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Deconvolution of Transcriptional 
Networks in Post-Traumatic 
Stress Disorder Uncovers Master 
Regulators Driving Innate Immune 
System Function
Abolfazl Doostparast Torshizi1 & Kai Wang1,2

Post-Traumatic Stress Disorder (PTSD) is a psychiatric disorder that develops in individuals experiencing 
a shocking incident, but the underlying disease susceptibility gene networks remain poorly understood. 
Breen et al. conducted a Weighted Gene Co-expression Network Analysis on PTSD, and identified a 
dysregulated innate immune module associated with PTSD development. To further identify the Master 
Regulators (MRs) driving the network function, here we deconvoluted the transcriptional networks on 
the same datasets using ARACNe (Algorithm for Reconstruction of Accurate Cellular Networks) followed 
by protein activity analysis. We successfully identified several MRs including SOX3, TNFAIP3, TRAFD1, 
POU3F3, STAT2, and PML that govern the expression of a large collection of genes. Transcription factor 
binding site enrichment analysis verified the binding of these MRs to their predicted targets. Notably, 
the sub-networks regulated by TNFAIP3, TRAFD1 and PML are involved in innate immune response, 
suggesting that these MRs may correlate with the innate immune module identified by Breen et al. 
These findings were replicated in an independent dataset generated on expression microarrays. In 
conclusion, our analysis corroborated previous findings that innate immunity may be involved in the 
progression of PTSD, yet also identified candidate MRs driving the disease progression in the innate 
immunity pathways.

As a debilitating neuropsychiatric disorder, Post-Traumatic Stress Disorder (PTSD) is known with several short 
and/or long-term symptoms such as hyperarousal, avoidance, imagery, etc.1. Unlike many other psychiatric disor-
ders, PTSD may occur in individuals after experiencing terrifying events such as traumatic incidents, kidnapping, 
or natural disaster2. PTSD affects almost 7–8% of the general population in the United States2. This percentage is 
even higher, up to 20% in military troops being deployed in the battle fields such as Iraq or Afghanistan3,4. PTSD 
is a highly heterogeneous disorder, so that multiple types of molecular data, such as genotype, gene expression or 
DNA methylation1, may be needed to gain a deeper insight into the underlying molecular signatures contributing 
to the PTSD development.

Symptoms of PTSD in human subjects include emotional numbing, avoidance of traumatic events, and 
impaired extinction learning5,6. For a long time, PTSD was viewed to be a purely psychological disorder and con-
siderable efforts were put to gain a better understanding of its symptoms in a systematic manner. Some of these 
psychophysiological measures are listed as follows: heart rate7, eye blinking (measurement of startle state), skin 
conductance, facial electromyogram, and cortical electroencephalographic event related potentials (ERPs, meas-
urement of brain activity)8,9. PTSD has been particularly under attention from molecular point of view including 
gene expression and epigenetics. With regard to gene expression, a large body of studies have focused on identi-
fying predictive and diagnostic signatures underlying PTSD development after trauma exposure. Multiple lon-
gitudinal studies have listed potential risk biomarkers10,11. Additionally, many other studies reported suggestive 
mRNA biomarkers such as FKBP5 and STAT5B11. Glucocorticoid activity and gene expression have long been 
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under investigation in order to establish more effective predictive models11–19. Heinzlmann and Gill20 have com-
piled these studies and showed that two groups of genes including upregulated inflammatory genes and downreg-
ulated genes that participate in regulating inflammation may contribute to PTSD development. However, many of 
the existing approaches highlight Differentially Expressed (DE) genes and do not take into account the complex 
molecular interactions at the systems level in the context of gene expression networks.

Network-based methods to infer co-expression pattern of genes have been employed by several research 
groups. For example, groups of genes demonstrating co-expression patterns in several neuropsychiatric disor-
ders have been indicated in a few studies21–26. In a recent study, Breen et al.1 have made use of the Weighted 
Gene Co-Expression Network Analysis (WGCNA) to elucidate co-expressed gene modules that may play certain 
roles in innate immunity in PTSD patients. Furthermore, PTSD blood biomarker MRs have been reported by 
Daskalakis et al.27 on the same data from referencere1 using causal upstream-regulator-analysis (URA) to predict 
transcription regulator activity. URA has led to 22 transcription regulators, some of which have been mentioned 
in reference1 such as STAT2. However, these studies do not probe cellular activities and the hierarchical cellular 
structure of the transcriptome to identify the underlying genes regulating a large blanket of downstream targets. 
In fact, organization of gene expression profile data into functionally meaningful information in the context of 
PTSD has not been addressed in the literature. This challenge, known as “reverse engineering” of cellular net-
works, has opened new windows to generate cellular networks in the form of graphs to overcome the common 
difficulties in the area of genetic networks. A number of methods have been developed for this purpose, with the 
most prominent one as ARACNe (algorithm for reconstruction of accurate cellular networks). ARACNe has had 
several successful applications in the field of cancer genomics, such as characterizing somatic mutations in cancer 
using network-based inference of protein activity28, identification of driver genes of malignant prostate cancer29, 
deconvolution of regulatory networks in human B cells30, construction of transcriptional network of mesenchy-
mal transformation of brain tumors31, identification of causal genetic drivers in tumor32, and extraction of master 
regulators of proliferation in germinal centers33. ARACNe has also been recently applied in other fields, such as 
the identification of neurodegenerative factors34.

In this study, we present the successful reverse engineering of transcriptional regulatory networks to identify 
the Master Regulators (MRs) governing cellular processes in patients suffering from PTSD. This study is based 
upon ARACNe30,35. In essence, ARACNe initially identifies statistically significant co-regulation between gene 
pairs using Mutual Information (MI, i.e., an information theoretic approach) and then constructs a complete net-
work. In the next step, indirect relationships are removed in order to address the pleiotropic associations where a 
target gene is regulated by more than one intermediary through applying Data Processing Inequality (DPI i.e., a 
well-known term in data transmission theory). The obtained final network is a robust representation of regulatory 
interactions or undetectable post-transcriptional modifiers in gene-expression profiles. Then, after obtaining the 
MRs, we analyze their activity on regulating their downstream target genes through establishing probabilistic 
models. Since the identified active MRs are the outcome of the expression patterns of the genes between cases and 
controls, therefore all of the cases and controls have been used simultaneously and MRs are shown to contribute 
to the development of PTSD. The entire computational results are then validated by replication experiments and 
literature mining. The main findings and contributions of this study are listed as follows:

•	 Reverse engineer the transcriptional networks from RNA-seq data based on an information theoretic 
approach to identify hub genes that may regulate a large blanket of downstream genes.

•	 Infer protein activity of hub Transcription Factors (TFs) known as MRs to discover the candidate regulatory 
drivers of PTSD signatures.

•	 Identify MRs of hub genes obtained from gene co-expression network analysis to elucidate the regulatory 
drivers of co-expressed modules bearing certain expression patterns.

•	 Validate the entire findings of this study on independent datasets along with additional experiments such as 
co-expression network analysis and transcription binding enrichment simulations.

Results
Deconvolution of Transcriptional Network of Breen et al. pre-deployment data.  We first made 
use of the gene expression data generated and published by Breen et al.1. This is an RNA-seq data on peripheral 
blood leukocyte (PBL) that were taken from military forces being deployed in battlefields. It should be mentioned 
that for each sample, blood was drawn both pre- and post-deployment. In total, 47 PTSD cases and 47 PTSD-
resilient control subjects were assayed with gene expression values. The raw RNA-Seq data has been processed 
by Breen et al., so we directly used the normalized expression measures. An overview of the data being used is 
provided in Table 1. More detail on these datasets can be found in reference1.

Time Point Pre-Deployment Post-Deployment

Dataset 1 (RNA-seq)
PTSD Cases Controls # Transcripts PTSD Cases Controls # Transcripts

(N = 47) (N = 47) 22034 (N = 47) (N = 47) 22034

Dataset 2 (microarray gene expression)
PTSD Cases Controls # Probe sets

(N = 24) (N = 24) 12300

Table 1.  An overview of the data being used.
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The pre-deployment dataset contains expression measures on 22034 transcripts. The entire pre-deployment 
case and control samples were used to reverse engineer the transcription network employing ARACNe. This was 
done in order to reduce bias in our experiments. We reconstructed the cellular network and then pruned it to 
remove indirect relationships in which two genes are co-regulated through one or more intermediate entities. 
This allows us to observe relationships bearing significantly high probabilities of representing potential direct 
interactions or mediated interactions through post-transcriptional agents not being detected from gene expres-
sion profiles.

Using the P-value (a measure of the confidence of regulatory relationships between two genes) threshold of 
1e-8 together with DPI = 0.1 (as recommended in35) leads to a repertoire of 1290844 interactions, ranging from 
1 to 1772 for each individual transcript. Our goal is to focus on hub Transcription Factor (TF) genes that will 
be referred to as Master Regulators (MRs). We curated a list of known human TFs from three sources including 
FANTOM5 consortium36, a curated set by Vaquerizas37, and TRRUST38. A total of 2198 TFs were curated from 
these sources. We then focused on the MRs in the reverse engineered network and checked if any of the identified 
hub genes were TFs. 1903 TFs exist in the pre-deployment data. We extracted these TFs in the network along 
with their downstream targets (regulon). The connection degree of TFs ranges from 1 to 1396, while 12 TFs have 
more than 1000 targets. A complete list of the deconvoluted network of the TFs is provided in Supplementary 
Table 1. Directly or hierarchically, these 12 MRs account for almost 53% of the entire interactions mediated by 
the identified TFs.

Protein Activity Analysis on Breen et al. pre-deployment data.  In order to further analyze the activ-
ity of the identified MRs, we made use of the expression levels of the downstream regulon of each MR and investi-
gated the activity degree of the identified MRs through a probabilistic algorithm called VIPER (Virtual Inference 
of Protein-activity by Enriched Regulon analysis28). VIPER infers protein activity of a MR by systematically ana-
lyzing expression of the downstream regulons that are regulated by the MRs. As previously described28, VIPER is 
based on a probabilistic framework that directly integrates target mode of regulation, that is, whether targets are 
activated or repressed, statistical confidence in regulator-target interactions, and target overlap between differ-
ent regulators (pleiotropy) for computing the enrichment of a protein regulon in differentially expressed genes. 
The main advantage of VIPER compared to the other gene enrichment analysis methods such as T-profiler39, 
Fisher’s exact test40, and gene set enrichment analysis (GSEA)41 is that it uses a fully probabilistic enrichment 
analysis framework, supporting seamless integration of genes with different likelihoods of representing activated, 
repressed or undetermined targets. It also uses the probabilistic weighting of low vs. high-likelihood protein tar-
gets, while the other approaches consider the contribution of each individual gene to the signature enrichment 
to be binary.

The result of VIPER analysis is summarized in Fig. 1(a), where Act and Exp columns represent the inferred 
differential TF activity and experimentally derived differential expression of the identified MRs, respectively. The 
Act and Exp generally correlate well with each other, suggesting that we reliably inferred the activity of the MRs 
based on expression of its target genes in the network. The activity of the MRs is inferred based on the enrichment 
of their regulated targets. In order to find out which genes are the enriched targets in the genetic signatures, that 
is, the z-score previously computed, we employed the leading-edge analysis41 proposed by Subramanian et al. to 
identify the genes driving the enrichment of a gene set on the signatures based on Gene Set Enrichment Analysis 
(GSEA). The complete list of these targets regulated by the MRs presented in Fig. 1 is provided in Supplementary 
Table 2. The top ten MRs provided in Fig. 1 are among the most highly connected genes identified by ARACNe.

According to previous studies33,42, significant activation of MRs based on their regulon analysis can cause 
confounding effects since many of their regulated targets might have been regulated by a bona fide activated TF. 
This phenomenon is called shadow effect. This is even more serious in transcriptional regulations because they 
are highly pleiotropic. To address this, we penalized the contribution of the pleiotropically regulated targets to 
the enrichment score. Since we had previously addressed the pleiotropic effects in network generation stage, we 
expect to observe a small number of pleiotropic connections. Overall, only 4 pleiotropic connections with weak 
effects were identified cementing the quality of the conducted experiments. An important point to make here is 
that VIPER infers the activity of MRs based on the differences of gene expression levels between cases and con-
trols. Therefore, the implication of these MRs is that they directly impact the gene expression across the cases and 
controls and contribute to the transcriptional patterns that can be translated into direct impact of these MRs on 
PTSD development.

Furthermore, in order to predict synergistic interactions between the regulators, we computed the enrichment 
of co-regulons. This was defined as the intersections between regulons. Our expectation was that a gene expres-
sion signature is synergistically regulated by a combination of regulators when their corresponding co-regulons 
show a significantly higher enrichment on the signature than the union of the corresponding regulons35. We com-
puted the enrichment of the co-regulons for the top ten regulators (Fig. 1(b)). We observed that no co-regulatory 
subsets of TFs are activated significantly and the same activated MRs previously observed are identified. The only 
extra MR found here is the ”8117120” representing the gene ID4 (the meta-data table containing gene codes is 
provided in Supplementary Table 3).

Validation on Breen et al. post-deployment data.  We repeated the same numerical experiments 
described above on post-deployment dataset from Breen et al. We used the same set up parameters in ARACNe 
and VIPER. The reverse engineered network constructed from the second data contained 2500722 interactions. 
In total, 1912 TFs were present in the network as hub genes whose connection degree ranges from 1 to 2347. The 
full list of the constructed network on TFs is provided in Supplementary Table 4. Feeding the constructed net-
work into VIPER to identify MRs based on the activity of their regulons, we identified the most significant MRs. 
Although the overall order of the identified MR is not completely identical with the MR list of the pre-deployment 
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data, some of the MRs among the top 30 MRs in the post-deployment data overlapped with the top 10 MRs in the 
pre-deployment data, including TNFAIP3, TRAFD1, POU3F3, SOX3, and STAT2. This set of MRs is thus treated 
as the replicated findings of this study. Additionally, PML was found to be shared among the top 20 MRs in both 
pre and post-deployment constructed networks.

We examined the known molecular functions of the identified MRs. TNFAIP3 is associated with 
auto-inflammatory diseases43 which are driven by abnormal activation of innate immunity44. Similar to TNFAIP3, 
TRAFD1 is a regulator that controls excessive innate immune responses. The two other genes POU3F3 and SOX3 
are previously reported to be involved in Central Nervous System Tuberculosis and Mental retardation, respec-
tively. PML has been reported to be associated with leukemia45. It is noteworthy to mention that POU3F3 acts 

Figure 1.  (a) Virtual Inference of Protein-activity by Enriched Regulon analysis. The first column on the left 
represents the expression of the targets of the MR where blue and red represent repression and activation, 
respectively. In the second column, gene symbols are represented. The Act and Exp columns represent the 
inferred differential protein activity and the differential expression of the identified MRs, respectively, (b) 
Representation of the enrichment of co-regulons on the gene expression signatures.
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synergistically with SOX4 and SOX11 which are paralogs of SOX3. As an example, we generated the subnetworks 
of these two genes in both datasets depicted in Fig. 2. Nodes which are closer to the MR demonstrate a higher 
MI degree. For the both networks, there are some differences between the targets of the identified MRs though 
all of the common MRs are among the top active MRs. This can partially be explained by the number of samples 
who have been diagnosed with PTSD before combat deployment. Some of them may have not been confidently 
diagnosed with PTSD while they may have developed PTSD proceeding deployment, though no extra clinical 
information is available on individuals who actually suffered from PTSD prior to deployment.

Further replication on the Glatt et al. dataset.  In addition to the two aforementioned datasets, we 
repeated the same experiments on an independent data from Glatt et al.10. In this dataset, gene-expression lev-
els were assayed in peripheral blood samples from 48 U.S. Marines (24 eventual PTSD cases and 24 non-PTSD 
comparison subjects) prior to their overseas deployment to war-zones in Iraq or Afghanistan. It has been shown 
that the identified panel of dysregulated biomarkers in10 has been significantly enriched for immune genes. We 
applied the same set up parameters and experimental procedures, that is, the network was reverse engineered by 
ARACNe and the protein activity analysis was conducted by VIPER. This dataset was totally independent of the 

Figure 2.  Identified regulon of the two MRs POU3F3 and SOX3 in pre and post-deployment data from Breen 
et al. (a) POU3F3 subnetwork in pre-deployment data; (b) POU3F3 subnetwork in post-deployment data; (c) 
SOX3 subnetwork in pre-deployment data; (d) SOX3 subnetwork in post-deployment data.
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data being used in the previous sections and are generated using microarray technology, thus has a fewer number 
of transcripts and genes than the RNA-Seq datasets analyzed above.

The constructed network contained 215115 interactions ranging from 1 to 494 for each gene node 
(Supplementary Table 5). To analyze the activity level of the hub genes to compare with the two previous experi-
ments, this network was fed into VIPER. In this dataset, the probe sets corresponding to SOX3 and POU3F3 were 
not present. After analyzing the protein activity levels, we noted TRAFD1 to be among the top 15 active proteins 
where TNFAIP3 and PML were also observed among the top 50 active proteins, but they do not reach statistical 
significance after adjustment of multiple testing. An important point to note is that the data by Glass et al.10 was 
generated by the microarray technology with lower accuracy than RNA-Seq, and the data has approximately half 
the sample size as previous experiments; despite these differences, we partially replicated previously generated 
results, cementing the regulatory role of the identified MRs.

Gene Ontology terms enriched by the MRs regulons.  Using the targets of the identified MRs in the 
both datasets, we performed the Gene Ontology (GO) enrichment analysis using DAVID46 (all of the p-values are 
FDR corrected (threshold = 0.05)). The default DAVID background (whole genome background) has been used. 
GO terms enriched for PML regulon revealed innate immune response terms such as innate immune response 
(p = 1.1e-0.6), type-I interferon-mediated signaling pathway (p = 4.7e-05), immune response (p = 9.13e-10), and 
immune system process (p = 4.41e-07). Using the regulon of STAT2, similar immunity-related GO terms were 
observed including: immune system process (p = 4.9e-08), innate immune response (p = 5.7e-12), response to 
virus genes (p = 9.28e-11), and defense response genes (p = 3.95e-10). Fairly similar GO terms were enriched 
in TNFA1P3 regulon but with lower significance including: regulation of defense response to virus (p = 1.33e-
01). No immunity or inflammatory-related pathways or GO terms were enriched for regulons of TRAFD1. The 
targets of the remaining MRs, e.g., SOX3 and POU3F3, were enriched for Dilated cardiomyopathy (P = 0.0308), 
Hedgehog signaling pathway (p = 0.0127), Intestinal immune network for IgA production (p = 0.0094), Axon 
guidance (p = 0.0389), and Vascular smooth muscle contraction (p = 0.0488). Examining the Gene Ontology 
(GO) terms of the regulons of SOX3 and POU3F3, we observed that many of the terms were associated with neu-
ronal activities and development such as nervous system development (p = 0.0071), regulation of nervous system 
development (p = 0.001), neuron projection (P = 0.0026), and cerebral cortex neuron differentiation (p = 0.001). 
The same experiments were conducted for the targets of these two MRs in the post-deployment data where 
we observed the following pathways including: TGF-beta signaling pathway (p = 0.0094), Protein processing in 
endoplasmic reticulum (p = 0.0002), and Protein digestion and absorption (p = 0.0085). The GO terms being 
observed for these genes include riboflavin transporter activity (p = 0.0054) and protein acetous extra cellular 
matrix (p = 0.0058).

Our observations indicate that the identified MRs regulate downstream targets that are enriched for innate 
immune responses which have been reported by Breen et al. to be hyper-activated in PTSD, but through a differ-
ent type of network analysis technique. In addition, our analysis enabled the identification of regulatory drivers 
of the hub genes being discovered by the WGCNA analysis, whose role in activation of innate immune responses 
has been thoroughly investigated.

Transcription Factor Binding Enrichment Analysis.  To check whether binding motifs for any of the 
identified MRs are enriched in the promoter region of their targets (regulon), we conducted TF binding enrich-
ment analysis (TFBEA) using JASPAR47. As an example, in Fig. 3, we have provided the motifs of the two MRs, 
POU3F3 and SOX3. We extracted the DNA sequences of the target genes 3000 base pairs upstream and 1000 base 
pairs downstream of their Transcription Start Sites (TSSs), then compared to the known binding motifs for these 
MRs. The significance threshold of 0.80 was chosen on the relative enrichment scores of the target genes. SOX3 
motif sequence was enriched in its target genes with the median relative enrichment score of 0.95. As we observe 
in Fig. 3(c), the median MI of SOX3 target genes is almost 0.4 while the same value for POU3F3 is around 0.33. 
On POU3F3, the median relative enrichment score is roughly 0.87 and two genes showed enrichment scores 
above the 0.80 threshold. We repeated the same procedure for the rest of the MRs. To further assess the signif-
icance of the findings, for each MR, we repeated the TFBEA using random genes which were not among their 
targets and computed the relative enrichment scores (Fig. 3(c)). We observed that the random enrichment scores 
are significantly lower than the target genes of each MR, implicating a high confidence in the performed TFBEA. 
To gain better insights into the MI degrees of the entire target genes in the both datasets, Fig. 3(d) provides the 
box plots of the MI degrees for the members of each MR subnetwork.

In order to further investigate the replicated findings in both cohorts, we examined the literature for existing 
in-vitro experiments that validated the influence of the identified MRs on their target genes. Sorting the entire 
targets of SOX3 based on their MI, 52 genes out of the top 80 (65%) targets have been verified to be bound by 
SOX3 to their promoter (data from reference48). In comparison, 22 genes out of 80 random genes is expected to be 
bound by SOX3 to their promoters (27.5%). This is a strong evidence supporting the regulatory role of SOX3 on 
its downstream targets. Nevertheless, we caution that results generated from our network analysis are only infer-
ences or predictions, and should be future validated in experimental systems of interest. Overall, future research 
on the findings of this study will open new horizons on the underlying molecular signatures of PTSD.

Discussion
In the current study, we performed a reverse-engineering of the transcriptional network on PTSD, using the 
ARACNe algorithm on three gene expression datasets. We successfully deconvoluted the transcriptional net-
works, and identified several MRs including SOX3, TNFAIP3, TRAFD1, POU3F3 and PML that govern the 
expression of a large collection of downstream genes. Our analysis corroborated previous findings that innate 
immunity plays important roles in the progression of PTSD, yet also identified candidate MRs that drive the 
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disease progression which may serve as potential therapeutic targets. Furthermore, we also identified POU3F3 
and SOX3as potential MRs of PTSD; given their known roles in neuronal regulation, these results suggested that 
neuronal dysregulation may also be impaired in the development and progression of PTSD, though these findings 
require further validation.

Our results bear a lot of resemblance as those of Breen et al., despite the use of completely different statistical 
approaches. Using the current datasets, Breen et al.1 had conducted gene network analysis using the Weighted 
Gene Co-expression Network Analysis (WGCNA)49 to integrate expression data across thousands of genes into a 
higher-order system-level context to identify groups of genes within a network whose expressions are highly cor-
related. Using the WGCNA unsupervised method, they generated modules of co-expressed genes by combining 
cases and controls instead of gene-wise differential expression analysis. After replicating these experiments, they 
came up with two gene modules which were enriched in hemostasis wound responsiveness. Additionally, their 
central finding was the identification of an innate immune module associated with the development of PTSD. 
It is suggested that these modules are not simply the consequence of PTSD but have causal relevance to PTSD 
development and can in part explain pathophysiology of the disorder. The three identified gene modules in1 share 
several hub genes which are highly connected across these subnetworks including: UBE2L6, IFIH1, DTX3 L, 
and IFIT3, and STAT2. Although these genes contribute to the pathophysiology of PTSD, it is not clear what 
the drivers of these genes are and how their expression levels are regulated. The underlying regulatory machin-
ery behind these genes will shed light not only on the mechanistic regulatory processes of these genes, but also 
on their co-expressed genes within the identified modules related to the activation of the immune system and 
inflammatory mechanisms.

One of the central findings of our study is the identification of potential MRs regulating a large body of genes 
which may contribute to the development of PTSD. Within these MRs and their downstream targets, we looked 
for the hub genes identified by WGCNA un-supervised network construction algorithm and extracted their 
respective MRs from our findings. These hub genes were detected as targets of PML, TRAFD1, TNFAIP3, and 
STAT2. The fundamental discovery is that these MRs are among the top identified MRs revealed by VIPER (Figs 1 
and 2). Although STAT2 was a hub gene in one of the co-expressed modules, its regulatory role on the other 
co-expressed hub genes was unknown. On the other hand, the other three MRs were not captured by WGCNA. 

Figure 3.  Transcription Factor Binding Enrichment Analysis. In (a) and (b) The binding motifs of POU3F3 
and SOX3 are extracted from JASPAR using its available Position Weight Matrices (PWMs), respectively; (c) 
Enrichment scores are computed based on a modified Needleman-Wunsch algorithm applied by JASPAR. For 
each MR, a random selection of genes is compared to the observed regulons; (d) MI degree of the regulons of 
each identified MR.
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Since we have identified the potential MR of the hub genes in the WGCNA co-expression modules, we hypothe-
size that these MRs may modulate the expression patterns of other genes in these modules.

According to the deconvoluted network generated by ARACNe, PML, TRAFD1, TNFAIP3, and STAT2 cover 
56, 44, 32, and 21 target genes, where PML and STAT2 are also connected indicating possible regulatory inter-
actions between these TFs. They may participate in feed-forward loops having synergistic effects on each other. 
These five MRs were re-identified in the post-deployment reverse-engineered network as hub genes containing 
1207944, and 140 targets. As noted in the previous section, TNFAIP3 and TRAFD1 are regulators that con-
trol excessive innate immune responses and STAT2 is a protein coding gene which is associated with immune 
response and interferon signaling pathway. This is another central finding of this work, which characterized the 
potential regulatory drivers of the hub genes extracted from co-expression network analysis. To gain the transla-
tional implication on how our findings can explain the role of the identified MRs, we took STAT2 as an important 
finding also reported in reference1. Looking at the pre-deployment targets of this gene, we realized that 17 out of 
21 targets are DE between cases and controls indicating how such a MR can exert its effects among PTSD group. 
DE analysis has been performed using t-test at the threshold of P < 0.001 (FDR corrected). In fact, the identified 
MRs by VIPER are scored based on their exerted effects on their downstream targets in that the more distinction 
observed in the expression degrees of the MR targets between cases and controls leads to a higher enrichment 
score demonstrating the higher activity of that MR.

Our findings in this study are in line the findings from co-expression network analysis in1. In fact, TNFAI3, 
TRAFD1, and STAT2 are regulators to control excessive innate immune responses. Our results show that these 
genes are among the major regulators of the innate immune response module discovered by WGCNA analysis. 
On the other hand, POU3F3 and SOX3 have not previously been reported as MRs for PTSD. Looking at the tar-
gets of these two genes, we observed that many of these target genes are hubs themselves covering a large number 
of genes. This is an implication of hierarchical structure of the constructed networks. Many of the well-known 
PTSD biomarkers such as FKBP5, STAT5A, HOXD3, VWA3, ALDH3B2, etc. were covered directly or as the 
secondary neighbors of the identified MRs. We were able to capture OAS2 as one of the most influential genes as 
the markers of the antiviral interferon response that was associated with an increased risk of PTSD50. This gene 
was among the targets of PML (MI = 0.38) and STAT2 (MI = 0.36), and our finding partially explains the genetic 
roots controlling its regulation. A fundamental question raised by Breen et al.1 on the constructed co-expressed 
gene modules was that how innate immunity genes are over-expressed prior to trauma, and this question may be 
partially answered in our study. We hypothesize that the activation/deactivation of STAT2 can partially explain 
over/under expression of its targets which are mainly enriched in innate immunity pathways. This is due to the 
fact that STAT2 is triggered by stress19. As a result of its expression, it can affect its targets leading to enrichment 
of the innate immune pathways. One possibility is that the targets of STAT2 are not necessarily regulated because 
of foreign stimuli, but they are regulated only because of the activation of their respective MR. In addition, we 
were able to capture many of the known PTSD markers such as FKBP5 and STAT5B that were not captured by 
the WGCNA.

Using the brain transcriptome profiles of a mouse model simulating PTSD in stress-related brain regions 
including amygdala and hippocampus51, we analyzed the expression patterns of the identified MRs in amygdala 
and hippocampus. We noted the following genes to be differentially expressed (FDR corrected) including: SOX3 
(p = 0.0065), TNFAIP3 (p = 0.0428), TRAFD1 (p = 0.0431), POU3F3 (p = 0.026), and STAT2 (0 = 0.0139). PML 
was not found to be differentially expressed in amygdala. This data can be accessed in GEO under accession 
number GSE45035.

For each identified MR, we also mined the literature to check whether or not they are expressed in 
stress-related regions in the brain such as amygdala, hippocampus etc. A recent study demonstrates STAT2 to 
be differentially expressed in a well-characterized rat model of temporal lobe epilepsy evoked by electrical stim-
ulation of the amygdala52. SOX3 expression in neonatal and adult mouse brains suggests potential involvement 
of this gene in regulating persistent neural stem cells and neurogenesis53. Such a finding confirms persistent 
SOX3 expression in mature neuronal populations, suggesting further roles of this gene in neuronal function in 
stress-related regions of the brain. As a key transcription factor involved in cortical development54, POU3F3 has 
been verified to be overexpressed in different brain regions and may play role in the development of the nervous 
system55. Despite lack of evidences on expression of PML in brain, recent studies have found PML in neurons and 
as well as its functions in many aspects of the nervous system such as brain development, plasticity, and response 
to proteins causing neurodegenerative disorders56.

In addition, we checked the expression of the MRs in the Genotype-Tissue Expression (GTEx) Project portal 
to see if our genes of interest are expressed in stress-related regions of the brain. Supplementary Figures 1–5 
demonstrate the expression patterns of SOX3 and POU3F3 across different human tissues based on RNA-seq 
experiment results. The expression patterns of these two MRs across brain regions are evidently higher than other 
tissues but a similar pattern was not observed on the rest of the identified MRs, indicating that they are not highly 
expressed in brain tissues.

In order to analyze possible overlap between our findings in PTSD and other neuropsychiatric disorders, we 
re-did the computations on two other diseases including Autism Spectrum Disorder (ASD) and Schizophrenia 
(SCZ). We ran the whole pipeline on a gene expression data generated from Autism Spectrum Disorder (ASD) 
patients57. Sorting the highly active proteins based on VIPER results, none of the identified PTSD MRs were 
observed among the top 100 ASD findings. Additionally, we ran the whole pipeline on the largest schizophrenia 
(SCZ) RNA-seq data to date58. Similar to ASD, none of the PTSD MRs were observed among the top 100 SCZ 
MRs. Therefore, our findings appear to be specific to PTSD, but may still be extended to other neuropsychiatric 
disorders when tissue-specific large-scale gene expression data sets become available.

Our study has a number of limitations. This study was based on gene expression data from peripheral blood. 
Although our findings have been replicated in several different data cohorts, further investigation is necessary to 
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better understand how neuronal activities contribute to PTSD. This is due to the fact that gene expression patterns 
are highly tissue-specific and gene expression measures in blood may not totally reflect the regulatory machinery 
in brain or other related tissues. Additionally, the need for large sample size is also an important requirement in 
the area of gene expression network analysis. We believe that larger cohorts may reveal PTSD signatures that may 
not be easily captured when the sample size is small. Additional improvements to the current network analysis 
can be the application of latent biological knowledge such as protein-protein interactions or biological pathways 
during the course of network reverse-engineering process, which may improve the power to uncover sophisti-
cated gene-gene interactions and regulatory roles of MRs. Finally, we should state that these findings are only 
based upon computational inferences, so that conducting in vivo experiments on predictions made in this study 
can be of paramount importance for future investigations.

Methods
Study Cohort.  We made use of the gene expression data generated and published by Breen et al.1 and Glatt 
et al.10. Breen et al. used RNA-seq to assay gene expression on peripheral blood leukocyte (PBL) that were taken 
from two independent groups of military forces being deployed in battlefields. It should be mentioned that for 
each sample, blood was drawn both pre-and post-deployment. Further information can be found in1. For val-
idation, we also analyzed an independently generated gene expression dataset from a separate, non-overlap-
ping group of 50 U.S. Marine participants (Glatt et al.10). Blood samples were treated in an identical fashion as 
described above; however, the gene expression was measured on the Affymetrix Hu-Gene 1.0 ST Array. These 
datasets are publicly available in Gene Expression Omnibus (GEO) under the accession number GSE64814.

ARACNe network reconstruction.  ARACNe (Algorithm for the Reconstruction of Accurate Cellular 
Networks)35, an information-theoretic algorithm for inferring transcriptional interactions, was used to identify 
candidate transcriptional regulators of the transcripts annotated to genes. First, mutual interaction between a 
candidate TF(x) and its potential target (y) was computed by pairwise mutual information, MI x y( , ), using a 
Gaussian kernel estimator. MI was thresholded based on the null-hypothesis of statistical independence (P < 0.05, 
Bonferroni corrected for the number of tested pairs). Other key elements such as kernel width of the estimator 
can be set manually or automatically in the code (we used the recommended automated option). Second, the 
constructed network was trimmed by removing indirect interactions by data processing inequality (DPI), a prop-
erty of the MI. By this, pleiotropic associations will be removed. Therefore, for each x y( , ) pair, a path through 
another TF z( ) was considered and every path pertaining the following constraint were removed 
MI x y min MI x z MI z y( , ) ( ( , ), ( , ))< . In fact, ARACNE eliminates the statistical dependencies which can be of 
an indirect nature e.g., two genes which are segregated by an intermediate step in a transcriptional cascade. These 
genes usually have correlated expression patterns that can lead to high MIs and might be selected as MRs. After 
some post-processing steps, the final output of ARACNe is the adjacency matrix of the constructed network that 
can be used for further analysis such as evaluation of protein activities. ARACNe software is available and can be 
downloaded from reference35.

VIPER analysis of regulon enrichment.  The enrichment of regulons on gene expression signatures for each 
MR was tested by the VIPER algorithm28. In VIPER, first, the gene expression signature is obtained by comparing 
two groups of samples representing distinctive phenotypes or treatments, that is, those with and without PTSD. To 
generate a quantitative measurement of difference between the groups, Students t-test is used. As an alternative, single 
sample-based gene expression signatures can be obtained by comparing the expression levels of each feature in each 
sample against a set of reference samples by any suitable method, including for example Students t-test, Z-score trans-
formation or fold change; or relative to the average expression level across all samples when clear reference samples 
are not available. In the next step, regulon enrichment on the gene expression signature is computed using Analytic 
rank-based enrichment analysis (aREA). At the end, significance values (P-value and normalized enrichment score) 
were computed by comparing each regulon enrichment score to a null model generated by randomly and uniformly 
permuting the samples 1000 times. As an internal function in VIPER, aREA tests for a global shift in the positions of 
each regulon genes when projected on the rank-sorted gene expression signature. Following up on the workin59,60, the 
mean of the quantile-transformed rank positions as test statistic (enrichment score) are used. The enrichment score is 
computed twice: first by a one-tail approach, based on the absolute value of the gene expression signature (i.e., genes 
are rank-sorted from the less invariant between groups to the most differentially expressed, regardless of the direction 
of change); and then by a two-tail approach, where the positions of the genes whose expression is repressed by the reg-
ulator are inverted in the gene expression signature before computing the enrichment score. The one-tail and two-tail 
enrichment score estimates are integrated while weighting their contribution based on the estimated mode of regula-
tion through a procedure we call three-tail approach. The contribution of each target gene from a given regulon to the 
enrichment score is also weighted based on the regulator-target gene interaction confidence. At the end, the statistical 
significance of the enrichment scores are estimated by comparison to a null model generated by permuting the samples 
uniformly at random. The final outcome of the VIPER is a list of MRs based on their enrichment scores along with their 
respective targets. VIPER software package is available on Bioconductor at http://bioconductor.org/packages/viper/.

Transcription factor binding site enrichment analysis.  Human reference genome (version GRCh37.
p13) was used to extract the DNA sequence around transcript start sites(TSSs) for transcription binding enrich-
ment analysis. We obtained the gene coordinates from Ensembl BioMart tool61 and scanned 3000 upstream and 
1000 downstream of the TSS. The motifs of the TFs were obtained from JASPAR and the extracted sequences of 
each target were then fed into JASPAR and analyzed versus their corresponding TFs. JASPAR database contains 
Position Weight Matrices (PWM) for each TF. These matrices have four rows representing A, C, G, and T bases 
and each column represents the relative weight of that pair in that position obtained from the frequency of that 

http://bioconductor.org/packages/viper/
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base in that position. Then, using the PWM of the TF, JASPAR employs the modified Needleman-Wunsch algo-
rithm to align the motif sequence with the target sequence in that the input sequence is scanned to check whether 
or not the motif is enriched. The output is the enrichment score of the input TF in the designated target genes.
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