

degeneration of dopaminergic neurons (107), resulting in cognitive

dysfunction. Simultaneously, the function of microglia declines

with the increase age (68). The immune receptor expression is

increased along with the release of more neurotoxic substances,

which goes hand to hand with neurodegenerative diseases (108–

110). These studies suggest that the activation of microglia is one of

the crucial links in the pathogenesis of AD, stroke, and PD (105,

106, 111). Notably, we also observed that microglial activation was

strongly associated with cognitive impairment in patients.

Microglia play a vital role in the pathogenesis of

neurodegenerative diseases and in infectious encephalopathy.

In studies of viral encephalitis diseases (77) (such as Japanese

encephalitis, West Nile and Zika viruses), INF-g induced

microglial activation, then produced different inflammatory

signals such as IL-1, and IL-6, which can directly cause

neurotoxic lesions. It can also lead to cognitive impairment

and neuronal over-firing (112–114).

Treatment of intracranial malignant tumors targets cancer

cells and leads to the activation of microglia, which changes from a

neurotrophic to neurotoxic state (115). In a glioma mouse model,

cognitive impairment is associated with microglial activation

induced by repeated cranial irradiation rather than the tumor
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itself (116). These findings suggest that microglial activation can

lead to cognitive dysfunction in central nervous system diseases.
Microglia in SAE

After activation, microglia can cause neuron injury or even

apoptosis by releasing inflammatory mediators, reactive oxygen

species, neurotransmitters and other substances, which play an

important role in the pathogenesis of SAE (Fig 1). Chemokines and

inflammatory cytokines secreted by microglia can help the brain

defend against inflammatory responses, regulate the migration of

white blood cells, and facilitate the repair of neurons in brain tissue

(117). However, long-term microglia activation has a minimal

protective effect on neurons and further worsen the inflammatory

response in the brain. The most common SAE models are divided

into two types: intraperitoneal injection of LPS and caecal ligation

perforation (CLP) (118, 119). An increase in the number of ED-1-

positive microglia was observed 24 h after establishing an SAE

mouse model by LPS injection. They are distributed around the

cerebrovascular system and around the parenchyma. Most

microglia are reportedly distributed around cerebral vessels 4h

after LPS injection. The extent of microglial activation was time-

dependent, and the highest microglia numbers were observed at 8h

in all brain regions (20, 120). The production of TNF was induced

by LPS stimulation in vitro (121). LPS strongly stimulates microglia

activation, and disordered activation of microglia during SAE may

lead to further deterioration of already damaged brain tissue (119,

122). The establishment of CLP model showed a significant

increase in the size and number of microglial processes by

immunofluorescence (121). Simultaneously, the SAE model

established by CLP can also cause microglial overactivation and

neuronal pyroptosis, aggravating brain tissue destruction and

cognitive dysfunction (118).

Peripheral circulating inflammatory factors induce immune-

related responses in the central nervous system through various

pathways, including inflammatory mediators (42, 49), adjacent

cells (123, 124), and neurotransmitters (49, 125), which may be

strongly linked to the role of microglia in sepsis. In particular,

microglia are activated through the pathways discussed earlier,

resulting in neuronal damage and even apoptosis, further

leading to SAE.

As described above, microglial activation is strongly

associated with the occurrence of SAE. Microglia can

recognize various damage signals, including microorganisms,

complements, and cytokines. They are thought to injury to the

central nervous system (126). Microglia are activated by bacteria

and other substances through Toll-like receptors (TLR-2, TLR-4,

and TLR-9) and nucleotide-binding oligonucleotide 2 (NOD2)

(42). Simultaneously, inflammatory cytokines such as IL-1b and

IL-6 activate microglia through the damaged BBB, leading to

brain cell destruction and even apoptosis during sepsis (49). IL-

17A/IL-17R signaling pathway forms a vicious inflammation
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cycle and amplifies the role of inflammation in the brain by

promoting the secretion of inflammatory factors by microglia

and intensifying IL-17A secretion by immune cells (42, 125).

Adjacent cells, such as astrocytes, endothelial cells, and Th1/

Th17 cells, have regulatory effects on microglia. Astrocytes

attach to vascular endothelial cells or via meningeal cells in

peripheral blood vessels and express multiple cytokine receptors

that enable astrocytes to respond to inflammation (123).

Microglia are activated by bacteria and other substances

through cytokines secreted by astrocytes, such as granulocyte

colony-stimulating factor (G-CSF) and CCL11. G-CSF is a

microglial growth factor, and CCL11 can promote microglial

migration to inflammatory sites, causing microglia to produce

reactive oxygen species, resulting in the destruction and even

apoptosis of brain cells (123). Astrocytes activate microglia and

induce apoptosis of brain cells as well as produce anti-

inflammatory substances that inhibit inflammation in the central

nervous system (127). CX3CR1 is a chemokine and

transmembrane protein that promotes leukocyte migration in

monocytes, dendritic cells, and microglia (128). CX3CR1 is a

receptor for CX3CL1; the interaction between CX3CL1 in

neurons and CX3CR1 in microglia mediates the functional

phenotype of microglia and its overactivation under

inflammatory conditions. Increased CX3CL1 expression on

endothelial cells activates endothelial cells and promote increased

leukocyte adhesion, microthrombus formation, coagulation

disorders, and metastasis of microglia to inflammatory sites (124,

125). Th1/Th17 cells produce large amounts of IL-17A in the

brain, inducing microglial activation and prolonging inflammatory

processes (43). Microglia express receptors for various

neurotransmitters, including glutamate and acetylcholine, and

communicate with each other to maintain normal neuronal

function (129). During sepsis, an imbalance in the expression of

different types of neurotransmitters, such as glutamate and

acetylcholine, affects the function of microglia and neurological

function. Activated microglia can produce several inflammatory

factors around the cerebrovascular or cerebral solid, leading to an

enhanced brain immune response, further causing neuronal

damage, loss of function, and even apoptosis (130, 131).

Previous studies have shown that in case-control studies of

patients who died of sepsis, CD68 expression was significantly

elevated in the cortex of the experimental group compared to that

in the control group, and deformed microglial cells were also

observed (132, 133). Activated microglia can induce neurological

dysfunction and memory loss in patients with sepsis by releasing

pro-inflammatory cytokines and including the expression of

related enzymes (134). Microglia regulate neuronal function

through neurotransmitters levels. In a postmortem case-control

study of patients with delirium, the expression of microglial

markers CD68 and HLA-DR were significantly increased

compared to that in the controls, suggesting that microglial

activation may be associated with delirium (135). Microglial

activation has also been detected during sepsis (136–138).
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During sepsis, intraventricular injections of minocycline inhibit

microglia and reduce acute brain injury, inflammation, and long-

term cognitive impairment in survivors (139).

Therefore, when activated microglia sense surrounding

injury signals, the cells may be more prone to release several

inflammatory cytokines, resulting in cognitive dysfunction and

exacerbation of SAE. Further exploration of the role of

microglial activation in SAE cognitive dysfunction can deepen

our understanding of the pathogenesis of SAE and may provide

evidence for the treatment of SAE.
Targeting microglia to treat SAE
cognitive impairment

The activation of microglia, as a central link in the development

of cognitive deficits in sepsis-associated encephalopathy, could

represent an effective therapeutic target (140). Several studies have

shown that blocking microglia activation or alleviating a series of

neurotoxic reactions after microglia activation can improve

neurological symptoms and long-term cognitive dysfunction to a

certain extent (42, 139, 141). Based on this concept, we have

summarized the potential value of targeting microglia in

diagnosing and treating of SAE cognitive impairment.
Prevents microglial activation

Inflammatory mediators, neurotransmitters, and intercellular

interactions with surrounding cells accelerate microglial activation

(125). Once activated, inflammatory factors, reactive oxygen

species, NO, prostaglandins, and neurotoxic glutamate continue

to act on the neighboring neurons, causing neuronal damage and,

ultimately, cognitive impairment (15, 142). Therefore, early

identification and prevention of microglial activation are crucial.

Aseptic neuroinflammation caused by circulating inflammatory

mediators in the brain has long been accepted as the pathogenesis of

SAE. However, a study on the intestinal flora in septic

encephalopathy found that in the absence of evident sepsis, the

bacteria temporarily translocate to the brain and cause microglial

activation and neuroinflammatory responses (121). Activation of

the host immune mechanism may cause persistent cognitive

dysfunction. Therefore, early attention to specific microbiota may

later improve cognitive dysfunction (121, 143). A recent study by

Zhang et al. (143) demonstrated for the first time the exact

relationship between gut microbiota and its metabolite butyric

acid and SAE. SAE mouse models of different severity were

constructed by CLP and fecal microbiota transplantation(FMT)

was performed on sterile mice, confirming the significant role of the

gut-brain axis in SAE. In particular, butyrate has been found to

reduce oxidative stress response and nerve damage through the

GPR109A receptor on microglia and the Nrf2/HO-1 signaling
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pathway. Furthermore, recent sequencing analysis of microglia and

brain endothelial cells revealed endotheliitis as the earliest microglial

activation event. Microglia are activated by cerebral endothelial cells

(CECs)-derived inflammatory mediators. Therefore, early

recognition and blocking of CECs activation can also reduce

microglial activation and subsequent reactions (144).

Sirtuins have been widely studied as long-lived proteins

(145, 146). Sirt3 is a mitochondrial enzyme that plays a vital

role in the metabolic cycle and participates in the regulation of

apoptosis. High levels of Sirt3 were detected in LPS-induced

mouse microglia. In contrast, the Sirt3 levels decreased after

treatment with Single-wall carbon nano horns (SWNHs), which

delayed the mitosis of microglia and promoted their apoptosis.

Therefore, SWNHs may be a therapeutic approach to inhibit

microglial activation by blocking Sirt3 (147). Another study used

resveratrol (a SIRT1 activator) to induce SIRT1 overexpression,

which plays an important role in inflammatory regulation,

inhibiting microglial activation and proliferation, as well as

inflammatory processes in SAE mice (148). Shi et al. (149)

observed that SIRT1 regulates oxidative stress in hypoxic and

glucose-deficient hippocampal neurons and has a protective

effect on nerve cells after oxygen and glucose deprivation

(OGD). These studies have revealed the crucial role of SIRT1

in microglial activation and neuronal protection.

TLR4, an immune recognition receptor, is highly expressed in

LPS-induced microglia and is closely associated with

neuroinflammation through a cascade of downstream pathways

after activation (150, 151). The exposure TLR4 to G+ bacterial LPS

activates a series of downstream proteins, one of which ultimately

activates NF-kb, initiating transcription and producing a pro-

inflammatory effect. In septic mice treated with sodium butyrate

(NaB), activation of hippocampal microglia and secretion of

inflammatory factors were reduced, and improvements in

neuroinflammation and anxiety were observed. The mechanism

underlying these benign results is due to NaB antagonization of

TLR4 activation, consequently inhibiting subsequent nuclear

transcription (152). Protein kinase C-interacting protein (PICK1)

is the most abundant protein in the brain and plays a unique role in

the progression of many neurological diseases. In addition, PICK1

is involved in several inflammatory pathological processes (153,

154). Wang et al. observed overactivated microglia, TLR4 pathway,

and PICK1/TLR complex in an SAE mouse model with a PICK1

knockout. However, PICK1 levels were not significantly altered in

LPS-induced sepsis mice. They demonstrated for the first time that

PICK1 plays a protective role in SAE by forming a complex with

TLR4 (144). Another study used electroacupuncture to improve

neural function, possibly by increasing the PICK1/TLR4 complex

in microglia to provide protection (155).

IL-17A is reportedly involved in this acute cycle of microglial

activation. Adjacent cells, such as CD4+T cells and Th17 cells,

secrete IL-17A, and act on the surface receptors of microglia,

thereby activating them. Activated microglia secrete several

inflammatory factors, including IL-17A, which undoubtedly
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aggravate microglial activation (156, 157). By injecting

recombinant IL-17A, anti-IL-17A antibody, and anti-IL-17R

antibody into CLP mouse models, Ye et al. (42) revealed the

potential role of IL-17A/IL-17R blockade in preventing SAE.

Blocking the activation of SAE microglia by blocking

inflammatory factors, signaling pathways, and other pathways

is of great significance for the early prevention of SAE cognitive

impairment. Further studies are warranted in this regard.
Reduce neuronal injury after activation
of microglia

Once microglia are activated, their neurotoxic effects

accelerate the progression of SAE and are strongly associated

with long-term cognitive impairment (140). Survivors of sepsis-

associated encephalopathy are at a higher risk of developing

dementia, and long-term cognitive impairment is considered a

transitional state before the onset of dementia (158). Therefore,

improving cognitive impairment is essential for the outcome of

patients with SAE, and this process can be achieved by reducing

the neurotoxicity of activated microglia. Based on this

pathogenesis, we believe that inflammation, oxidative stress,

apoptosis, and immune response can reduce microglial

neurotoxicity and improve cognitive impairment. Memory

disorders are mainly dominated by neuroinflammation in the

hippocampus, and IL-1 b levels are negatively correlated with

the severity of memory disorders (159). Activated microglia can

release many cytokines including IL-1b. Therefore, regulating
the inflammatory response after activation of microglia may play

a role in improving a range of cognitive disorders such as

memory impairment.

Water maze and fear conditioning tests were performed on

SAE mice constructed by cecal ligation and perforation (CLP).

Impaired learning and memory functions were observed,

whereas C-X-C chemokine receptor type (CXCR) 5 expression

was upregulated. When CXCR5 was knocked out, cognitive

deficits and M1 polarization were reversed, and similar results

were observed in primary microglia in vitro. Downregulation of

CXCR5 reduces the pro-inflammatory microenvironment in the

hippocampus, which may be a potential therapeutic target (160).

Previous studies have shown that inflammasome activation is

essential in SAE, with NOD, LRR and pyrin domain-containing

prote in 3 (NLRP3) inflammasome being the most

representative. Resveratrol inhibits the NLRP3/IL-1b axis of

microglia, reduces hippocampal inflammation, and improves

spatial memory in SAE mice (161). In another study, treatment

with ethyl pyruvate significantly reduced cognitive impairment

in CLP mice by inhibiting NLRP3 and inducing IL-1b cleavage

(162). In conclusion, inhibition of NLRP3 can potentially

improve cognitive impairment in SAE.

Stanniocalcin-1 (STC-1), a neuroprotective protein, plays an

anti-inflammatory and antioxidant role by inducing the uncoupling
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proteins (UCPs). Injection of recombinant human STC-1 (rhSTC1)

inhibited microglia production of pro-inflammatory factors and

improves cognitive impairment (163). Moreover, the positive effects

of NOS2 gene deletion and propofol inhibition of NMDA receptors

on cognitive impairment in sepsis-associated encephalopathy are

achieved by inhibiting microglial inflammation (134, 164).

Activating the nuclear factor erythroid 2-related factor 2 (Nrf2)

signaling pathway is beneficial to SAE. In addition to mediating the

inactivation of NLRP3 and playing an anti-inflammatory role, Nrf2

acts as an endogenous antioxidant and plays a neuroprotective role

(165). H2 protects neurons from activated microglia by

upregulating the Nrf2 pathway and antagonizing oxidative stress

(166). In an experiment on the effect of ginsenoside on SAE, it was

found that ginsenoside inhibited oxidative stress and apoptosis, and

the mechanism was related to the upregulation of Nrf2 and heme

oxygenase-1(HO-1) (167).

Collectively, reducing the toxic effects of microglial activation is

of great significance in treating cognitive impairment in sepsis-

associated encephalopathy. It provides a new idea to design a

treatment for SAE cognitive impairment by targeting various

pathways in microglia.
Conclusion

SAE is associated with increased mortality in patients with

sepsis and reduced quality of life in survivors; therefore, further

research is required to treat cognitive impairment in SAE. In this

review, we have provided a comprehensive overview of the

different functions and phenotypes of microglia, and their role
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in SAE pathogenesis. Notably, we summarized recent advances

in treating of cognitive impairment in SAE based on microglial

activation and the associated toxic effects of microglia activation.

We are confident that further research on microglia will provide

novel insights into the treatment of SAE.
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