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Many biological and physical systems exhibit behaviour at multiple spatial,

temporal or population scales. Multiscale processes provide challenges

when they are to be simulated using numerical techniques. While coarser

methods such as partial differential equations are typically fast to simulate,

they lack the individual-level detail that may be required in regions of low

concentration or small spatial scale. However, to simulate at such an individ-

ual level throughout a domain and in regions where concentrations are high

can be computationally expensive. Spatially coupled hybrid methods provide

a bridge, allowing for multiple representations of the same species in one

spatial domain by partitioning space into distinct modelling subdomains.

Over the past 20 years, such hybrid methods have risen to prominence, lead-

ing to what is now a very active research area across multiple disciplines

including chemistry, physics and mathematics. There are three main motiv-

ations for undertaking this review. Firstly, we have collated a large number

of spatially extended hybrid methods and presented them in a single coher-

ent document, while comparing and contrasting them, so that anyone who

requires a multiscale hybrid method will be able to find the most appropriate

one for their need. Secondly, we have provided canonical examples with

algorithms and accompanying code, serving to demonstrate how these

types of methods work in practice. Finally, we have presented papers that

employ these methods on real biological and physical problems, demonstrat-

ing their utility. We also consider some open research questions in the area of

hybrid method development and the future directions for the field.
1. Introduction
The requirement for multiscale models arises naturally from many biological

and physical scenarios due to their inherent complexity. However, modelling

such systems is often difficult using a single modelling paradigm. This is due

to the fine balance between acquiring results in a timely manner (efficiency)

and obtaining results that are consistent with the experimentally derived

knowledge or physical laws (accuracy). One such example is modelling the

release of calcium from the endoplasmic reticulum, and its subsequent move-

ment throughout the cell [1,2]. Calcium ions leave the endoplasmic reticulum

through ion channels which open or close depending on whether other calcium

ions have bound to receptors. The behaviour of calcium ions close to the recep-

tors can only be simulated using an individual-based method, as we require the

knowledge of the location of every particle. However, when the channel opens,

a large number of particles enter the cytoplasm of the cell. Keeping track of

all of these particles is computationally costly, leading to limitations on the

timescales that can feasibly be simulated using the fine-grained model alone.

This review will focus on four modelling scales. The first of these is the

macroscopic scale. This encompasses all models in which we make the assump-

tion of large copy numbers within the system, such as partial differential
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equations (PDEs) or stochastic partial differential equations

(SPDEs). In most cases, these continuum models can be simu-

lated extremely efficiently, but they are generally invalid for

low numbers of particles.

At the next finest scale is the mesoscopic scale. Typically,

models at this scale employ stochastic methods in which par-

ticles are compartmentalized into small subregions of the

domain, within which they are assumed to be well-mixed.

Particles can transfer between compartments, and interact

with other particles within their own compartment, accord-

ing to a Markov chain. Models at the mesoscale can be fast

to simulate with small copy numbers, but when these

become large, the method can become prohibitively slow.

On an even finer scale, we have microscopic models.

These simulate the trajectory of each particle in the system

(typically using a fixed time-step algorithm), requiring their

locations to be updated at each time step. Examples of

individual-based microsopic models include Brownian

dynamics [3,4] or Langevin dynamics [5]. These methods

can be very computationally intensive. For example, for a

system of N particles undergoing Brownian dynamics, at

each time step, we are required to generate dN Gaussian

random variables (where d is the dimension of the system)

in order to update the positions of the particles. In addition,

if pairwise interactions are necessary, the calculation of N2

pairwise distances is required. For large N this can be the

limiting step in the method. While costly, microscopic

individual-based dynamics allow for a high level of

modelling accuracy, which is often required.

On the very finest scale are molecular dynamics [6,7]. In a

typical molecular dynamics simulation, a large number of

particles (approx. 1010) with attributes of mass, momentum

and volume exclusion are simulated with an extremely

small time step (typically approx. 10215 s). The position and

velocity of all particles are updated according to deterministic

equations specified by conservation of mass, momentum and

energy. Because of the very small timescales and enormous

number of molecules, these simulations are extremely

computationally expensive. However, they are necessary in

order to accurately resolve the fine-level detail that is crucial

for many subcellular processes including, for example,

protein–protein interactions [8].

The term ‘hybrid method’ has come to mean many differ-

ent things in the modelling literature. Typically, it refers to

computational methods which represent phenomena using

more than one modelling paradigm. Usually, the reason for

multiple modelling paradigms is a significant separation in

scale. This separation may be in timescales [9–11], in species

copy number [12,13] or in spatial scales [1]. By coupling an

expensive, but accurate ‘fine-scale’ model to a cheaper, but

less accurate, ‘coarse-scale’ model, hybrid methods allow

for the significant acceleration of simulations that would be

computationally expensive if the fine-level model were

used for all components of the system or inaccurate if the

coarse-level model were employed ubiquitously.

There are range of hybrid methods that have been devel-

oped to model well-mixed systems [14–21]. These methods

typically exploit a separation of timescales in which fast

reactions or abundant species are modelled using a coarse

description and slow reactions or scarcer species are

modelled using a more accurate finer description.

However, if the spatial extent of a system is important

(when modelling pattern formation, travelling waves and
chemotaxis [22], for example) then there is an even broader

range of spatially extended hybrid methods which employ

different modelling paradigms at different scales in order to

complement the strengths and negate the weaknesses of each.

If individual species are present in very different concen-

trations throughout the domain (for example, in the context

of chemotaxis, cells are present in low numbers, while the

chemical signalling molecules with which they interact are

present in high copy numbers [23–27]), distinct modelling

paradigms can be used to represent each species in the

same simulation. The particular representation will depend

on the abundance of each species [12,13,24,25,28–40]. Other

types of spatial hybrid method partition the physical pro-

cesses (for example, reactions and diffusion) to be simulated

according to their relative speeds, using a technique known

as operator splitting [10,11], simulating faster processes

using relatively cheap methods and slower processes using

more accurate but expensive representations.

For the purposes of this review, we will largely focus on

methods in which distinct modelling paradigms are used in

different regions of space in order to represent the same physical

quantity. The models in these distinct regions of space are typi-

cally coupled together through an interface or overlap region.

Spatially coupled hybrid methods of the sort we cover in this

review rely on the assumption that different regions of the

spatial domain can be accurately represented using modelling

paradigms at different scales [41–45]. The motivation for

these methods will typically be either a separation in the scale

of species copy numbers in distinct regions of the domain or a

requirement for a detailed model on small spatial scales.

Widely differing species copy numbers in distinct regions

of the domain allow coarse models to cheaply capture the

dynamics in regions in which copy numbers are high,

while a fine model captures the details of low copy number

populations with the required accuracy. Typically these

methods would be used for phenomena that are multiscale

in copy number, such as travelling wave problems [46,47].

Behind the wave we have large copy numbers, meaning

that a coarse description can be used. At the wavefront and

further ahead, however, stochastic variation will play a

more important role in determining the correct dynamics.

Consequently, a fine description is required in these regions.

Alternatively, even if there is no significant difference in

copy numbers throughout the domain, there may be a

small region of space which requires fine-level modelling

locally, but which can tolerate coarser modelling further

away in regions that are not sensitive to the individual

dynamics. Typically, these methods are used to represent

phenomena in which boundary effects are important [1].

We will refer to these methods (whatever the underlying

motivating dynamics) as spatially coupled hybrid methods.

Although we will largely focus on these spatially coupled

hybrid methods in this review, we will also touch upon

other hybrid methods which accelerate spatially extended

stochastic simulations where appropriate.

While a full description of each is beyond the scope of this

review, we nevertheless reference numerous software

packages designed to simulate systems at each of the four

spatial scales described above (typically individually, but

occasionally incorporating hybrid dynamics), which are sum-

marized in table 1. For more information on any of these

software packages, we refer the reader to the appropriate

reference, which is given in the final column of the table.



Table 1. Summary of software implementations and the scales which they can be used to model. The table contains only packages that have been updated
since 2013. All have been downloaded to test that the links still work. Adapted from Pahle [48].

software package uses types reference

Copasi next reaction method, hybrid methods meso, macro-meso Hoops et al. [49]

E-Cell direct method, next reaction method, t-leaping meso Tomita et al. [50]

Lattice Microbes direct method, next reaction method meso Roberts et al. [51]

MCell spatial stochastic simulation meso, micro Stiles & Bartol [52]

Smoldyn spatial stochastic simulation meso-micro Andrews & Bray [4]

STEPS direct method meso Wils & De Schutter [53]

StochKit direct method, optimized direct method,

t-leaping, stochastic simulation algorithm

meso Li et al. [54]

( py)URDME next subvolume method meso Drawert et al. [55]
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In this paper, we review some of the vast array of hybrid

methods present in the literature. In §2, we introduce the four

most popular modelling paradigms for reaction–diffusion

systems at different scales. In §§3–5, we review the three

main forms of spatially coupled hybrid method. Each of

these sections will begin with an in-depth review of an

illustrative example, including pseudocode for its implemen-

tation, before we summarize other existing hybrid models of

that type. Following these, in §6, several other types of hybrid

methods will be reviewed, before we conclude in §7.
2. Modelling paradigms
Within this section, we will describe modelling paradigms

that are coupled most often in order to create hybrid

methods. In §2.1, we describe a general PDE for reaction–

diffusion systems with a single species. Section 2.2 contains

an outline of compartment-based models, while in §2.3, we

investigate individual-based dynamics. In §2.4, we briefly

introduce molecular dynamics, and finally in §2.5, we indi-

cate how each of these modelling methods can, in some

sense, be demonstrated to be equivalent representations of

reaction–diffusion.

2.1. Macroscopic models
Macroscopic models encompass ordinary differential

equations (ODEs) and stochastic differential equations

(SDEs) in a well-mixed context, and PDEs and SPDEs in a

spatially extended context. PDEs, with which we shall pri-

marily be concerned in this review, are used to model the

mean-field behaviour of particles, provided they are at a

sufficiently high concentration, while SPDEs fulfil the

same purpose but with the additional ability to incorporate

stochasticity in particle numbers/concentrations. These

macroscopic methods can be simulated efficiently, but can

fail to correctly capture the appropriate behaviour at low

copy numbers, in which the combination of stochastic

fluctuations, small particle numbers and potentially non-

linear reactions can cause significant discrepancies between

the true individual-based dynamics and those of their

continuum counterparts.

The methods discussed in this review which employ

(S)PDEs are all designed to simulate reaction–diffusion

systems, mostly comprising a single species. The PDE for
the concentration of a single species, c(x, t), at position x

and time t has the general form

@c
@t

(x, t) ¼ Dr2c(x, t)þR(c(x, t), x, t), x [ Rd, t [ [0, T],

ð2:1Þ

with appropriate boundary and initial conditions. Here D is

the diffusion coefficient, R is a function representing the reac-

tions and d is the dimension of the space which we are

modelling. These systems of PDEs are, in general, very diffi-

cult or impossible to solve analytically, especially when

second- or higher-order reactions are involved making the

reaction function R nonlinear. Typically, however, they can

be solved straightforwardly using numerical approximations.

One popular family of numerical solution techniques,

employed in many of the papers discussed in this review,

are finite-difference methods1 such as the forward Euler or

Crank–Nicolson methods. Finite-difference methods discre-

tize the spatial and temporal domains onto a mesh, upon

which the PDE solution is approximated. The PDE (2.1) is

converted into a system of difference equations which relate

the solution at the next time step to the solution at previous

time steps. Often, these systems of difference equations may

be approximated to first order to form a linear system.

There are many efficient techniques for solving such linear

systems (see, for example [56–59]), giving a fast method for

obtaining a numerical solution of PDE (2.1).

Throughout this review, in keeping with the terminology

used throughout the reviewed papers, these models will be

described as ‘macroscopic’ and, in the deterministic case, as

‘mean-field’.
2.2. Compartment-based methods
Compartment-based methods are a coarse-grained stochastic

representation. The spatial domain is split into a number of

compartments of size hc, which are assumed to contain uni-

formly distributed, well-mixed particles. The system can be

simulated using either a time-driven or an event-driven

algorithm. In both cases, an event is defined as either a diffu-

sive jump, in which a particle jumps from one compartment

to a neighbour with rate d ¼ D/h2
c (here D is the correspond-

ing macroscopic diffusion coefficient) or a reaction, in

which particles interact within a compartment according to

a specified reaction pathway.
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Time-driven algorithms assume a time step, Dt, that is

small enough so that at most one ‘event’ occurs in the time

interval [t, t þ Dt) [60]. A scaled uniform random number is

used to decide whether an event takes place, and if so,

which event it is.

Event-driven algorithms are generically known in this con-

text as stochastic simulation algorithms (SSAs). The most

commonly used SSA is the Gillespie direct method [61], an

exact SSA in which each event, represented by a propensity

function, has an exponentially distributed waiting time. Conse-

quently, the minimum waiting time of all the events is also

exponentially distributed with a rate which is the sum of the

rates of the individual reactions. The direct method, thus,

simulates an exponential waiting time for the next reaction of

any type to occur and then the specific reaction to be

implemented is chosen with probability proportional to its pro-

pensity function. This method is exact in the sense that it

simulates the corresponding chemical master equation exactly.

Although this basic method accurately simulates the under-

lying dynamics, it can be quite slow, and so other, faster

methods have been formulated [62–67]. Additionally, if

some moderate sacrifices in accuracy are acceptable, several

approximate simulation algorithms are available, including

t-leaping and R-leaping [68,69].

The spatially extended methods described in this section

will be referred to as ‘compartment-based’, ‘mesoscopic’ or

‘stochastic’ (the latter only when coupled with a deterministic

model) throughout this report.
2.3. Individual-based modelling
The next set of methods we will consider are individual-

based methods. These methods are very computationally

intensive for large numbers of particles because they require

the storage and maintenance of the positions of potentially

large numbers of particles. If second- or higher-order reac-

tions or volume exclusion is to be represented, we need to

consider pairwise interactions. The calculation of pairwise

distances can also contribute significantly to the cost of

these detailed algorithms. In many biologically realistic situ-

ations, we may be modelling large numbers of objects at the

atomistic scale. In the process of calcium-induced calcium

release, for example [1], there could be tens of thousands of

ion positions to keep track of, as well as millions of potential

pairwise interactions.

One method of simulating diffusing particles on an indi-

vidual level is to allow the particles to follow Brownian

trajectories, such that

yi(tþ Dt) ¼ yi(t)þ
ffiffiffiffiffiffiffiffiffiffiffi
2DDt
p

� ji, ð2:2Þ

where yi(t) is the position of particle i at time t and j � MV
N(0, Id) is a d-dimensional unit Gaussian random variable.

Reactions can then be simulated in a number of different ways.

One method, called the l-r model [70], uses a reaction radius:

if two eligible particles come within a certain distance of one

another, r, they react with a given rate, l, according to the appro-

priate reaction pathway. If this probability is unity and the

reaction is certain to occur upon particles reaching the reaction

radius, we have the special case of the ‘Smoluchowski’ model

[3]. Green’s function reaction dynamics are an alternative

event-driven microscopic model for simulating reaction–

diffusion dynamics [71], but since none of the hybrid methods

discussed herein employ it, we shall not discuss it further.
We will refer to these methods as ‘individual-based’,

‘microscopic’, ‘particle-based’ or ‘off-lattice’ models in what

follows.

2.4. Molecular dynamics
At the very finest scale lies molecular dynamics [6,7]. In mol-

ecular dynamics simulations, the molecules for the medium

in which a particle of interest is moving (air, water, etc.) are

explicitly modelled rather than implicitly incorporated into

the movement dynamics of the focal particle, as is the case

with random position jumps of Brownian motion models,

for example. For coarse molecular dynamics representations

(as opposed to fully atomistic simulations), the particles of

the medium can be considered to be identical hard spheres

with a given radius and mass and whose velocity and

hence momentum are specified initially, but change dynami-

cally throughout the simulation. Particles interact with each

other and in such a way as to conserve mass and momentum.

Although the resulting motion of the large focal particle

may appear stochastic, it is in fact calculated deterministically

by considering the many interactions with each of the small

particles in the surrounding fluid, as well as the larger micro-

scopic particles. While this method of modelling explicitly

accounts for the surrounding molecules instead of modelling

them as a stochastic force (as in an individual-based method),

keeping track of the large number of particles of the medium,

their coordinates and their velocities, is computationally

intensive.

2.5. Connections between models at different scales
To couple models at different scales together, we first need

to be satisfied that they are representations of the same

phenomena. Here, we briefly detail how the different scale

models described above can, in some senses, be thought to

be equivalent to each other. We direct the interested reader

to appropriate sources for full derivations.

Firstly, in order to move from the mesoscale to the macro-

scale, we take the diffusive limit of a set of equations for the

mean number of particles in each compartment, derived

directly from the reaction–diffusion master equation

(RDME) [70]. In the case of second- and higher-order reac-

tions, the mean equations depend on higher-order moments

(variance, etc.). As a result, moment closure is required in

order to close the system. The most common moment closure

at first order is known as the mean-field moment-closure and

the resulting equations are known as the mean-field

equations. It should be noted that the mean-field PDEs

derived in the case of second- and higher-order reactions,

therefore, are not exact descriptions of the mean behaviour

of the mesoscale model [60]. To derive the corresponding

macroscale model of diffusion from the microscale model,

one can use the Fokker–Plank equation, which describes

the evolution of the probability density of a particle moving

according to a given SDE [60]. For example, the Fokker–

Planck equation corresponding to non-interacting particles

undergoing simple Brownian motion is the canonical

diffusion equation. The mesoscopic and microscopic rep-

resentations can, therefore, be thought of as equivalent, in

some sense, through their connection to the PDE. A rigorous

derivation of the connections between the models at micro-

scale and mesoscale is given by Isaacson [72]. Finally, the

motion of a large focal particle buffetted by smaller particles



Table 2. A summary of the macro-meso hybrid papers that will be covered in this section. The ‘type’ column gives a brief description of the type of coupling
used to join the two regimes. ‘Spatially coupled’ means that the domain is split into two distinct regions within which different paradigms are used. ‘Adaptive’
refers to whether an interface is able to move, while ‘overlap’ indicates if an overlap region is investigated. ‘Operator splitting’ indicates where reaction and
diffusion are modelled in different ways, rather than dividing space, and ‘propensity-based spatial splitting’ is where the propensity functions are split based on
their value. The ‘system modelled’ column describes the application for which these models can be used. All of the macro-meso hybrid papers present novel
methods rather than applications of pre-existing methods to real-world systems.

paper type system modelled

Yates & Flegg [41] spatially coupled, non-adaptive, non-overlap reaction – diffusion

Moro [46] spatially coupled, non-adaptive, non-overlap reaction – diffusion

Spill et al. [73] spatially coupled, adaptive, non-overlap reaction – diffusion

Schulze et al. [74] spatially coupled, adaptive, no-overlap epitaxial growth

Harrison & Yates [75] spatially coupled, adaptive, overlap reaction – diffusion

Flekkøy et al. [76] spatially coupled, non-adaptive, overlap reaction – diffusion

Rossinelli et al. [77] operator splitting reaction – diffusion

Lo et al. [78] operator splitting reaction – diffusion

Chiam et al. [79] propensity-based spatial splitting reaction – diffusion

mesoscopic domainmacroscopic domain

pseudo-compartment
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of medium as part of a coarse molecular dynamics simulation

has been shown, in the limit that the focal particle’s mass

becomes large in comparison to the mass of the particles of

the medium, to be equivalent to Brownian dynamics [45].
d

d

Figure 1. A schematic for the PCM [41]. The green line represents the PDE sol-
ution, while the blue boxes represent particles within each compartment. The red
line denotes the interface between the two subdomains. The green boxes residing
in the pseudo-compartment represent the number of pseudo-particles within the
pseudo-compartment, calculated by direct integration of the solution over that
region. The arrows in the centre represent the movement of pseudo-particles
over the interface between the pseudo-compartment and the first
compartment of the mesoscopic domain. (Online version in colour.)
3. Macroscopic-to-mesoscopic models
In this section, we will first introduce the broad concept, and

then review specific examples of models that couple macro-

scopic dynamics to mesoscopic dynamics, which we will

refer to as ‘macro-meso’ hybrid methods. We list and describe

the macro-meso hybrid methods covered in this section in

table 2. We begin by giving an illustrative example of a

macro-meso hybrid method, the pseudo-compartment

method (PCM) [41] and present pseudocode for its

implementation. We then summarize several other existing

macro-meso hybrid methods and present schematics (where

appropriate) to aid the reader’s understanding.

Macro-meso models are used when we want to simulate a

region of the domain in which stochastic variation is impor-

tant but in which the exact locations of every particle are

not required, while for the remainder of the domain we

have sufficiently high copy numbers to employ the associa-

ted continuum model. Typical examples to which these

hybrid methods have been applied are the simulation of tra-

velling wave phenomena [46,75]. Behind the wavefront, we

have a large number of particles so that the continuum

limit is valid, while in front of the wave, fluctuations can

play a prominent role in the overall dynamics, including

the wave speed.
3.1. Illustrative example of a macro-meso hybrid: the
pseudo-compartment method

The first macroscopic-to-mesoscopic example we present

is the PCM [41]. We will treat this method as an illustrative

example for this section, and as such, will present it in a

high level of detail, including a schematic (figure 1) and pseu-

docode (see algorithm 1). Note that, for all three illustrative
examples, we set the dimension of space to be d ¼ 1 for

simplicity.

The authors divide their domain of interest into two sub-

domains, separated by an interface. A PDE representation is

used in one subdomain, and a compartment-based method

in the other. These subdomains are labelled VP and VC,

respectively. Within the PDE subdomain, the solution is

evolved using the Crank–Nicolson method (a finite-

difference approximation to the underlying PDE) with zero

flux boundary conditions at both ends. The time step used

for the numerical solution of the PDE is Dt and the spatial

step is hp. The compartment-based regime is evolved accord-

ing to the Gillespie SSA, where the subdomain is split into K
separate compartments, each of width hc, so that jVCj ¼ Khc.

The authors choose hc ¼ nphp where np [ N is the factor by

which the PDE grid is finer than the compartment size.

Again, a zero-flux boundary is used within VC at the exterior
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boundary of the subdomain (i.e. the propensity for jumping

out of the domain at that end is set to zero). The zero-flux

boundaries on the PDE side of the interface ensure that no

mass can leak from one subdomain to the other. The coupling

is completed through the use of a pseudo-compartment, C21.

This is a compartment of width hc adjacent to the interface

within VP. A schematic for this method is shown in figure 1.

Pseudo-particle numbers within this pseudo-compart-

ment are calculated through direct integration of the

PDE, giving

n(C�1, t) ¼
ð

C�1

c(x, t) dx,

where n(A, t) is the number of particles residing in the region

A # V at time t. This value is then used to generate a propen-

sity function for particles jumping out of the pseudo-

compartment and into the first compartment adjacent to the

interface in VC. Similarly, in order to correctly model the

flux over the interface, particles in the first compartment in

VC can jump into the pseudo-compartment with the usual

diffusive rate.

The algorithm proceeds by firstly generating a time

until the next event (a diffusive jump between (pseudo-)

compartments or one of the M reactions within the true com-

partments) according to the Gillespie algorithm [61]. This

can be found by transforming a uniform random variable

u1 � Unif (0, 1) into an exponential random variable with rate

equal to the sum of all propensity functions, given by

t ¼ 1

a0
ln

1

u1

� �
, ð3:1Þ

where a0 is the sum of all propensity functions (including

the extra ones for jumps out of and into the pseudo-

compartment). The algorithm then checks to see whether the

time has been incremented past the next PDE update time.

If not, a compartment-based event occurs first, and an event is

selected with probability proportional to its propensity

function. Otherwise, the numerical solution of the PDE is incre-

mented by a single time step. When a particle jumps from the

pseudo-compartment to the first compartment of VC, we

remove a particle’s worth of mass uniformly from the PDE sol-

ution at the points within the pseudo-compartment, and

increment the count of particles in the first compartment.

A movement in the opposite direction is completed in a similar

manner, by adding a particle’s worth of mass to the PDE

solution uniformly across the pseudo-compartment, and remov-

ing a particle from the first compartment. Pseudocode for this

method is given in algorithm 1.

Algorithm 1. Pseudo-compartment method.

(1a) Initialize the time, t ¼ t0 and set the final time, T. Specify

the PDE-update time step Dt and initialize the next PDE

time step to be tD ¼ t þ Dt.
(1b) Initialize the number of particles in each compartment

in VC, n(Ci, t) for i ¼ 1, . . . ,K (where Ci is the region of

the domain covered by compartment i), and the distri-

bution of density in VP, c(x, t), for x [ VP.

(1c) Calculate the propensity functions for diffusion between

the compartments as ai,j ¼ n(Ci, t)D/h2
c for i ¼ 1 . . . K

and j ¼M þ 1, M þ 2 (corresponding to left and right

movements) and for reactions as ai,j for i ¼ 1 . . . K and

j ¼ 1, . . . ,M using the usual mass action kinetics.
(1d) Calculate the propensity function for diffusion from the

pseudo-compartment, C21, in VP, into the adjacent com-

partment, C1, in VC: a� ¼ D
Ð

C�1
c(x, t) dx=h2

c .

(1e) Calculate the sum of the propensity functions,

a0 ¼
PK

i¼1

PMþ2
j¼1 ai, j þ a�.

(1f ) Determine the time for the next ‘compartment-based’

event, tc ¼ t þ t, where t is given by equation (3.1).

(1g) If tc , tD then the next compartment-based event occurs:

(a) Determine which event occurs according to the

method described in the text (see [61]).

(b) If the event corresponds to ai,j for i ¼ 1 . . . K and j ¼
M þ 1, M þ 2, then move a particle from interval i in

the direction specified by j. If the particle crosses the

interface into pseudo-compartment, C21, then add a

particle’s worth of mass uniformly to the region C21,

i.e. cðx, tþ tÞ ¼ cðx, tÞ þ 0½x[C�1�=hc. Here, 0½x[A� is an

indicator function which takes the value 1 when x [

A and 0 otherwise.

(c) If the event corresponds to propensity function a*

and c(x, t) . 1/hc for all x [ C21, then place a

particle in C1. Remove a particle’s worth of mass

from the PDE solution in the region C21 i.e.

cðx, tþ tÞ ¼ cðx, tÞ � 0½x[C�1 �=hc.

(d) Update the current time, t ¼ tc.

(1h) If tD , tc then the PDE regime is updated:

(a) Update the PDE solution according to the numerical

method.

(b) Update the current time, t ¼ tD and set the time for

the next PDE update step to be tD ¼ tD þ Dt.
(1i) If t � T, return to step (1c).

Else end.

In figure 2, we have reproduced an example simulation from

Wylie et al. [41] using the pseudo-compartment method. We

initialize N ¼ 500 particles uniformly throughout the PDE

subdomain, where VP ¼ (21, 0) and hp ¼ 0.01. The compart-

ment-based subdomain, VC ¼ (0, 1), is split into K ¼ 20

compartments, each of width hc ¼ 0.05. The interface naturally

lies at I ¼ 0 and the results were averaged over 5000 repeats

until a final time of T ¼ 100. We set the diffusion coefficient

to be D ¼ 0.0025 and the PDE time step to be Dt ¼ 0.01.
3.2. Other macro-meso hybrid methods
We now turn our attention to other macro-meso hybrid

methods, indicating where they share similarities with one

another and where they differ. The full list of methods

considered in this section is given in table 2.

Another type of hybrid method incorporates an adaptive

interface. The interface between two modelling regions

moves adaptively based on predetermined criteria, that

may involve (local) copy numbers or densities. Moro [46] pre-

sents one such hybrid method when investigating pulled

fronts in a diffusive reversible dimerization. In contrast

with the PCM above, they use the same discretization for

both the continuum and the compartment-based simulations.

The boundary between the two subdomains is determined

using a threshold number of particles. Any voxels

with more particles than this threshold are simulated by

numerically solving the macroscopic Fisher–Kolmogorov–

Petrovsky–Piscounov (FKPP) equation. Any voxels with

fewer than this number of particles are simulated as a meso-

scopic compartment-based position-jump Markov chain. If
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Figure 2. A replication of results from Yates & Flegg [41] using the PCM. The green line corresponds to the PDE part of the hybrid solution, the red vertical line at
x ¼ 0 is the interface and the blue bars are the compartment-based part of the hybrid solution. The dashed black line is the analytical solution of the mean-field
PDE model (the diffusion equation) across the entire domain. Parameter values are as in the text. (Online version in colour.)
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Figure 3. A schematic for the method from Spill et al. [73]. The green line
and blue boxes are as in figure 1, while the red boxes denote an extra
compartment between the PDE and compartment subdomains. The coloured
double-headed arrows denote how the flux over each of the two red
interfaces are calculated. (Online version in colour.)
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particles in the compartment-based region jump into the

macroscopic region, they are immediately removed from

their voxel and held until the next PDE update step. When

the PDE update occurs, PDE voxels away from the interface

are updated according to the usual finite-difference method,

but the value of the voxel closest to the interface is updated

with a mixed flux condition. Flux from the macroscopic

side to the mesoscopic side is specified by the deterministic

flux from the PDE region, whereas flux from the mesoscopic

side to the macroscopic side is determined by the number of

particles that jumped beyond the interface into the macro-

scopic subdomain from the mesoscopic subdomain during

the PDE update time step. Flux in the opposite direction

(from macroscopic to mesoscopic) is implemented by

adding a Poisson distributed random number of particles

(with mean corresponding to the expected flux of particles

over the boundary as determined by the deterministic

model) to the first voxel in the mesoscopic region.

Building upon this idea of adaptive interfaces, Spill et al.
[73] include the possibility of having multiple adaptive inter-

faces (see figure 3 for a schematic with a single interface). As

in Moro [46], the same grid spacing is used for both model-

ling paradigms. The authors are able to add multiple

interfaces by again introducing a threshold value in order
to determine which regions of the domain should be simu-

lated deterministically and which stochastically, allowing

the positions of the interfaces between distinct modelling

regions to move, appear and disappear. Boxes with particle

numbers lower than the threshold are simulated according

to the compartment-based dynamics. Boxes with particle

numbers greater than the threshold are categorized as deter-

ministic and evolve according to a set of coupled ODEs

which describe the mean-field number of particles in each

compartment. The single threshold value potentially gives

rise to multiple distinct regions of stochastic and deterministic

modelling for species whose values fluctuate around the

threshold value. To ensure there are not too many distinct

regions a minimum subdomain size condition is implemented

which prevents the occurrence of small, disconnected regions

of a particular method.

To implement the coupling between the macroscale and

mesoscale models, flux from the deterministic side is governed

by the mean-field ODEs, while particles can jump into and out

of the interface compartment from the mesoscopic side with

rates determined by the SSA [61] (in a method similar to that

of the PCM [41]). All reactions within the interface compart-

ment are completed using the SSA, whereas reactions in

other parts of the domain are implemented according to

their respective modelling paradigm.

Although many hybrid methods are designed for simulat-

ing reaction–diffusion systems, others have been designed to

represent different physical phenomena. Schulze et al. [74]

present a hybrid method for modelling epitaxial growth.

The method couples a discretized version of the macroscopic

Burton–Cabrera–Frank (BCF) continuum model for the

growth of a crystalline structure to its corresponding, on-

lattice, mesoscopic kinetic Monte Carlo (KMC) representation.

In this mesoscopic model, crystals grow layer upon layer.

Layers are first nucleated and then expand by the addition,

surface diffusion and deposition of adatoms (crystalline par-

ticles) from solution. The front of a growing layer is referred

to as a ‘step’. The method for simulating the KMC model is

taken from Bortz et al. [80]; however, it proceeds in the

same way as the Gillespie SSA [61]. The BCF model, as

implemented in this paper, is effectively a finite-difference

discretization of the diffusion equation. This continuum rep-

resentation is employed in cells which comprise multiple sites

of the individual-based model. Steps are simulated using the

fine-grained KMC algorithm, and regions away from steps

are simulated using the coarse diffusion approximation for

the movement of adatoms on the surface. Separating the



mesoscopic domainmacroscopic domain

overlap region

Figure 4. A schematic for the method of Harrison & Yates [75]. The descrip-
tions for the green line and blue bars are the same as in figure 1. The overlap
region is denoted by the red region. The width of the overlap region can be
any integer number of compartment widths (here, for simplicity, we have
chosen a two-compartment-width overlap region). In the overlap region,
the sum of the densities of the two methods gives the overall solution.
(Online version in colour.)
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subdomains are interfaces, which adaptively move with

the locations of the steps. The authors consider both

two- and three-dimensional simulation regions, referred to

as the (1 þ 1)- and (2 þ 1)-dimensional domains (the ‘þ1’

refers to the crystals growing upwards, meaning that

we are effectively simulating a surface process in one- and

two-dimensional space).

The algorithm proceeds in a similar way to the PCM [41]

for reaction–diffusion systems. Close to a step, adatoms are

represented using the stochastic KMC algorithm so that

their locations can be individually updated, and processes

such as absorption, dissociation and nucleation can be accu-

rately modelled. Further away from a step, we neglect these

processes and simply consider the particles diffusing along

the surface. The time until the next KMC event is calculated

using exponentially distributed random variables. If the

next KMC event occurs before the next PDE update time,

the corresponding event is enacted, otherwise the PDE is

evolved forwards in time. Particles jump across the interface,

with a rate that depends on the number of particles within

the continuum cell adjacent to the interface. These stochastic

jump events are simply added to the list of KMC events. If a

particle leaves the continuum cell, a new particle is initialized

in an adjacent KMC site and the density in the continuum cell

is decreased uniformly across its width by a total of one par-

ticle. In the opposite direction, the particle is removed from

the KMC simulation and a particle’s worth of mass is

added uniformly across the corresponding continuum cell.

As with the PCM, care has to be taken to ensure positive

density in the continuum at all times. The interface is also

adaptive in that it can evolve as the steps move through

space. If a cell needs to change representation from KMC to

BCF, we simply count the number of particles in this region

and convert it to a particle density uniformly spread across

the now-continuum cell. In the opposite direction, the density

is converted to the floor of the number of particles (while

remembering the fractional part in case the cell is again

represented by the continuum description later in the simu-

lation). This number of particles is then initialized

randomly throughout the now-discretized cell.

Point interfaces are not the only way to divide the domain

between modelling paradigms—overlap regions may also be

employed. Typically, these regions inherit properties from

both of the models that are being coupled. Harrison &

Yates [75] use such a region to couple their mesoscopic and

macroscopic models of reaction–diffusion. The authors

suggest a fixed-time-step, finite-difference scheme for the

numerical solution of the macroscopic PDE and use a time-

driven algorithm for simulating the stochastic regime (with

the same fixed time step as the PDE). This is in contrast

with many of the other hybrid algorithms within this

review, in which the Gillespie SSA [61] is employed for the

mesoscopic regime. It is noted, however, that event-driven

alternatives can be applied with minor alterations.

The authors focus on reaction–diffusion systems in one

dimension with the compartment-based subdomain on the

right and the PDE subdomain on the left (figure 4) (although

the algorithm would work equally well in higher dimensions

and with the orientation of the regions reversed). The overlap

region has two interfaces, one at either end. At the right-hand

interface where the PDE begins (part-way into the compart-

ment subdomain), a Dirichlet matching boundary condition

is implemented on the PDE. This is achieved by calculating
the average concentration in the two compartments either

side of the interface, and ensuring that the PDE solution at

the interface is set to that value. At the left-hand interface,

where the compartment-based subdomain ends (part-way

into the PDE subdomain), a flux-matching boundary con-

dition is applied to the compartment immediately to the

right of the interface. The diffusive flux across the interface

is calculated using the value of the PDE lattice sites corre-

sponding to the centres of compartments either side of the

interface. This flux is then imposed on the compartment-

based regime by adding or removing particles from the left

most compartment with probability proportional to the mag-

nitude of the flux (with time step chosen to ensure this

magnitude is less than one). An adaptive interface condition

similar to that implemented in the adaptive two-regime

method (TRM) [47] (see §4.2) is also presented. Repositioning

criteria based on density are checked at pre-defined time

steps, and the overlap region is moved accordingly.

Similarly to Harrison & Yates [75], Flekkøy et al. [76] use

an overlap region as part of a non-adaptive algorithm. They

introduce a method for coupling a discretized version of

the diffusion equation with a discrete-time and -space meso-

scopic Markov chain representation of diffusion in which

particles can jump to neighbouring voxels in each fixed

time step. The PDE time step is chosen to be coarser than

its stochastic counterpart, meaning that there can be multiple

stochastic jumps for every PDE update step. The spatial mesh

for the mesoscopic, stochastic representation is also finer than

that of the corresponding discretization of the diffusion

equation; that is to say that there are multiple mesoscopic

voxels for every macroscopic voxel. This is in contrast with

many of the other macroscopic-to-mesoscopic coupling

methods we have outlined in this review, in which the PDE

mesh is at least as fine as the compartment size. In these

papers, this finer macroscopic resolution was motivated by

the idea that the PDE is an exact representation of the

scaled probability density of diffusing particles and so war-

ranted an appropriately fine discretization. Here, Flekkøy

et al. [76] motivate their choice of discretization (multiple

mesoscopic voxels for every macroscopic voxel) by arguing
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that the PDE-based model is a coarse-grained version of the

particle model and hence requires a coarser discretization in

both space and time.

To couple the two methods, Flekkøy et al. [76] allow the

two subdomains to overlap across several PDE sites. Within

this overlap region, mass is represented as both mesoscopic

and macroscopic. The regimes are coupled using a flux-balan-

cing argument which implements the flux of the macroscopic

representation on the mesoscopic model at one end of the

overlap region and vice versa at the other. The flux term

from the PDE description is implemented as a source term

which is added to the particle description on the penultimate

mesoscopic mesh point. This PDE flux is calculated by using

a centred finite-difference approximation across the two PDE

sites which span the penultimate mesoscopic mesh point.

However, in order to prevent discontinuities in density

between the different descriptions, the PDE density at one

of the two mesh points (used in the finite-difference appro-

ximation of the PDE gradient) is substituted for the particle
density at the same point. At the other end of the overlap

region, the averaged particle flux (determined to be the differ-

ence between the number of right-moving and left-moving

particles) over a PDE time step is added to the penultimate

site of the PDE mesh.

The previous six methods detailed in the macro-meso sec-

tion [41,46,73–76] are all spatially coupled hybrid methods—

methods that split the spatial domain into distinct (possibly

partially overlapping) regions in which different modelling

methods are used. However, other methods exist, which do

not specify distinct or even overlapping subdomains for

each of the two methods to be coupled. We now focus on

two other types of hybrid method. The first employs operator

splitting—a process in which the operators that evolve the

system are implemented separately [77,78]. The second

method employs propensity-based spatial splitting [79],

which divides the representation of the dynamics adaptively

according to the value of each event’s propensity function.

Rossinelli et al. [77] use t-leaping [69] in order to intro-

duce two new methods for accelerating stochastic reaction–

diffusion systems [81]. The spatial domain is discretized

into a regular lattice, with the particles situated at each lattice

site subject to the same reactions. Particles can also diffuse to

neighbouring lattice sites with appropriately chosen rates.

The first accelerated method presented by Rossinelli et al.
[77] is a purely stochastic algorithm that the authors name

the ‘spatial t-leap’ (St-leap) method. This is not a hybrid

method, but does allow for faster approximate simulations

by employing t-leaping. This algorithm proceeds by calculat-

ing maximum acceptable leap times for reactions and

diffusive events across all voxels. The minimum of these

adaptively chosen, acceptable times, t, is then selected as

the next time step for the algorithm. The entire system is

updated by drawing Poisson random variables to simulate

the number of events of each type that occur during the

next t time units.

The second method that Rossinelli et al. [77] introduce is

the ‘hybrid t-leap’ (Ht-leap) method. This method exploits

the premise that diffusion processes are typically up to two

orders of magnitude faster than corresponding reaction pro-

cesses [82]. For this method, the authors split the dynamics,

completing the diffusive jumps deterministically and the

reactions using the t-leaping method. The time step for

the reactions is calculated adaptively, as before, but only
the reactions are updated in this step. Following this, a

centred finite-difference approximation combined with for-

ward Euler time-integration is used to deterministically

advance the diffusion of particles according to the macro-

scopic diffusion operator.

A similar operator-splitting method is presented by Lo

et al. [78]. Their method simulates all reactions using a

compartment-based mesoscopic representation, implemented

using the Gillespie SSA [61]. Where molecule numbers are

sufficiently large, the number of diffusive jumps between

compartments are approximated using continuous Gaussian

random variables, with time-dependent means and var-

iances. Where particle numbers are low, diffusive jumps are

implemented as events within the SSA. This coupling

allows for large time steps to be taken, even in the presence

of rapid diffusion. The numbers of diffusive jumps between

compartments are approximated as the sum of the ‘determi-

nistic’ number of jumps and appropriately scaled zero-mean

Gaussian random variables. The system size expansion is

applied to the RDME in order to characterize the covariances

of these random variables.

Another type of hybrid method chooses which events of

the compartment-based regime are to be simulated using

the continuum or mesoscopic solvers by using their propen-

sity functions. Chiam et al. [79] simulate the mesoscopic

dynamics using the Gillespie SSA [61] while the PDE is

discretized using a second-order finite-difference approxi-

mation and evolved using the forward Euler method. Each

of these descriptions is simulated on the same discretized

mesh. Propensity functions are calculated for all possible

events (reactions within and diffusive jumps from each

box). A threshold value is then used to decide which events

are to be simulated using the SSA and which using the deter-

ministic description. The threshold value corresponds to a

given fraction of the maximum propensity function. Any

events with a sub-threshold propensity are simulated using

the SSA. Those with super-threshold propensities are simu-

lated using the finite-difference discretization. The authors

comment that the value of the threshold needs to be ‘tuned’

depending on the specific problem to obtain the correct

balance between efficiency and accuracy.

In this section, we have outlined several spatially

extended hybrid methods which can be used to couple

macroscopic and mesoscopic methods. We now turn our

attention towards mesoscopic-to-microscopic couplings.
4. Mesoscopic-to-microscopic models
In this section, we will begin by introducing, in broad terms,

models that couple microscopic dynamics to mesoscopic

dynamics, which we will refer to as ‘meso-micro’ hybrid

methods. After summarizing the key properties of the

meso-micro hybrid methods covered in this section, in

table 3, we go on to describe them in more detail. We begin

by giving a detailed description of an illustrative example

of a meso-micro hybrid method, the GCM [43] and present

pseudocode for its implementation. We then summarize

other existing meso-micro hybrid methods.

For meso-micro hybrid methods, both of the models which

comprise the hybrid method incorporate some form of sto-

chastic variation. These types of methods will be required

whenever fluctuations are deemed important across the



Table 3. A summary of the meso-micro hybrid papers that will be covered in this section. The methods in all the meso-micro hybrid papers summarized here
are designed for modelling reaction – diffusion systems. Each of these papers is concerned with the development of a novel hybrid method, apart from the
paper by Dobramysl et al. [1], which employs the two-regime method [42] to investigate the formation of calcium puffs. See text for more information.
Descriptors are as in table 2.

paper type system modelled

Flegg et al. [43] spatially coupled, non-adaptive, non-overlap reaction – diffusion

Flegg et al. [42] spatially coupled, non-adaptive, non-overlap reaction – diffusion

Robinson et al. [47] spatially coupled, adaptive, non-overlap reaction – diffusion

Flegg et al. [83] spatially coupled, non-adaptive, non-overlap reaction – diffusion

Dobramysl et al. [1] partially coupled, non-adaptive, non-overlap reaction – diffusion

Hellander et al. [10] operator splitting reaction – diffusion

Klann et al. [11] operator splitting reaction – diffusion
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entire domain, but where specific particle locations are not

required in some subregions of the domain. As an example,

we can consider the modelling of an ion channel [1,2]. We

require detailed knowledge of the molecules in regions of

space close to the ion channel’s receptors in order to resolve

the binding dynamics accurately. However, away from the

channels, this detailed representation is not required.
4.1. Illustrative example of a meso-micro hybrid: the
ghost cell method

As an illustrative example for the mesoscopic-to-microscopic

methods, we present the GCM, developed by Flegg et al. [43].

The domain is divided into two subdomains, which we refer

to as VC and VB, within which the system is evolved accord-

ing to a compartment-based method and Brownian

dynamics, respectively. As in the PCM (see §3.1), VC is

split into K compartments of width hc, so that jVCj ¼ Khc.

In the Brownian subdomain, particles move in continuous

space and a reflective boundary is enforced at the interface

to prevent individual particles from entering the compart-

ment-based region due to Brownian jumps. To allow the

particles to move between the two subdomains, the authors

construct a ‘ghost cell’ in VB, adjacent to the interface with

VC, which is the same width, hc, as the compartments. We

present a schematic for this method in figure 5.

Particles move across the interface in both directions

according to compartment-based dynamics, with the ghost

cell constituting an extra compartment. To calculate the pro-

pensity function for particles to jump out of the ghost cell,

the number of particles in that region of space is simply

counted and multiplied by the compartment-based jump

rate, d. The Brownian dynamics are implemented with a

time-based algorithm and the compartment-based dynamics

with an event-driven algorithm. At any time point, the time

until the next compartment-based event (including jumps

out of and into the ghost cell) is found according to formula

(3.1). It is then determined whether this event takes place

before the next Brownian update. If a Brownian update

comes first, the Brownian dynamics are evolved within VB

for a small time interval, Dt, according to (2.2). Otherwise,

the mesoscopic event corresponding to the waiting time is

determined and implemented. If a jump from the last compart-

ment to the ghost cell is enacted, a single particle is removed

from the final compartment and is initialized with position
chosen uniformly at random across the ghost cell. For move-

ment across the interface in the opposite direction, one of the

Brownian particles in the ghost cell is chosen uniformly at

random and removed from the system. An extra particle is

then added to the final compartment of VC. Pseudocode for

the GCM for diffusion only is provided in algorithm 2.

Algorithm 2. Ghost cell method (diffusion only).

(2a) Initialize time t ¼ t0, set the final time, T. Specify the

Brownian update step Dt and set the next Brownian

update time to be tD ¼ t0 þ Dt.
(2b) Initialize particles in the compartments of VC and Brow-

nian particles in VB.

(2c) Calculate propensity functions for each compartment

given by ai(t) ¼ dni(t) ¼ Dni(t)/h2
c for i ¼ 1, . . . ,K,

where ni(t) is the number of particles in compartment i
at time t. Calculate the propensity function for diffusion

from the ghost cell, aGC(t) ¼ nGC(t)D/h2
c, where nGC(t) is

the number of particles in the ghost cell at time t.
(2d) Sum the propensity functions to find a0(t).
(2e) Determine the time t until the next compartment-based

event according to equation (3.1). Set tc ¼ t þ t.

(2f ) If tc � tD, then the next compartment-based event occurs:

(a) Choose the event with probability proportional to

the associated propensity function.

(b) If the event corresponds to a diffusive jump out of

the ghost cell and into the last compartment,

choose one particle in the ghost cell at random to

remove and place it in the final compartment of VC.

(c) If the event corresponds to a particle jumping from

the final compartment of VC to the ghost cell,

remove a particle from the final compartment and

place it with position chosen uniformly at random

across the width of the ghost cell.

(d) If the event corresponds to a purely compartment-

based event, implement the jump according to the

usual compartment-based dynamics.

(e) Update time t ¼ tc.

(2g) If tD , tc, we update the Brownian system:

(a) Update the positions of all particles using (2.2).

(b) Complete reactions using an appropriate method

[3,4,70].

(c) Update time t ¼ tD. Update tD ¼ t þ tD.

(2h) If t , T, return to (2c), otherwise stop.
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Figure 5. Schematic for the GCM [43]. The blue boxes represent particles
within each compartment and the yellow dots represent individual particles.
These particles are shown with a volume, but in the simulations do not have
a mass or volume. The particles reside on the one-dimensional line, but have
been illustrated in the plane in order to show the directions and magnitudes
of their next movement clearly (black arrows). The yellow boxes within the
ghost cell correspond to the number of Brownian particles which reside
within it. The coloured arrows in the centre are similar to those in
figure 1. (Online version in colour.)
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We have replicated some results from Flegg et al. [43] using

the GCM. These are displayed in figure 6. As in the PCM,

we have placed the interface centrally, I ¼ 0, with the meso-

scopic subdomain VC ¼ (21, 0) and the microscopic

subdomain VB ¼ (0, 1). We set the Brownian update step to

be Dt ¼ 0.01, and all other parameters are the same as the

pseudo-compartment simulation.
4.2. Other meso-micro hybrid methods
We now outline the remaining meso-micro hybrid methods

summarized in table 3. Many of these papers are variations

of, or applications of, the same method, namely the two-

regime method (TRM) [42]. We start by describing this

method, and then follow by describing the adaptations and

applications. We then consider two further methods, which

fall under the operator-splitting category [10,11].

Some of the authors of the GCM previously developed

the TRM [42] to couple compartment-based and Brownian-

based dynamics. The individual particle paths are evolved

according to independent Browninan motions, while the

compartment regime is updated using the on-lattice, event-

based next reaction method [64]. Flux over the interface

from the compartment-based subdomain to the Brownian-

based subdomain is implemented using an altered jump

rate to ensure that the flux over the interface is consistent

with diffusion. If a particle is selected to jump across the

interface from the final compartment to the Brownian-based

subdomain, a particle is removed from the relevant compart-

ment and placed at a position selected from a normalized

error function probability distribution function. When a

particle jumps from the microscopic subdomain to the meso-

scopic subdomain, it is simply removed and added to the

compartment it has moved in to. The TRM is represented

schematically in figure 7a.

Robinson et al. [47] introduce an extension to this method,

called the adaptive TRM (ATRM), which adds an adaptive
interface to the algorithm. The interface is moved in order

to ensure that the subdomain that is to be simulated using

the computationally intensive particle-based dynamics is as

small as possible. The interface can only move in discrete

steps, which are the same size as the width of a compartment

in the mesoscopic subdomain. The interface movement con-

dition is, similarly to Moro [46] (see §3.2), a local condition.

If the number of particles within a compartment’s width of

the interface (and within the microscopic subdomain) is

above a pre-specified level, the interface is moved into the

microscopic subdomain, extending the mesoscopic subdo-

main. Conversely, if the number of particles in the

compartment adjacent to the interface is below a distinct

(lower) threshold, the interface moves towards the meso-

scopic subdomain, increasing the size of the microscopic

subdomain. The coupling between the compartment-based

and Brownian-based methods is implemented exactly as the

TRM [42].

The TRM is generalized into two (and higher) dimensions

by Flegg et al. [83]. The authors discuss in detail the case of a

regular square lattice of points with a planar interface (in

which the interface is either purely horizontal or vertical)

and cases for which the interface may contain corners. The

paper follows a similar method to the TRM paper, in which

the authors calculate the factor by which the jump rate over

the interface must be scaled by in order for a particle to

move from the mesoscopic to microscopic subdomain,

together with the rate in the opposite direction.

These methods can be applied to biologically relevant

scenarios such as the formation of calcium puffs in a range

of eukaryotic cells [1,2,84]. Dobramysl et al. [1] investigate

the formations of such calcium puffs using the TRM. Calcium

ions are modelled as diffusive particles, which can bind to

activating and inhibiting receptors on the ion channels.

Each channel contains four sub-channels, each with one acti-

vating and one inhibiting receptor. A sub-channel is activated

if the activating receptor has a calcium ion bound to it, and

the inhibiting one does not, and a channel is ‘open’ if at

least three of its four sub-channels are activated. When a

channel is activated, a constant influx of particles is intro-

duced into the domain. A particle can bind to a receptor

with a given probability if it is within a small hemisphere

of the receptor in question. Particles can also unbind. Particles

unbind with a second probability, and are placed a given dis-

tance from the receptor. The authors simulate this process in

a (three dimensional) cube representing some part of the

cytoplasm of the cell (see figure 7b). One face of the cube rep-

resents part of the surface of the impermeable endoplasmic

reticulum (the cell’s major calcium store) upon which a

reflecting boundary condition is implemented. In the centre

of this face are nine ion channels. On all other faces, an

absorbing boundary condition is used. The authors couple

the microscopic Brownian dynamics for particle motion in a

small cube around the nine ion channels to a mesoscopic com-

partment-based regime throughout the rest of the domain.

The mesoscopic regime is simulated using the next reaction

method [64]. This hybrid representation is used to investigate

calcium puffs which occur when a calcium channel opens and

then closes quickly, allowing for a large number of ions to

enter the domain over a short time period. This problem is a

good example of the need for hybrid methods to couple simu-

lation methods at different scales. If this process is simulated

using a fully individual-based model, the computational
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Figure 6. A replication of results from the GMC [43]. Descriptions are as in figure 2, with the addition that yellow bars denote the ‘binned’ solution of the
individual-based simulation in the hybrid method. Parameter values are as in the text. (Online version in colour.)
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Figure 7. (a) Schematic for the TRM [42]. The blue blocks and yellow dots are as described in figure 5. The arrow from left to right over the interface denotes the
jump in this direction, with the specified altered jump rate. In this jump rate, D is the macroscopic diffusion coefficient, hc is the width of a compartment and Dt is
the time step used to evolve the particles in the Brownian-based subdomain. The other cross interface arrow represents jumps in the other direction. The yellow
rectangle and blue particle near the interface represent particles converted from one modelling regime to the other upon crossing the interface in either direction
according to the method described. (b) Schematic for the application of the TRM to the problem of calcium-induced calcium release [1]. The blue outlined box
denotes the outer boundaries of the compartment-based subdomain. All boundaries are absorbing, apart from the grey one (bottom), which is reflective. The yellow
box in the centre of the lower face is the microscopic subdomain, containing nine ion channels (yellow circles). For simplicity, no particles or compartments are
displayed in this schematic. (Online version in colour.)
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complexity would be too high to simulate accurately within a

reasonable time frame.

Another method which falls into the meso-micro category

is presented by Hellander et al. [10]. This is an operator-split-

ting method rather than a spatially coupled hybrid method.

The spatial domain is divided into discrete voxels and the

algorithm allows for particular voxels or species to be

described as either mesoscopic or microscopic. The algorithm

progresses using a splitting scheme. First, the microscopic

particles are frozen and the mesoscopic particles are pro-

gressed using the SSA [61]. Then, the mesoscopic particles

are frozen to allow the microscopic particles to advance

according to the Green’s function reaction dynamics [71].

Finally, reactions between mesoscopic and microscopic par-

ticles are completed according to the microscopic algorithm,

with an adjusted reaction rate to account for the difference

in representation.

Operator splitting is also employed by Klann et al. [11].

The spatial domain (assumed three dimensional) is split
into equally sized cubic compartments. Within each of

these subvolumes, some species are chosen to be simulated

via the compartment-based paradigm using Gillespie’s SSA,

while others are evolved using the Brownian-based approach

with a fixed time step. Thus, different modelling paradigms

are used for different species within the same voxel, but

also potentially for the same species in different regions of

the domain. For each species simulated under the compart-

ment-based paradigm, a minimum time until the next

occurrence of any type of first-order reaction affecting that

species (other than diffusive jumps) is stored. If a particle dif-

fusively jumps out of a compartment (either into a region in

which the compartment-based paradigm is being employed

for that species or a region in which that species is being

modelled as particles) then, with probability inversely

proportional to the number of particles of its species in the

compartment it has just left, the jumping particle takes this

minimum first order reaction time with it to the new

compartment. The authors use an updated next reaction
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method (introduced by Anderson [85]) to implement both

reactions and diffusive jumps for particles that are modelled

using the compartment-based approach. For particles

that are modelled microscopically, diffusion is completed

via a discretised SDE which represents Brownian motion,

while bimolecular reactions are simulated using the l-r

methodology [70,86].

If an entire compartment changes description from meso-

scopic to microscopic according to the specified criteria, the

appropriate number of particles are initialized uniformly

throughout the compartment. Of the new individual par-

ticles, one inherits the next reaction time for first-order

reactions from the mesoscopic description, while exponen-

tially distributed first reaction times which are later than

the inherited time are generated for the others. For a conver-

sion in the opposite direction, the next firing times for

diffusive and second- (and higher-, if required) order reac-

tions are calculated according to the standard Gillespie

method. For first-order reactions, the minimum time (over

all the particles of the same species) is used. A similar

mechanism is employed if only certain species change their

description based on a threshold.

The number of unique methods that we have considered

in this category is relatively small. However, the development

of the TRM that we have reviewed, serves to demonstrate

how a basic method can be altered to incorporate adaptive

interfaces and higher dimensions, as well as applied to genu-

inely multiscale problems. In the following section, we

investigate a third category of spatial coupling involving

macroscopic and microscopic models.
5. Macroscopic-to-microscopic methods
In this section, we will introduce and review models that

couple macroscopic dynamics to microscopic dynamics,

which we will refer to as ‘macro-micro’ hybrid methods.

We list and describe the macro-micro hybrid methods cov-

ered in this section in table 4. We begin by summarizing an

illustrative example of a macro-micro hybrid method, the

auxiliary region method (ARM) [44] and present pseudocode

for its implementation. We then summarize other existing

macro-micro hybrid methods.

Hybrid methods that couple the macroscopic continuum

representations to discrete microscopic dynamics have been

relatively poorly studied in comparison to macro-meso and

meso-micro hybrid methods. One contributing factor is the

fact that such hybrid algorithms bypass the intermediate

mesoscale representations of particle dynamics, meaning

that the scale separation gap which they must bridge is

greater than either of the other two hybrid paradigms.

Primarily though, we postulate that the relative dearth of

macro-micro hybrid methods is due to the inherent diffi-

culty when converting individual Brownian particles into

continuum mass (and vice versa) when coupling individ-

ual-based microscopic methods to continuum macroscopic

continuum representations.

Although they are less common, macroscopic-to-

microscopic methods provide useful insight into a number

of biological and physical phenomena, such as the movement

of cytochrome c particles in the presence of a charged

surface [87].
5.1. Illustrative example of a macro-micro hybrid: the
auxiliary region method

As an illustrative example of a macroscopic-to-microscopic

hybrid method, we consider the ARM [44]. The ARM couples

a PDE for reaction–diffusion systems in a subdomain VP to

individual-based Brownian dynamics in a subdomain VB.

Both of the subdomains have zero flux boundaries at the

interface so that no PDE mass ‘leaks’ into the individual-

based subdomain, and vice versa. Flux over the interface is

governed strictly by compartment-based dynamics between

the two auxiliary regions, VPA and VBA, adjacent to the inter-

face within the PDE and Brownian subdomains, respectively.

The one-dimensional schematic for the ARM is displayed

in figure 8.

To implement compartment-based jumps over the inter-

face, particle numbers within each of the auxiliary regions

are calculated. For the PDE auxiliary region, the number of

auxiliary particles can be calculated as

nPA(t) ¼
ð
VPA

c(x, t) dx, ð5:1Þ

where c(x, t) is the solution to the hybrid PDE in VP. Simi-

larly, the number of particles within the Brownian auxiliary

region is

nBA(t) ¼ j{ j: yj(t) [ VBAt}j, ð5:2Þ

with yj(t) the position of particle j at time t. These auxiliary par-

ticle numbers are used to calculate propensity functions, which

are then employed in an event-driven SSAwhich determines the

time of the next jump across the interface. These auxiliary

regions, the dynamics of which are simulated using the com-

partment-based method, are designed to bridge the gap

between the finest and coarsest representations. Particles

which jump from the macroscopic subdomain to the micro-

scopic subdomain are removed from the PDE auxiliary region

VPA by removing one particle’s worth of mass uniformly over

its width, and are then initialized with position chosen uni-

formly at random within VBA, the Brownian auxiliary region.

A movement in the opposite direction is completed by first

choosing a particle in VBA uniformly at random, removing it,

and then adding a particle’s worth of mass to the PDE solution

uniformly over the region VPA.

Reactions are completed using the appropriate method-

ology for the subdomain in which they reside, with the

exception that for reactions with at least one set of participat-

ing particles lying within the Brownian auxiliary region, VBA.

Firings of the reactions involving these subsets of particles

are implemented according to the SSA in order to prevent the

potential creation of individual-based particles within

the PDE subdomain. Pseudocode for the implementation

of the ARM is given in algorithm 3. For simplicity, we

present the algorithm for a single species in one dimension.

Algorithm 3. Auxiliary region method.

(3a) Initialize time t ¼ t0, set final time T, PDE/Brownian

update time step, Dt, the PDE discretization grid size,

hp, and the auxiliary region width, ha. Initialize particles

in the PDE subdomain, VP, and the Brownian sub-

domain, VB, as required. Calculate the time until the

next PDE and Brownian update step tD ¼ t þ Dt.
(3b) Calculate the number of particles nPA and nBA in the

auxiliary regions, using formulae (5.1) and (5.2),



Table 4. A summary of the macro-micro hybrid papers that will be covered in this section. The methods in the macro-micro hybrid papers are designed for
modelling a diverse array of applications. Each of these papers is concerned with the development of a novel hybrid method, apart from the paper by Gorba
et al. [87], which uses a method they previously developed [88] in order to model the movement of cytochrome c molecules in the presence of a charged
surface. Descriptors are as in table 2.

paper type system modelled

Smith & Yates [44] spatially coupled, non-adaptive, no overlap reaction – diffusion

Franz et al. [89] spatially coupled, non-adaptive, no overlap/overlap reaction – diffusion

Geyer et al. [88] spatially coupled, non-adaptive, no overlap reaction – diffusion

Gorba et al. [87] spatially coupled, non-adaptive, no overlap electrostatics

Alexander et al. [90] spatially coupled, non-adaptive, no overlap reaction – diffusion

Alexander et al. [91] spatially coupled, non-adaptive, no overlap viscous gas (train model)

Plapp & Karma [92] spatially coupled, non-adaptive, no overlap dendritic growth

macroscopic domain microscopic domain

auxiliary regions

d

d

Figure 8. Schematic for the ARM [44]. The green line and yellow dots rep-
resent the same phenomena as in figures 1 and 5, respectively. The auxiliary
regions on either side of the interface are highlighted in red. The green and
yellow boxes within auxiliary regions represent compartment-based particle
numbers in the PDE and Brownian auxiliary regions, respectively. The
coloured arrows in the centre represent the conversion of particles between
the mesoscopic and microscopic auxiliary regions, similar to those in figure 1.
(Online version in colour.)
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respectively. Consequently, calculate the corresponding

propensity functions, aP(t) ¼ dnPA(t) and aB(t) ¼
dnBA(t). Calculate propensity functions for any relevant

reactions within VBA, and finally the sum of all the

propensity functions to give a0.

(3c) Calculate the time, t, until the next auxiliary region

event according to equation (3.1). Update the auxiliary

region time tc ¼ t þ t.

(3d) If tc , tD
(i) Draw three random numbers u1, u2, u3 � Unif(0, 1).

(ii) If u1a0(t) , aPA(t) (corresponding to a jump from

VPA to VBA):

— Remove a particle from the PDE auxiliary region

according to

cðx, tÞ ¼ cðx, tÞ � 1

ha
0½x[VPA�:

— Initialize a new particle uniformly within VBA

with position y* ¼ u2ha þ I.
Else if u1a0(t) , aP(t) þ aB(t) (corresponding to a

jump from VBA to VPA):
— Choose a particle at random from within the Brow-

nian auxiliary region and remove it from the system

by selecting an index q according to q ¼ du3nBAe
(where dxe represents the smallest integer greater

than x).

— Add a new particle into the PDE auxiliary region

according to

cðx, tÞ ¼ cðx, tÞ þ 1

ha
0½x[VPA�:

Else (corresponding to a reaction in VBA).

— Use u3 to choose a reaction to be implemented

from the list of possible reactions with prob-

ability proportional to its propensity function.

— Enact the reaction chosen in the previous step

according to the usual kinetics of the reaction

pathway.

(iii) Set t ¼ tc

Else

(i) Update the PDE system using an appropriate

numerical method.

(ii) Implement any reactions in VB using any appropri-

ate method. Note that production reactions should

be implemented after any degradation reactions in

order to prevent particles being created and

destroyed in the same time step.

(iii) Update the positions of the Brownian particles

according to equation (2.2), including any boundary

conditions.

(iv) Set t ¼ tD, update tD ¼ t þ Dt.
(3e) If t , T, return to (3b), otherwise stop.

As with the PCM and GCM, we have replicated some of the

results from [44] using the ARM (see figure 9). For these

examples, the macroscopic subdomain is VP ¼ (21, 0) and

the microscopic, Brownian subdomain is VB ¼ (0, 1). Both

auxiliary regions are set to be of size ha ¼ 0.05, and the

time step for both the Brownian and PDE updates are set to

Dt ¼ 0.01. All other parameter values are as in the previous

simulations. The results in figure 9 are shown for the same

initial condition as in figure 6.

5.2. Other macro-micro hybrid methods
Franz et al. [89] present a macro-micro hybrid method in

which the coupling is completed directly, without the use
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Figure 9. Replication of results from the ARM [44]. Descriptions for the PDE and Brownian domains are as in figures 2 and 6, respectively, with parameter values
given in the text. (Online version in colour.)

macroscopic domain microscopic domain

d-function a

Figure 10. Schematic for the method by Franz et al. [89] (without overlap
region). The green line and yellow dots represent the same quantities as in
figure 8. The orange mass labelled a is the amount of mass that flows over
the interface in a small time interval (comprising several PDE updates). Its
total mass is used to find the probability of a particle being initialised in
the microscopic subdomain, and its profile acts as a scaled probability density
function for the position of the new molecule. The spike in the PDE solution
is representative of a Dirac delta function which is added to the PDE at
the location that a Brownian particle has jumped to from the Brownian sub-
domain. (Online version in colour.)
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of a compartment-based intermediary regime (figure 10). In

the microscopic subdomain, particles evolve their positions

according to Brownian motion. The corresponding Fokker–

Planck equation which describes the evolution of the

probability density of each particle is the diffusion equation.

The conversion of PDE mass to individual particles is

achieved by allowing PDE mass to flow over the interface

and probabilistically determining whether sufficient mass

has crossed the interface to warrant the instantiation of a

new Brownian particle. Conversely, Brownian particles cross-

ing the interface in the opposite direction are realized as delta

function contributions to the PDE solution at the position at

which they arrive at the end of their jump.

Upon finding that their initial coupling algorithm can cor-

rectly maintain mean particle concentrations, but incorrectly

matches particle variance profiles, Franz et al. [89] adapt

their algorithm by incorporating an overlap region in which

some of the mass is represented as PDE and some as Brow-

nian particles. At the interface at one end of the overlap

region, PDE mass is converted into particles, as before, and
at the the other end, particles are incorporated into the PDE

by the addition of delta functions as previously. The addition

of this overlap region corrects the variance of the particles

in the purely Brownian region of the hybrid simulations.

Geyer et al. [88] also allow mass from the PDE to flow over

the interface. They introduce two methods to interface Brow-

nian dynamics simulations for diffusion to a deterministic

macroscopic density-based representation. The first method

couples individual particles to a constant density reservoir,

whereas in the second, the macroscopic subdomain itself

evolves according to a discretised version of the diffusion

equation. In the first case, the authors ensure the correct move-

ment over the boundary by removing particles when they cross

into the reservoir from the Brownian dynamics subdomain,

and inserting new particles into the Brownian dynamics sub-

domain with an appropriate rate and position. The rate and

position are determined by using the fundamental solution

of the diffusion equation to calculate the probability density

function (PDF) and magnitude of mass which has flowed

over the interface in the intervening time period. This can

then be used to determine if, and where, a particle should be

placed in the microscopic Brownian dynamics subdomain.

For their second hybrid method (figure 11a), which couples

Brownian particles to a dynamic PDE, the PDE mesh point

located closest to the interface is used to determine the PDF of

particles flowing into the Brownian subdomain (i.e. it is treated

as a constant density reservoir as in the fixed-density case). This

relies on choosing a PDE mesh width that is sufficiently large

(and thus sacrificing accuracy for the PDE solution) or a time

step that is sufficiently small so that the majority of the mass

that flows in to the Brownian subdomain originates in this

region. However, the value of the PDE solution at this mesh

point is allowed to evolve dynamically according to diffusive

fluxes. The flux into this PDE mesh point from the Brownian

dynamics side is proportional to the net number of particles

which have flowed between the regions in the preceding time

step. The flux from the remainder of the PDE subdomain is cal-

culated according to the usual centred finite-difference

approximation of the diffusion equation.

The first method is then used by Gorba et al. [87] to investi-

gate the behaviour of cytochrome c molecules which move in

the presence of a charged membrane. Two kinds of external

force are considered (electrostatic interaction and van der

Waals forces) between pairs of cytochrome c molecules and

between cytochrome c molecules and the charged membrane.

The system is modelled as follows. The region of interest

(figure 11b) is a cuboid-shape box, with equal width and
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Figure 11. (a) Schematic for the method presented by Geyer et al. [88]. The green lines and yellow dots represent the same phenomena as in figure 8. The
additional green line which resides in the microscopic subdomain is the mass which flows over the interface after a given time, where r0 is the density at
the PDE mesh point adjacent to the interface and s ¼ 2

ffiffiffiffiffiffiffi
DDt
p

is the average Brownian step size during a time interval of length Dt. (b) Schematic for
the application presented by Gorba et al. [87]. The yellow dots are the same as in figure 8, while the green region is a constant density heat-bath. There
are reflective boundary conditions on all sides of the computational domain, with the exception of the lower boundary, denoted in orange. This is a repulsive
boundary caused by the van der Waals forces, representing the charged boundary. (Online version in colour.)
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Figure 12. Schematic for the method by Alexander et al. [90]. The green line
and yellow dots represent the same phenomena as in figure 8. The green
dots residing within the PDE subdomain are particles initialized at the begin-
ning of a time step (the numbers of particles within the corresponding region
obtained by direct integration of the PDE solution). Black arrows show the
directions and magnitudes of next movement of all particles. (Online version
in colour.)
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length. On each side of the box, reflective boundary conditions

are implemented, while the base of the box has a repelling

boundary condition due to the repulsion caused by van der

Waals forces between the membrane and the molecules. At a

prescribed height there is an interface, below which particles

evolve according to a Langevin equation, and above which is

a fixed-density reservoir of particles. All simulations using

this method are initialized with no particles in the Brownian

subdomain, with particles entering solely via the reservoir.

The authors compare the results using their hybrid coupling

algorithm with previous simulation results, which assume a

fixed number of particles with a zero-flux boundary condition

replacing the reservoir at the top of the box. They show that

the shape of concentration profiles as a function of distance

from the membrane generated by the two methods agree.

In contrast with the previous works presented here,

Alexander et al. [90] introduce a hybrid method to couple

an SPDE (as well as a similar algorithm for a PDE) to
Brownian dynamics (figure 12). Separating the continuum

and individual-based subdomains is an interface, over which

particle fluxes are matched to ensure that particle movement

is correctly calculated between the two descriptions. The conti-

nuum subdomain is divided into a mesh, upon which the

solution to the SPDE/PDE is calculated numerically. In the

particle-based subdomain, particles move according to the stan-

dard off-lattice Brownian motion SDE. The hybrid algorithm

progresses in discrete time with both subdomains using the

same time step.

To hybridise the two methods, at the beginning of each

time step, an integer number of particles are uniformly initi-

alized within the SPDE/PDE voxel closest to the interface,

referred to as the ‘handshaking’ region. The number of par-

ticles initialized is the closest integer to the value of the

SPDE/PDE solution at the handshaking mesh point at the

beginning of the time step. All particles (both in the hand-

shaking region and elsewhere) are then evolved according

to the standard Brownian motion equation. The number of

particles crossing the interface gives the flux into the hand-

shaking mesh point which is stored and later implemented

when the PDE/SPDE values are updated. Any particles

that do not reside in the Brownian subdomain following

the position update step are removed from the simulation.

All other SPDE/PDE fluxes are calculated using the discre-

tized version of the SPDE/PDE equation and the values of

the mesh points are consequently updated.

In a later paper, the same authors also consider correlated

systems [91]. They develop a hybrid algorithm for the train

model which describes the transport of material in a viscous

gas. This model is chosen due to its relative simplicity and the

readily derived continuum (SPDE/PDE) counterparts which

are straightforward to solve numerically. The train model

can be summarized as follows: several trains run parallel to

one another at different speeds with varying numbers of

passengers. Passengers jump, with exponentially distributed

waiting times, between neighbouring trains, changing the

momentum of the participating trains. At each end of the

array of trains are ‘platforms’ which move at a fixed velocity

and contain a reservoir of passengers.
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The authors couple a discretized version of the SPDE/

PDE representation of the train model to the discrete individ-

ual-based description. Both the discretized SPDE/PDE and

the train model are simulated with the same grid spacing.

Separating the two subdomains is an interface. The hybrid

algorithm uses flux-matching for both the velocity and the

momentum over the interface, while also maintaining the

long-range spatial correlations in the velocity caused by sto-

chastic fluctuations. The algorithm employed is analogous

to the one that is presented in Alexander et al. [90]. At the

beginning of a continuum time step the first voxel in the con-

tinuum part of the domain (called the ‘handshaking’ region)

is filled with particles. The number of particles initialized is

the nearest integer value to the SPDE/PDE solution in this

voxel. Each of these particles is also assigned a velocity

which corresponds to the velocity of the continuum model

at that point. The individual-based particles are then evolved

and the fluxes of velocity and momentum over the inter-

face are calculated. These values are then used within the

continuum solver in place of the the fluxes over the interface.

Finally, Plapp & Karma [92] introduce a hybrid method for

simulating interfacial patterns, with specific application to

dendritic crystal growth. In the inner region, which includes

the area in which the crystal is growing and a buffer layer of

liquid adjacent the interface, a discretized version of the diffu-

sion equation is solved and the position of the crystal interface

is updated using a deterministic phase-field approach. This

update method is coupled to particles evolving according to

off-lattice Brownian motion. The time step at which the pos-

itions of particles are updated increases the further away the

particles are from the interface. At the edge of the inner

region between the crystal surface and the outer region is a

‘buffer region’ of undercooled liquid. This buffer region acts

to damp the stochastic variation of the outer region to negli-

gible levels at the crystal surface. Adjacent to the interface

between in the inner and outer regions are ‘conversion cells’

which facilitate the conversion of Brownian walkers into

PDE density and vice versa, via the implementation of bound-

ary conditions on each of the models. A Dirichlet boundary

condition for the PDE is determined by the number of Brow-

nian particles residing in each of the conversion cells. In the

other direction, the heat flux over the boundary is collected

in a reservoir. If the value of the reservoir exceeds a threshold,

H, a new particle is added to the cell. If it drops below 2H,

then a particle is absorbed and consequently removed from

the corresponding conversion cell.

6. Other hybrid methods
Within this section, we investigate some other hybrid

methods that do not fall within any of the above three

categories. The section will encompass microscopic-to-

molecular dynamics spatially coupled methods, together

with hybrid methods which are typically designed to

represent hydrodynamical systems, adaptive mesh and algor-

ithm refinement and quasi-continuum (QC) methods. We

will also investigate another class of hybrid methods, which

we shall call ‘species splitting’, where different species are

simulated using different representations.

6.1. Micro-molecular methods
In this subsection, we present a paper that introduces hybrid

methods for coupling a molecular dynamics model to a
corresponding Brownian motion model for the movement of

a large particle in a surrounding ‘molecular’ medium.

Erban [45] introduces one such spatial hybrid method in

one and three dimensions (figure 13). The author motivates

the use of such a method by considering a large focal protein

molecule which is being moved by interactions with the

smaller water molecules that surround it. The protein mol-

ecule is modelled as a hard sphere with a larger radius and

mass than the water molecules. The motion of the molecules

in this molecular dynamics model is fully deterministic once

the molecules have been randomly initialized, with changes

in velocity caused by momentum exchange. If the protein

molecule were to be modelled using Brownian dynamics or

the Langevin equation (respectively), the interactions

between it and the surrounding water molecules could be

encapsulated implicitly through the random changes in pos-

ition or velocity (respectively) of the protein. Erban [45]

demonstrates the equivalence between the motion of the

protein molecule in the molecular dynamics simulation to

the motion specified by the corresponding Langevin or Brow-

nian dynamics equations in certain limits. This equivalence

engenders the possibility of a hybrid method.

In both the one- and three-dimensional hybrid methods,

the domain is split into two subdomains: one in which

water molecules are explicitly simulated and the other in

which the water molecules are modelled implicitly and the

protein moves according to the appropriate Langevin

equation. The first coupling algorithm introduced is for a

one-dimensional domain, in which water molecules are initi-

alized across a subset of the real line according to a spatial

Poisson point process with a specific density, while velocities

are normally distributed with zero mean and variance which

incorporates the diffusion coefficient, the ratio between the

large and small particles’ masses and a friction coefficient.

Collisions between water molecules and proteins are elastic

and subject to conservation of momentum. Any water mol-

ecules which leave the molecular dynamics subdomain are

removed from the system. Molecular dynamics particles

can also be created towards the edges of the subdomain,

and are initialized using a normalized complementary

error function. This maintains the density of water molecules

in the molecular dynamics heat bath. The three-dimensional

algorithm is similar. The algorithms are time-driven, that

is the system is evolved by implementing exchange of

momentum through collisions, updating positions, and the

addition and removal of heat bath molecules at each fixed

time step. There is a constraint on the size of the time step

to ensure that at most one macro particle enters the subdo-

main in each time step. A similar coupling is presented in

Erban [93].
6.2. Hydrodynamics
While most of the examples that have been presented in

§§3–5 are designed to represent reaction–diffusion systems

(with noted exceptions), these are not the only systems in

which spatial hybrid methods have been employed. In this

subsection, we review spatial hybrid methods and their

uses in modelling hydrodynamics in an efficient and accurate

manner.

The most common type of spatially coupled hybrid

method employed within hydrodynamics is macro-

micro couplings. Donev et al. [94] couple the stochastic



microscopic domain molecular domain

Figure 13. A schematic for the method presented by Erban [45]. The large
yellow circle is an individual particle ( protein molecule) with mass, volume
and velocity. The small purple dots represent the molecular dynamics par-
ticles (air/water molecules) and also have a mass, volume and velocity.
(Online version in colour.)
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hydrodynamics model given by the Landau–Lifshitz

Navier–Stokes (LLNS) equations, to a corresponding direct

simulation Monte Carlo representation. The LLNS equations

include hydrodynamic fluctuations, and, as such, are SPDEs.

They are simulated using a fixed-time, three-stage Runge–

Kutta integration scheme (a finite-volume method) although

the authors note that other finite-volume explicit schemes

can be substituted. Within the particle subdomain, the hydro-

dynamics are simulated using a fixed-time stochastic

momentum exchange method which preserves the essential

hydrodynamic properties of molecular dynamics. The

timescale of the micro solver is smaller than that of the

macro solver, so that multiple particle updates occur for

every continuum update. This is in contrast with PDE-

assisted Brownian dynamics [89] for reaction–diffusion

systems which does the opposite.

Within the continuum subdomain, the only quantities

that need to be considered are the conserved variables of

mass, momentum and energy within each continuum cell,

as well as the continuum normal flux between any two neigh-

bouring macroscopic cells. Within the particle subdomain,

inter-atomic forces are simulated by stochastic collisions, so

that any particles within a given distance have a probability

of colliding. Separating the two subdomains is an (adaptive)

interface. The coupling algorithm ensures that both the fluxes

and the states (density, momentum and energy) at the inter-

face are continuous by introducing a state-flux coupling

methodology; the macroscopic LLNS equations act as a

source of particles into the microscopic subdomain at the

interface, and the particles impose a flux boundary condition

on the continuum. To impose the state boundary condition

from the continuum subdomain onto the particle subdomain,

a reservoir of temporary particles (in a small region within

macro cells adjacent to the interface) are initialized (every

micro time step) with some velocity and temperature

according to a Maxwell–Boltzmann or Chapman–Enskog

distribution chosen to match the velocity and temperature

of the associated macro cell (reminiscent of the method of

Alexander et al. [90] for modelling diffusion). The number

of these particles is chosen to match the continuum density

in the associated macro cell. The particle flux over the inter-

face is calculated and stored every micro time step and
imposed on the continuum solver at the end of every macro

time step.

There are other methods which also use an interface in

order to couple two subdomains. Flekkøy & Coveney [95]

couple the mesoscopic dissipative particle dynamics to the

derived Langevin equation in order to simulate the move-

ment of large colloid molecules. O’Connell & Thompson

[96] also use an interface in order to create a generic algorithm

for simulating a macroscopic and microscopic representation

of a fluid system. The authors couple by averaging the vel-

ocities of the individual particles close to the interface,

providing a boundary condition for the corresponding

continuum model.

Overlap regions have also been employed in the hydro-

dynamics literature. Flekkøy et al. [97] couple a macroscopic

PDE to a microscopic method in which particles interact

according to Lennard-Jones potentials [98]. Separating the

two subdomains is an overlap region in which both the par-

ticle and continuum descriptions are valid. The conservation

of mass and momentum between the two regions is handled

explicitly using flux exchange, which means that the coupling

scheme adheres to the relevant conservation laws.

Within the continuum description, the mass and momen-

tum fluxes are represented using finite differences across each

continuum node. These finite-difference approximations are

used to advance the continuum equations in time. The

boundary conditions derived from the particle region are

implemented on the continuum representation by replacing

the fluxes at the end of the continuum subdomain with the

mean mass and momentum fluxes of particles around

the boundary, averaged over a continuum time step. To

implement the fluxes of mass and momentum from the

macroscopic to microscopic subdomain, a number of particles

per unit time (determined in order to conserve mass flux)

are placed into a region close to the boundary of the particle

subdomain. Additionally, the velocities of the particles are

chosen to conserve the flux of momentum. The authors

note that there is an asymmetry relating to the fluctuations

using their method; the continuum subdomain effectively

acts to damp fluctuations in the particle subdomain meaning,

for example, that fluctuations in particle numbers will be

diminished in comparison to predictions from statistical

mechanics (reminiscent of the damping of the Brownian

dynamics by the PDE observed by Franz et al. [89]).

A second coupling, presented by Wagner & Flekkøy [99],

extends previous works [97,100], in which fluxes for momen-

tum and mass were preserved between the two subdomains,

to the situation in which energy flux is also conserved.

The authors also investigate the limitations of this hybrid

representation when simulating both homogeneous and

gradient flow.

The continuum equations are discretized using a centred

finite-difference scheme on a regular mesh. Separating the

continuum and particle subdomains is an overlap region

which allows for the conservation of flux between the two

descriptions. To calculate the continuum flux for the penulti-

mate node within the overlap region (which corresponds to

the boundary of the particle subdomain), a similar method

to the one employed by Flekkøy et al. [76] is used. One of

the terms in the centred finite-difference approximation is

replaced by the corresponding value from the particle subdo-

main at the particle end of the overlap region. These fluxes

(for mass momentum and energy) are then arithmetically
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averaged with the corresponding mean fluxes of the particles

that occupy positions within the final voxel of the overlap

region. These mean fluxes are then used to implement

Neumann boundary conditions on the final node of the

continuum representation. The same averaged fluxes are

implemented on the particle subdomain by adding/

removing particles to/from the microscopic description in a

region corresponding to the penultimate node of the conti-

nuum discretization. To ensure that both momentum and

energy are conserved, velocities and accelerations of particles

in the overlap region are altered accordingly.

Several other papers have adopted the use of an overlap

region. Wagner et al. [100] use mutual flux exchange in

order to couple their finite-difference representation of a

PDE for fluid flow to the corresponding microscopic

dynamics. The authors measure the fluxes for mass, momen-

tum and energy in order to ensure conservation. Delgado-

Buscalioni et al. [101,102] present two further papers which

couple using flux conservation. These methods use flux

exchange from the continuum to particle density in order to

modify the microscopic description, while fluxes in the oppo-

site direction supply boundary conditions for the continuum

representation.

Delgado-Buscalioni et al. [103] present a hybrid method

with three spatial scales—coupling the macroscopic to the

mesoscopic to the microscopic scales, with an application to

liquid water. The authors use two different schemes in

order to complete the coupling. To couple between the

macro- and microscales, the HybridMD scheme is used

[104] and to couple the microscale to the mesoscale, the

xadaptive resolution scheme (AdResS) is employed [105].

There are many other papers that have addressed hybrid

methods for hydrodynamics. We direct the interested reader

to the reviews of Koumoutsakos [106] and Mohamed &

Mohamad [107] and the work of Hadjiconstantinou [108]

for further details.

6.3. Adaptive mesh and algorithm refinement
Adaptive mesh refinement (AMR) is a method for evaluating

PDE solutions on inhomogeneous domains, in which coarse

cells are recursively refined in both time and space in regions

of high sensitivity [109]. Adaptive mesh and algorithm

refinement (AMAR) extends the idea of AMR. The difference

between AMR and AMAR is that when the predefined high-

est spatial resolution has been reached, AMAR switches to

using a discrete method for simulating the underlying

phenomena. The coupling between the coarse PDE and the

fine discrete method is completed using a buffer region resid-

ing within the PDE region close to the interface between the

two subdomains. Particles are created within this region at

the beginning of the fixed PDE update time step with the

appropriate physical quantities such as mass, momentum

and energy, and are then allowed to flow forwards in time.

This provides boundary conditions for the two systems.

Garcia et al. [110] and Williams et al. [111] use AMAR in

order to accurately model hydrodynamic flow.

6.4. Quasi-continuum methods
QC methods combine continuum and atomistic represen-

tations for modelling crystalline structures, and were first

introduced by Tadmor et al. [112]. Shenoy et al. [113] propose

a hybrid method for coupling the atomistic-scale dynamics of
solid deformation to a corresponding continuum description.

The QC method exploits the kinematic constraints inherent to

the atomistic lattice, reducing the large number of degrees of

freedom by employing the finite-element method in order to

simplify the minimization of the potential energy associated

with the system under a deformation. The system of interest

is typically made up of a huge number of atoms, and conse-

quently has an extremely large number degrees of freedom. It

is, therefore, computationally difficult to calculate any quan-

tity of interest. To reduce the number of degrees of freedom, a

subset of the atoms are chosen to be representative atoms. Each

representative atom is a proxy for a number of neighbouring

atoms, reducing the number of degrees of freedom. Close to

the deformation, where each atom experiences a different

local environment, atoms are represented individually. In

these regions, an atomistic, nonlinear approach to calculating

the energy is required. Further from the deformation, where

nonlinear effects are negligible and each representative

atom is a proxy for some of its neighbours, linear elasticity

theory is used. This allows for the faster calculation of the

energy landscape in large regions of the spatial domain with-

out the loss of accuracy in the regions in which a more

detailed representation is required. The condition which

specifies the homogeneity, or otherwise, of a local region is

determined by calculating the right stretch tensor of

the deformation. If the maximum difference of the eigen-

values over any pair of atoms within a given distance is

less than a predetermined threshold, it is treated as a near-

homogeneous environment. This ensures that the algorithm

adaptively chooses which regions are to be treated as homo-

geneous. However, the algorithm does create additional

forces, referred to as ‘ghost forces’, due to the hybridization.

These are corrected for by applying correction forces within

the energy minimization calculation.
6.5. Other hybrids
This section contains several hybrid methods that do not fall

into the spatially coupled reaction–diffusion, or hydrodyn-

amics categories. They are designed to model a wealth of

different mathematical, biological and physical problems

and employ a variety of hybridization techniques.

Jeschke & Uhrmacher [35] introduce a hybrid method for

the simulation of macromolecular crowding. They combine

the mesoscopic next subvolume method (NSM) [63] for the

efficient simulation of compartment-based reaction–diffusion

systems with an off-lattice representation of large crowding

particles (crowders). The crowders are spherical and evolve

according to an individual-based method which assumes

random movements of particles over fixed time intervals. All

other particles are updated using the NSM on a square lattice.

Crowders occupy a certain volume. As they move, the

volume that is available for the compartment-based particles

and their interactions changes. Any compartments that

intersect a crowder are subdivided, using an octree refine-

ment algorithm, until a predefined number of subdivisions

have been completed. The volume of the compartment that

is occupied by the crowder is then approximated as the

number of sub-octants that intersect it. The crowders and

compartment-based particles can interact with one another.

For example, the location of overlapping crowders will

influence the neighbouring compartments into which com-

partment-based particles are able to diffuse. Diffusion
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occurs at the usual diffusive rate, but scaled down by the

proportion of the boundary between the current compart-

ment and the neighbouring compartments that is occupied

by crowders. Particles can also bind to the crowders, meaning

that they are removed from the NSM reactions list and move

about with the crowder. When the crowders move, they

‘push’ the compartment-based particles into the unoccupied

region of their current compartment, or into neighbouring

compartments if the crowder completely fills their current

compartment. All movements, reactions and steric inter-

actions are controlled by the ‘coordinator component’

which keeps track of all putative next event times, schedules

the next reaction and updates the two systems.

There are many spatially extended hybrid methods in

which some species are represented using continuum

models throughout the domain and others using discrete

models in the same domain. These methods are popular

when representing species which are inherently different in

copy number throughout the domain. For example, small

numbers of chemotaxing bacterial cells might be represented

using an individual-based model, whereas the chemical

signal to which they respond might be represented as a con-

tinuum. As these models are not the primary focus of this

review (rather we focus on models in which the same species

is represented variably throughout the domain), we will give

only a brief mention to some of these hybrid methods.

Cancerous tumour behaviour has frequently been rep-

resented using such hybrid methods. Anderson & Chaplain

[29] model angiogenesis—the directed growth of blood

vessels towards the tumour. To do so they couple the macro-

scopic system of PDEs governing the growth of a tumour to a

discrete model of blood vessel formation on a lattice. The dis-

crete model is used in order to investigate how individual

cells branch and undergo anastomosis and mitosis close to

the tips of blood vessels which have sprouted. The authors

also use a similar method to model the invasion of healthy

tissue by a solid tumour [12]. Other examples of tumour

growth hybrid methods include the use of cellular automata

[30,31] and a method that models the environment as a con-

tinuum, while the tumour cells themselves are discrete and

react the environment [34]. A similar idea has also been

employed by Franz et al. [13], in which bacteria respond to

a chemotactic signal. The signal is modelled by a continuum

PDE, which the bacteria, modelled as individuals, can adapt

and respond to.
7. Discussion and outlook
Within this review, we have explored the rich and diverse

field of spatial hybrid methods, and illustrated how they

can be used in order to probe previously intractable problems

in the biological and physical sciences. Biological and

physical phenomena exist at a variety of temporal, spatial

and population scales [1,114–117]. Take, for example, the

formation of calcium puffs at the endoplasmic reticulum

[1]. Just before a calcium ion channel opens, the number

of calcium ions is small. However, once the channel opens,

the number of particles becomes orders of magnitude

larger. Further away from the channels, particle numbers

remain relatively small until diffusion disperses them. Even

for a single phenomenon, populations can vary over orders

of magnitude, making traditional modelling approaches
difficult. Novel modelling methods which span these scales

in a computationally efficient manner may provide insights

into these phenomena. This is precisely the purpose of

many of the hybrid methods reviewed in this paper—they

permit the representation of multiple scales within a

system, allowing for efficient and accurate simulation. This

review has focussed mostly on spatially coupled hybrid

methods for reaction–diffusion systems that allow space to

be partitioned into subdomains in which different modelling

paradigms are employed.

We covered couplings that broach four different spatial

scales—the macro, meso and microscales, together with mol-

ecular dynamics. We have provided detailed summaries of

illustrative examples for macroscopic-to-mesoscopic (PCM

by Yates & Flegg [41]), mesoscopic-to-microscopic (GCM by

Flegg et al. [43]) and macroscopic-to-microscopic (ARM by

Smith & Yates [44]) couplings, together with pseudocode

for their implementation and demonstrations of worked

examples, in order to facilitate the use of such hybrid

methods. In addition, in the electronic supplementary

material for this paper we provide working Matlab code

for each of the three methods. Schematics and descriptions

of various other methods provide an extensive yet non-

exhaustive list of possible hybrid methods, which should be

chosen depending on the application at hand, and the type

of coupling desired.

While not the focus of this review, there are other hybrid

methods in which space is not modelled explicitly. Several

hybrid methods concern the simulation of well-mixed

chemical systems [15–18,21] while epidemiology [14] and

stochastic reaction networks [19] have also been investigated.

We have also described several spatially extended methods

which used different types of hybridization within §6.

This review contains a summary of the current state of

spatial hybrid methods. We now look to the future and direc-

tions in which the area will progress. While much work has

been completed within the field, there are still issues that

are common to many of the methods. Chief among these is

variation in hybrid methods that involve deterministic

PDEs compared to the full solution simulated using a

stochastic approach. Typically, the deterministic nature of

the continuum model results in damping of the variation in

the stochastic subdomain in comparison to that of the fully

stochastic method. Some authors have fixed this problem

by incorporating an overlap region instead of an interface

[75,76,89]. Within the overlap region, mass is simultaneously

modelled using both representations. A second method for

resolving the variance is to replace the PDE with an appropri-

ate SPDE, a macroscopic model for which stochasticity is

inherently incorporated. Provided the stochasticity is chosen

in a consistent manner (consistent with the fully stochastic

method), hybrid methods have been postulated for which

the variance in the individual subdomain has been shown

to match that of the fully stochastic model [90].

As mentioned in §6, recently there has been work to

couple microscopic descriptions to molecular dynamics.

Erban [45,93] has pioneered work in this area, providing

methods which do just this. This type of method can be

used in order to simulate biological phenomena at the mol-

ecular level, which even microscale Brownian motion may

be unable to accurately capture.

There is a relative abundance of spatial hybrid methods

(attested to by this review). Although we have presented a
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small number of papers which employ these methods in real

physical and biological problems, there still remain very few

practical applications of such methods. Whether this is due to

the complexity of the hybrid methods in comparison to their

single model counterparts or to the low profile of such

methods, the challenge remains for the developers of such

hybrid algorithms to realize the potential impact of their

methods by applying them to real problems. We hope that

this review has served the purpose of increasing the profile

of hybrid methods, while simultaneously making them

more accessible to the user.
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