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Abstract

A fundamental problem in vision science is how useful perceptions and behaviors arise in the absence of information about
the physical sources of retinal stimuli (the inverse optics problem). Psychophysical studies show that human observers
contend with this problem by using the frequency of occurrence of stimulus patterns in cumulative experience to generate
percepts. To begin to understand the neural mechanisms underlying this strategy, we examined the connectivity of simple
neural networks evolved to respond according to the cumulative rank of stimulus luminance values. Evolved similarities
with the connectivity of early level visual neurons suggests that biological visual circuitry uses the same mechanisms as a
means of creating useful perceptions and behaviors without information about the real world.
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Introduction

Perceptions of lightness and brightness elicited by stimulus

luminance are the basis of all visually guided behavior. Light

projected onto the retina, however, is unable to specify the

generative sources of luminance in the world in which we and

other visual animals behave [1]. As shown in Figure 1, no logical

operation on retinal luminance values can retrieve the surface

reflectance properties of objects, their illumination, or any other

relevant physical factors. As a result, it is difficult to understand

how visual circuitry generates useful perceptual and behavioral

responses.

To appreciate the problem that the conflation of reflectance and

illumination presents, imagine a range of objects with different

physical compositions in the complex illumination that occurs in

natural circumstances. The same object surfaces would often be in

different illumination, and thus return different luminance values

to the observer. Conversely, the luminance returned from two

physically different surfaces under different illuminants would

often be the same. It would thus be of little use to respond to the

retinal luminance as such. Indeed numerous studies have shown

that the visual system does not represent absolute luminance in

percepts [2–5]. Since visually guided behavior is generally

successful despite the inaccessibility of real world source properties,

these facts raise the question of how visual processing accomplishes

this feat.

One way of addressing this question is based on efficient neural

coding, a term used to describe models of visual processing that

minimize energy expenditure while maximizing the transfer of

information available in natural scenes [6–18]. A corollary is that

visual information will be transmitted more efficiently if the

luminance values and their higher order statistics are made

independent. Predictive coding, sparse coding, principle compo-

nent analysis, whitening and independent component analysis

have been proposed as models of biological visual processing. A

validation of efficient coding is that it can account for some aspects

of the receptive fields of early level visual neurons [9–17].

Although these models demonstrate the advantages of efficient

information transfer in visual processing, they do not explain: 1)

how visual agents are behaviorally successful in the face of the

inverse problem; 2) why the lightness and brightness values we see

in response to stimulus luminance, as well as perceptions of color,

form, distance and motion are not the physical parameters

measured in the visual environment; and 3) how neural

connectivity in biological visual systems instantiate perceptions

that successfully guide behavior.

A different approach that addresses these questions supposes

that visual connectivity and its perceptual consequences have

emerged over evolutionary and individual time simply by

associating patterns of retinal luminance and other stimulus

parameters with behaviors that lead to reproductive success [1,19–

21]. In this conception, the primary goal of vision is not efficient

coding (although efficiency is obviously important), but finding a

way around the fact that information about the physical properties

of world is not available. An indication of the strategy being used is

that the perception of light intensity and other perceptual qualities

accord with the cumulative ranks of the frequencies of occurrences

of stimuli [1,19–21]. The present study shows that simple neural

networks evolved on this basis give rise to connectivity that is

comparable to biological networks in early vision. These
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observations show that, in principle, vision can generate successful

behavior without access to (or measurement of) the physical world.

Results

The Paradigm
To explore how vision might work on a wholly empirical basis,

we used feed forward networks each comprising four neurons that

could evolve full connectivity (Figure 2). Two neurons were

adjacent sensors whose visual fields covered 1 square degree. The

luminance values received by the sensors were forwarded via

evolvable synaptic connections to an integrating neuron, and

subsequently to a response (output) neuron. Although photore-

ceptors respond to log luminance levels [22], the networks here

were presented with pairs of absolute luminance values to simulate

naturally arising stimulus elements on the retina. The values at the

output neuron indicated the circuit’s response to the luminance at

the target (left) sensor given the luminance at the context (right)

sensor. The terms target and context do not refer to a particular

sensor as one sensor serves as context for the other. At the outset of

evolution all 3 connections in the circuit existed only as possibilities

that could–or could not–evolve non-zero positive or negative

synaptic strengths.

The strength of each potential synapse in the evolving circuits

accorded with the neurobiological facts that: 1) a postsynaptic

conductance change, whether excitatory or inhibitory, is always

positively correlated with presynaptic depolarization; 2) the

synaptic transfer function is non-linear [23]; and 3) synapses can

be either excitatory or inhibitory, but not both.

Experience of the Evolving Circuits
Figure 3A shows the probability distribution of all possible

stimulus luminance pairs that the evolving circuits could experi-

ence, drawn from a database of natural images (see Methods). A

bias towards lower stimulus luminance values occurs because: 1)

more combinations of reflectance and illumination are possible for

lower luminance values than higher ones (Figure S1); and 2) there

are more low reflectance objects under low illumination in natural

scenes [24,25]. A bias towards similar adjacent luminance values

(the diagonal ridge in Figure 3A) occurs because nearby natural

objects tend to be made of the same material and illuminated in

the same way [26,27]. A section through this topology (red outline)

indicates the probabilities of stimulus luminance values at the

target sensor, given a particular luminance value at the context

sensor. Figure 3B shows the distribution of values in the section in

Figure 3A, and Figure 3C represents this distribution as the

accumulated experience of the evolving networks. Figure 3D

shows the full range of accumulated experience for all possible

target values given different context values, i.e. the cumulative

probabilities of all sections parallel to the red outline through the

topology in Figure 3A. Success, and thus a circuit’s chance of

reproducing members of the next generation, was measured by

comparing its responses to the empirically derived topology in

Figure 3D (see Methods and Discussion).

Evolution of the Networks
Beginning with responses arising from synaptic strengths

randomly initialized near 0 (Figure 4A), we examined the

average performance of populations of 500 networks in 25

different simulations. Performance over ,2000 generations

rapidly improved, and then began to asymptotically approach

a plateau (Figure 4B). Figure 4C shows the average evolved

responses for 25 simulations. Comparison of the topology in

Figure 4C with that in Figure 3D indicates that the responses of

the circuits evolved to approximate the cumulative experience of

the target values in each stimulus, as expected. The only

Figure 1. The inevitably uncertain meaning of luminance in
visual stimuli (the inverse optics problem). Retinal luminance
values are determined by combinations of illumination and reflectance,
as well as a variety of other factors (e.g., atmospheric transmittance,
spectral content, occlusion, object distance, etc.). These physical
determinants of retinal luminance values are conflated in visual stimuli
and cannot be disentangled by any algorithmic process (adapted from
[20], pp.22).
doi:10.1371/journal.pone.0060490.g001

Figure 2. The network, its potential connectivity, and the
evolutionary paradigm. Stimulus luminance values (LTarget and
LContext) were received by two adjacent sensor neurons. The potential
connectivity of the circuit (dashed red lines) was modeled according to
basic principles of synaptic physiology (see Methods). The small filled
circles indicate presynaptic terminals and the short arcs postsynaptic
sites. The value at the response neuron indicates the output of the
circuit to the luminance value at the target sensor given the context
value, which in turn determined the relative reproductive success of
each evolving circuit. The strength and sign of the connections that
eventually evolved were based solely on their contributions to
reproductive success.
doi:10.1371/journal.pone.0060490.g002

Empirically Evolved Networks
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constraints on the evolving networks were the restrictions on the

number of neurons in the network and the evolvable synaptic

transfer function.

Evaluation of Network Success
Given the rudimentary nature of the evolutionary paradigm, it

was not a given that the networks would develop responses

sufficiently similar to those evident in psychophysics to make

Figure 3. Experience of the evolving circuit population. (A) Probability distribution of different LTarget and LContext luminance pairs derived by
sampling real world images. Inset shows a magnification of the graph at lower luminance values. The section outlined in red indicates the
probabilities of any LTarget value occurring with a particular LContext value (0.1 in this example). (B) The probability distribution of the section in (A). (C)
The cumulative probability of the distribution in (B) normalized with respect to the highest cumulative frequency of occurrence. (D) Normalized
cumulative probability distributions for all LTarget values given different LContext values.
doi:10.1371/journal.pone.0060490.g003

Empirically Evolved Networks
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meaningful comparisons with biological visual circuitry. We thus

evaluated whether the evolved networks mimicked human

perceptual functions elicited by similar stimuli.

The relevant psychophysics are magnitude estimation functions

and contrast functions [5]. In magnitude estimation studies the

psychophysical functions observed are perceptions of luminance in

response to a range of target reflectance values presented on a

constant background under steady illumination [3,5,19]. The

phenomena evident in human magnitude estimation psychophys-

ics were apparent in all 25 simulations of evolved circuit responses

(Figure 5A) [19]. Thus: 1) the exponent for responses to target

luminance values above the context luminance is a power function

similar to Stevens’ Law. They increase with increasing background

luminance (,0.24 in low, ,0.32 in mid and ,0.57 in high

luminance backgrounds); 2) the functions change direction when

the context luminance is about the same as the target luminance;

3) when the target luminance values are presented with a higher

context luminance, the functions are shifted to the right; and 4) the

slopes of the functions are steepest when the target and

background luminance values are similar (the ‘‘crispening effect’’).

This last effect also means that more frequently occurring

luminance patterns are more finely resolved (and thus better

discriminated) than less frequently occurring ones, as is charac-

teristic of human performance [28].

Contrast refers to the relative lightness of two adjacent stimulus

luminance values. In human psychophysics one luminance value

(the ‘‘context’’) affects the perception of the other (the ‘‘target’’)

[5,20]. Thus the same target luminance value presented together

with a darker context value is seen as lighter than when presented

together with a lighter contextual luminance value. The circuit

responses to contrast in all 25 simulations were again similar to

those observed in human psychophysics (Figure 5B).

Network Mechanisms
Given this similarity between the evolved network responses and

human psychophysics, we next asked if the evolved connectivity

might provide some insight into the principles of the vastly more

complicated circuitry evident in biological systems. The central

diagram in Figure 6 shows the organization that evolved in all 25

simulations starting with the potential circuitry in Figure 2; the

networks were free to evolve any of the potential synaptic

connections that had randomly assigned values at the beginning

of the simulations. The evolved features, whose details are given in

Table 1, were:

1) The signs of the synapses linking the two sensors to the

integrating neuron were always opposite.

2) The direct connection from the target sensor to the

integrating neuron was always excitatory, and the indirect

connection from the context always inhibitory.

3) The synaptic connection from the integrating neuron to the

response neuron was always excitatory.

The evolved connectivity in Figure 6 thus uses opposing

synaptic transfer functions between the sensor and integrating

neuron, i.e. excitation from the target and inhibition from the

context, to give responses that follow the same trends as the

network’s cumulative experience (see Figure 3D). As luminance

values at the target sensor neuron increase for a given context, the

evolved values at the integrating neuron also increase. This is

achieved by the excitatory evolved direct connection from the

target sensor that increases the outputs at the integrating neuron as

a function of luminance, scaling them along the LTarget axis in the

right panel in Figure 6. At the same time, the inhibitory indirect

connection to the integrating node decreases the outputs of the

node as a function of the adjacent, ‘‘context’’ luminance values

thereby scaling them along the orthogonal LContext axis in the right

panel in Figure 6.

The responses obtained by summing these direct and indirect

influences at the integrating neuron, however, do not correspond

to the circuit’s accumulated experience with the stimulus

luminance pairs (compare the topology in the right panel in

Figure 6 with Figure 3D). In particular, the values at the

integrating neuron are negative when the target luminance value

is minimal and the contextual value maximal, and positive in the

opposite case. The output values of the integrating neuron are

therefore transformed by a further excitatory synapse such that

they effectively track the topography of accumulated experience in

Figure 3D (the left panel in Figure 6) and allow non-linear

responses. This synapse must be excitatory so that values at the

response node are always positive; negative frequencies of

occurrence and/or negative accumulated experiences are not

Figure 4. Evolution of circuit responses. (A) The average responses of the output neuron defined a nearly flat topology near 0 at the beginning
of evolution. (B) The average evolution profile of 25 populations of 500 circuits over the course of 4000 generations; the standard deviation is
indicated in gray. The rapid improvement over the first few generations arises because all connections are initialized near 0; once some connectivity
evolves, the responses quickly attain a degree of success. (C) The average responses of the output neuron of the 25 populations in (B) at the end of
evolution. The absolute standard deviation of the responses of the output neurons ranged between 0 and 0.02.
doi:10.1371/journal.pone.0060490.g004

Empirically Evolved Networks
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meaningful. Finally, the combination of the evolved synaptic signs

in Figure 6 means that the synapses in the circuit all have the

positive transfer function evident in biology, i.e., a direct

relationship between presynaptic depolarization and neurotrans-

mitter release. Any other arrangement of connections would

require at least one synapse to reduce transmitter release when

depolarized.

Given these mechanisms, magnitude estimation effects arise

from the excitatory direct connection in the evolved networks,

which increases responses as the luminance values increase in the

target sensor. Contrast arises from the inhibitory indirect

connection that progressively decreases the responses as the

luminance of the context increases. Thus a given target luminance

value should be seen as lighter in low luminance contexts, and

become progressively darker as the context luminance increases, as

is the case in human perception [1]. In short, contrast effects are

the result of the lateral inhibition that is needed to rank

environmental luminance values in the full range of each

network’s experience. As the cumulative ranks of luminance are

influenced by both their values and the correlations among

adjacent pixels, these aspects of the natural images are needed to

produce the target/context opponent mechanism.

Light Adaptation
In addition to circumventing the inverse problem (see Figure 1),

the evolved circuitry in Figure 6 has another important advantage:

the mechanism ensures that the relative sensitivity of the network

responses is reset by the frequencies of occurrence of the

luminance values in a stimulus. Just as biological visual systems

use center-surround receptive field organization to adjust the rates

of neuronal firing to accord with ambient light [29], lateral

inhibition in the evolved networks adjusts the responses according

to the frequencies of occurrence of luminance values in a

particular context (see Figure 5). The sensitivity of the output

neuron is thus maximal around the context value, where stimuli in

this range occur most frequently. The evolved circuit in Figure 6

thus automatically adjusts the response to the target luminance in

accord with the luminance of the context.

Discussion

Operation of Circuitry Evolved on a Wholly Empirical
Basis

Given the inability of photosensors to specify underlying

physical sources of light coming from the environment, one

way–we would argue the only way–a visual animal can relate

visual stimuli to useful responses is to evolve neural connectivity

that bridges the objective and subjective domains by trial and

error. In this conception of vision, the circuit response to a

stimulus is reflexive in the sense that there is no feature detection,

image analysis or feature representation. All the work that these

postulated processes entail has been done over evolutionary time

by trial and error that determines, by natural selection, the

circuitry that visual animals are born with. There is of course

modification of visual and other neural circuitry over an

Figure 5. Comparison of networks’ responses with human psychophysics. (A) Magnitude estimation functions generated by the evolved
circuits. Average circuit responses when the target sensor was presented with varying luminance values and the luminance at the context sensor was
held constant at three different levels (dashed lines). The curves show the average circuit responses to increasing target luminance values in different
contexts. (B) Circuit responses to stimulus contrast. The two curves are the responses of the target sensor to luminance values presented with a lesser
(blue) or greater (turquoise) luminance at the context sensor. Dashed lines indicate different circuit responses to the same target luminance when
presented in these different contexts.
doi:10.1371/journal.pone.0060490.g005

Table 1. Means and standard deviations of the evolved
parameters (A, B, C; see Methods) of the circuit in Figure 6
over 25 simulations.

Synapse Sign A B C

Direct synapse to the
integrating neuron

+ 3.460.07 3.460.10 1.460.05

Indirect synapse to the
integrating neuron

2 3.060.06 3.660.11 1.260.05

Synapse to the
response neuron

+ 1.060.01 5.860.12 0.660.24

doi:10.1371/journal.pone.0060490.t001

Empirically Evolved Networks
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individual’s lifetime, but the effects of neural plasticity only

modulate inherited connectivity [30,31].

Relevance to Biological Circuitry
Although the artificial neural circuits we evolved are vastly

simpler than the connectivity of even the most primitive biological

visual system, given that they confront the same problems in a

similar environment, the principles they exhibit should be broadly

similar to those underlying animal vision. In fact, the organization

of the evolved circuits in Figure 6 suggests an empirical rationale

for some key aspects of the connectivity evident in biological visual

systems. The most obvious of these is lateral inhibition, a feature

found in all animal visual systems that has generally been

considered a way to ‘‘sharpen’’ visual and other sensory

representations [32,33]. The present results suggest that the

prevalence of lateral inhibition at the early stages of biological

visual processing arises because it is essential to produce the

needed perceptual responses to any particular stimulus within an

agent’s experience (see Figure 6 and above). Whether luminance

intensity is directly correlated with transmitter release (as it is here

and in invertebrate photoreceptors) or inversely correlated (as it is

in vertebrate photoreceptors), lateral inhibition is essential for

successful responses in the above environment and emerges as a

consequence of the decrease in occurrence of higher luminance

values.

Another issue is the implied receptive field properties of neurons

in the evolved circuits in Figure 6. The emergence of lateral

inhibition suggests that if we were to evolve arrays that receive and

respond to larger areas of the visual space, the connectivity of the

circuits would lead to integrating neurons with opposing center-

surround receptive fields, as in the retina, thalamus and input layer

of the primary visual cortex [32,34,35].

Most important, cumulatively ranking luminance values gives

rise to non-linear network responses that accord with human

Figure 6. The evolved mechanisms used to generate successful responses. The central diagram shows the connectivity that consistently
evolved beginning with the circuit in Figure 2; excitatory synapses are indicated by (+) and inhibitory synapses by (2). The experience of the evolved
network (Figure 3D) is determined by the frequency of occurrence of luminance patterns (upper panel, redrawn from Figure 3A). The evolved
connectivity from the sensors to the integrating neuron represents this experience as a weak topology (right panel). The evolved connectivity from
the integrating to the output neuron transforms this topology into an approximation of the network’s cumulative experience (left panel). The evolved
responses to particular stimuli are approximations of the percentile rank of all the stimulus luminance pairs in the networks’ experience (see Table 1
for average values of evolved parameters).
doi:10.1371/journal.pone.0060490.g006

Empirically Evolved Networks
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psychophysics. The connectivity also results in lateral inhibition, is

similar to the physiology underlying light adaptation, and is

automatically efficient [8].

Conclusions
A central problem facing biological visual systems–or artificial

neural circuits responding to projected light–is that the physical

properties underlying stimulus luminance values are not available

in images. Much evidence now suggests that biological vision deals

with this quandary by generating perceptions and behavior

empirically. The present study explores underlying circuit

mechanisms that could accomplish this goal. The results show

that: 1) simple circuits can evolve connectivity and responses that

circumvent the inverse problem by cumulatively ranking stimulus

luminance values in the full range of accumulated experience; 2)

the responses generated in this way accord with the human

psychophysical responses to luminance; 3) the evolved mechanisms

that accomplish this goal can be understood in neurobiological

terms; 4) the mechanisms have been determined entirely by the

agents’ history and are thus reflexive rather than analytical; and 5)

the mechanisms of the evolved connectivity suggest rationales for

lateral inhibition, opposing receptive field organization, and

adaptation to ambient light levels. In sum, circuitry evolved on a

wholly empirical basis can generate behavioral success in a

physical world whose features cannot be apprehended, providing a

different way of understanding the organization and purposes of

biological visual systems.

Materials and Methods

Determination of the Frequency of Occurrence of Stimuli
The frequency of occurrence of a given luminance pair falling

on the two adjacent circuit sensors in Figure 2 was determined by

extraction with a corresponding template repeatedly applied to

4,167 natural images [13,20]. Each square degree in the images

comprised 3600 pixels (60660); the template was thus 606120

pixels (adjacent 1 deg2 patches). The template was moved

horizontally and vertically over each image in 10 pixel increments,

resulting in ,53 million samples. The luminance at each sensor

was taken as the mean luminance of each square degree. The

probabilities of occurrence of luminance values determined in this

way were similar to those in previous reports.

The images in the database provided a calibrated luminance

value at each pixel ranging from 0 to 70000 cd/m2. Because 92%

of the luminance values in the database fell below 3000 cd/m2,

values from 3000 to 70000 were too sparse to sample, leaving ,49

million potential stimuli for presentation to the networks. These

values were normalized to range between 0 and 1. In each

generation, 10,000 stimuli were drawn at random from this set and

presented to the circuits. Data extraction from natural images was

done in Matlab (R2009a, The MathWorks, Natick, Massachusetts,

USA).

Synaptic Transfer Function
The synaptic transfer function we used can be formally

expressed as

Post~
+A

(1ze{B�PrezC)

where Post is the magnitude and sign of the postsynaptic

conductance change, and Pre is the presynaptic membrane

potential. A determines the sign of a synapse (excitatory or

inhibitory), and B and C control the range of input values a given

neuron could respond to. The synaptic strength –the magnitude of

synaptic effect on the postsynaptic cell–is determined by all three

of these factors. A was randomly initialized to 0.01 or 20.01, B to

0.01 and C to 0. Thus at the outset of evolution all Post values were

near 0 with randomly assigned signs.

Performance and Circuit Reproduction
Populations of 500 circuits reproduced based on their individual

lifetime performances, i.e. the summed success of their responses

to 10,000 stimulus pairs. Performance error was measured as the

sum of the absolute difference between each circuit’s responses

and the percentile ranks of the respective stimuli in the circuit’s

lifetime experience:

Error~
X

n

DResponse{PercentileRankD

where n is the total number of stimulus pairs (10,000) in the

circuit’s lifetime experience.

The fitness of the kth circuit is its total lifetime error normalized

to the maximum error among all circuits of the population

(max.Error) in that generation and expressed in arbitrary units as:

Fitnessk~DErrork{max:ErrorD

A roulette wheel with 500 radial sectors determined a circuit’s

probability of reproduction, each sector’s arc corresponding to the

fitness of a circuit in the population [36]:

P Reproductionkð Þ!Fitnessk

The wheel was spun 500 times and the circuit identified on each

spin was added to the reproduction pool. This method in which

any given circuit could be selected multiple times, means that

more successful circuits reproduced often, but also that less

successful ones could reproduce occasionally.

Other computational techniques (e.g., back propagation) could

also have been used to generate successful neural networks. We

chose an evolutionary algorithm because it is biologically feasible

[37]. Although evolution does not conform to any mathematical

model, in computational terms it can be thought of as a process

that minimizes the errors an agent makes in responding to the

environment over species and individual history.

Novelty
To generate the novelty essential to any evolutionary process,

diversity was introduced in two ways. First, each circuit from the

reproduction pool was given an 80% chance of interchanging its

connectivity with another. When a pair of circuits was chosen for

hybridization, the properties of the synapses in each circuit were

grouped, listed and exchanged at a random site (Figure S2). To

introduce diversity in a way that allowed smaller changes, each

circuit was also given a 20% chance of having a small value added

to each of its evolving synaptic parameters (see above). The

mutation values of A, B, and C were randomly chosen from a

Gaussian distribution with a mean of 0 and standard deviation

0.01, and summed with the pre-existing value, thus changing the

evolving values of the synaptic transfer function by small amounts

[37]. A and C were allowed to assume any sign while B was

constrained to be non-negative (see Results for explanation).

Empirically Evolved Networks
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Supporting Information

Figure S1 Explanation of the bias towards low lumi-
nance values at any level of ambient light. The filled circles

along each of the 10 iso-luminance curves represent possible

reflectance (R) and illumination (I) combinations underlying

stimulus luminance values (the R and I values range from 0 to 1

in arbitrary units, and have uniform marginal distributions). Note

that more RI combinations are possible for lower luminance

values (the longer iso-luminance curves) than higher ones (the

shorter curves), thus increasing the probability of co-occurring

lower values.

(TIF)

Figure S2 Hybridization. The top panel shows two networks

selected for hybridization. The point of hybridization was

randomly chosen (indicated by the red arrows). The bottom panel

shows the progeny after exchanging connections about the chosen

point.

(TIF)
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