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Our understanding of Drosophila innate immunity has seen major advances in the last five

years, catalyzed by two transformative technologies—genome editing and genome-wide asso-

ciation studies—as well as by insights gained from the parallel study of pathogen growth and

host survival following infection. As a result, researchers have characterized novel and essential

effectors, rewritten the individual and collective roles of antimicrobial peptides, and identified

stochastic variation and persistent infection as common features of microbial infection. We

focus here on the inducible cell-free response of Drosophila melanogaster to bacterial or fungal

pathogens. Readers interested in innate immunity in other insects, defenses in the gut and

other organs, cellular immunity, or antiviral mechanisms are encouraged to consult recent

reviews on these topics [1–6].

Essential roles for novel peptide effectors

Upon infection in hosts ranging from flies to humans, pathogen associated molecular patterns

(PAMPs) initiate nonself recognition that triggers conserved innate immune signaling path-

ways [7]. In Drosophila, the Toll pathway responds to fungi and most gram-positive bacteria,

whereas the Imd pathway responds to gram-negative bacteria and those gram-positive bacteria

with a similar peptidoglycan structure [8]. Each pathway induces the synthesis and secretion

of effector molecules that circulate in the hemolymph and combat bacterial and fungal invad-

ers. The best-known effectors are the antimicrobial peptides (AMPs), which can be viewed as

ribosomally synthesized antibiotics [9,10].

Until recently, little was known about the contributions of particular peptides to in vivo

immune defenses. The paucity of knowledge reflected the near absence of loss-of-function

mutations, a scarcity with several likely causes. First, peptide genes offer small targets for ran-

dom mutagenesis. Second, many belong to gene families, potentially minimizing the loss-of-

function phenotype for an individual gene mutation. Third, immune mutant screens have typ-

ically assayed for loss of reporter gene activation and thus identified lesions only in genes

upstream of effector induction [see, e.g., 11,12].

The advent of genome editing technologies reinvigorated the genetic study of innate immu-

nity. One breakthrough came with the deletion of a gene cluster encoding members of a pep-

tide family now known as the Bomanins (or Boms) [13]. The Bom peptides lack sequence

similarity to prototypical AMPs or, indeed, any proteins of known structure or function.

Remarkably, excising 10 of the 12 Bom genes disrupts immune defenses against a range of

pathogens to the same extent and with the same specificity as blocking Toll signaling (Fig 1A
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and Fig 1B) [13,14]. In the case of the pathogen Candida glabrata, a yeast, Boms are essential

not only for survival of infected flies but also for humoral candidacidal activity [15].

Recent experiments have demonstrated immune functions for additional Toll-induced

effectors. One such study demonstrated that the hemolymph of flies lacking the Bombardier

protein specifically fails to accumulate the short-form Bom peptides [16]. Furthermore, dis-

rupting the bombardier gene reduces survival against the same set of pathogens as does delet-

ing the Bom gene cluster, consistent with a prior study indicating a primary role in defense for

the short-form Boms [15]. There are also Toll-induced effectors essential for a subset of Toll-

mediated defenses. For example, the peptides encoded by the two daisho genes mediate sur-

vival against a subset of filamentous fungi, such as A. fumigatus (Fig 1B) [17].

Differential requirement for Drosophila AMP function

From 1980 onward, the study of innate immune effectors largely centered on AMPs. Each of

the seven prototypical Drosophila AMPs has potent in vitro activity against a subset of

Fig 1. Specificity of Drosophila immune effectors. A–D each depict effectors’ contribution to defense against a particular pathogen, as deduced from loss-of-function

phenotypes. Thick lines represent strong phenotypes, and thin lines represent weaker phenotypes. The effector repertoires induced by Toll (A and B) and by Imd (C and

D) are largely invariant, but the subset of effectors that mediate the response to a given challenge varies. (A) The Boms and Bbd are required for survival against the yeast

C. glabrata [13,15,16]. (B) Boms, Bbd, Dso1,2, Drs, and Mtk are necessary for survival against the filamentous fungus Aspergillus fumigatus [14,16,17]. (C) A number of

AMPs (Dro, Dpt, and Att) overlap in function in providing defense against the gram-negative bacterium Providencia burhodogranariea [14]. (D) Dpt is the sole essential

mediator of defense against the gram-negative bacterium P. rettgeri [14,24]. AMP, antimicrobial peptide; Att, Attacin; Bbd, Bombardier; Boms, Bomanins; Dso1,2,

Daisho1 and Daisho2; Dpt, Diptericin; Dro, Drosocin; Drs, Drosomycin; Mtk, Metchnikowin.

https://doi.org/10.1371/journal.ppat.1008480.g001
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pathogens. Drosomycin, for example, is active against Neurospora crassa and certain other fila-

mentous fungi at concentrations of 1 μM or lower [18]. Furthermore, constitutive expression

of Drosomycin in vivo in the absence of Toll or Imd activation enables survival of flies infected

with N. crassa [19].

In 2019, a CRISPR/Cas9-based study directly addressed the requirement for the prototypi-

cal AMP genes in innate immune defense [14]. The underlying idea was simple and elegant—

to knockout AMP genes singly, in sets, and in toto and then examine the phenotypic conse-

quences upon infection with various pathogens. In the case of the Imd pathway, flies simulta-

neously deleted for the majority of induced AMP genes are as susceptible to gram-negative

bacteria as those lacking all pathway function [14]. Moreover, for many gram-negative bacte-

ria, individual gene disruption is without consequence, supporting the idea that organisms

express sets of AMPs that overlap in specificity and function (Fig 1C). In the case of the Toll

pathway, however, deleting most AMP genes decreases resistance markedly against only a sub-

set of fungi and has little or no effect on survival upon infection with gram-positive bacteria.

Taken together, the loss-of-function phenotypes for the Bomanins and the prototypical

AMPs indicate that Drosomycin induced upon infection is neither strictly required nor suffi-

cient for defense against a filamentous fungus. Yet when constitutively expressed, Drosomycin

enables survival of immune deficient flies infected with a filamentous fungus [19]. How can

this paradox be resolved? One idea, offered in the context of another insect host (Tenebrio
molitor), is that induced peptides accumulate too long after infection to be primary effectors

[20]. In general, this hypothesis is a poor fit in Drosophila, since induced AMPs and Bomanins

are strictly essential for defenses mediated by Imd and Toll, respectively. It may, however,

accurately describe the limited effectiveness of the Toll-induced expression of prototypical

AMPs in the most common experimental model for Drosophila—a sudden and massive sys-

temic infection introduced by injecting or stabbing thousands of pathogens into the fly body.

Evolutionary selection for Drosophila AMP function

From 2000 to 2010, association studies using infection with gram-negative bacteria failed to

identify SNPs in AMPs for which the SNP state was predictive of susceptibility [21–23].

Instead, signatures of selection were largely confined to factors mediating pathogen recogni-

tion or signaling transduction. The interpretation at the time was that functional redundancy

among the AMPs was sufficient to preclude a mutation in any individual AMP gene from hav-

ing a significant effect on resistance.

Although AMP redundancy is pervasive, it is not universal. In 2016, SNPs were identified

in the gene for the AMP Diptericin that are associated with higher pathogen load after infec-

tion with the gram-negative bacterium P. rettgeri [24]. Flies null for Diptericin sustain higher

loads with P. rettgeri than do the wild type and succumb rapidly after infection [14]. It thus

appears that Diptericin is the sole mediator of defense against P. rettgeri (Fig 1D). At the same

time, Diptericin appears to be functionally redundant or irrelevant against other pathogens, as

variation at the locus has no detectable effect upon infection with a range of other gram-nega-

tive bacteria, including some members of the Providencia genus [24]. Finally, we note that Dip-

tericin null alleles turn out to be common in Africa, consistent with a link between AMP

sequence evolution and variation in ecological niche [25].

A new model for the outcome of innate immunity

Innate immune effector function in vivo is often assayed by postinfection host survival, which

was long assumed to reflect pathogen clearance. One of the first contraindications came in

2013, when it was found that wild-type flies survive infection with C. glabrata but do so
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without clearing the pathogen [26]. Because humans also fail to clear C. glabrata infections

[27], it was suggested that persistent infection of flies reflected a particular property of this

yeast rather than any general feature of innate immunity in the host. In 2017, however, a study

revealed that flies surviving infection with any of a range of bacteria also remain infected indef-

initely [28]. Furthermore, this holds true for both gram-negative and gram-positive bacteria,

and thus is not linked to whether or not AMPs are the primary immune effectors.

The 2017 report on stochastic variation described two stereotypic outcomes for infection of

individual flies matched for age, genotype, environment, and infection: Either the pathogen

replicates, reaches a lethal burden, and the fly dies; or the immune system controls the patho-

gen at a load below the lethal burden, resulting in survival accompanied by persistent low-level

infection. The variation observed in survival curves among these flies reflects stochasticity in

the time required to reach lethal burden and in the fraction of flies that control the infection

before it reaches that threshold. The practical impact of this model is a recognition of the

importance of pathogen load upon death as a powerful tool both for comparing innate

responses to infection and for determining whether a particular genotype affects tolerance to

infection [29].

Open questions and future directions

How do the novel Toll effectors provide protection? To date, the delineation of molecular

mechanisms in innate immune pathways has benefited considerably from the synergy of

exploring highly conserved pathogen recognition and signaling molecules in evolutionarily

diverged contexts. A similar approach will not be possible for the Drosophila effectors: the

Bomanins and the Daisho peptides are all restricted to Drosophila and Scaptodrosophila
[13,17,25]. They are not unique in that aspect, as taxonomically restricted genes (TRGs) form a

major fraction of the induced immune repertoire in many species [30–32]. Nevertheless, the

absence of known structure or activity for these TRGs provides a significant challenge.

A second major question going forward is how infection persists in the presence of effectors

that block pathogen growth and accumulation. Are some viable pathogens sequestered in a

clot or other extracellular structure? Alternatively, are a fraction of pathogens in systemic

infection engulfed by phagocytic hemocytes, but not killed?

Finally, much remains uncertain regarding selective pressures on immune effectors. To

what extent do differences in AMP sequence contribute to defense against infection? Relevant

findings have been reported not only for Diptericin, as discussed above, but also for other pro-

totypical AMPs, including Drosocin [14]. In addressing this topic, and immune system func-

tion and evolution more generally, it will be important to consider to what extent the “shock

and awe” of infection with a megadose of a single pathogen recapitulates the typical challenges

in the life of a fruit fly.
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