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Abstract: Gastrointestinal (GI) cancers are a group of diseases with very high positions in the ranking
of cancer incidence and mortality. While they show common features regarding the molecular
mechanisms involved in cancer development, organ-specific pathophysiological processes may
trigger distinct signaling pathways and intricate interactions with inflammatory cells from the
tumoral milieu and mediators involved in tumorigenesis. The treatment of GI cancers is a topic of
increasing interest due to the severity of these diseases, their impact on the patients’ survivability
and quality of life, and the burden they set on the healthcare system. As the efficiency of existing
drugs is hindered by chemoresistance and adverse reactions when administered in high doses, new
therapies are sought, and emerging drugs, formulations, and substance synergies are the focus of
a growing number of studies. A class of chemicals with great potential through anti-inflammatory,
anti-oxidant, and anti-tumoral effects is phytochemicals, and capsaicin in particular is the subject of
intensive research looking to validate its position in complementing cancer treatment. Our paper
thoroughly reviews the available scientific evidence concerning the effects of capsaicin on major GI
cancers and its interactions with the molecular pathways involved in the course of these diseases.

Keywords: capsaicin; digestive cancer; tumorigenesis; apoptosis; molecular signaling

1. Introduction

Gastrointestinal cancer is a broad term encompassing the malignant tumors affecting
the digestive tract and annex glands, some of them being among the most aggressive
and resilient cancers in humans and causing 4.5 million global deaths every year [1]. A
large part of current research is dedicated to studying the pathogenesis and evolution
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of gastrointestinal cancers in an effort to obtain earlier diagnoses and to improve the
management and treatment of these diseases. The major scientific investment in this
field continues to uncover new molecular mechanisms governing the dissemination of
cancer cells while new surgical methods are developed in the attempt to minimize tissue
trauma and improve patient recovery times [2]. However, pertaining to the pharmaceutical
treatment of GI cancers, the existing drugs have less than ideal performances due to
incomplete disease control and the onset of adverse effects and chemoresistance. Emerging
studies are proposing immune checkpoint inhibitors, DNA-targeting agents, antiangiogenic
drugs, and newly-developed immunotherapeutic substances for a variety of GI cancers,
yet the validation of these therapies for clinical use is a long and arduous process [3,4].

Lately, phytochemicals are viewed with increasing interest due to their demonstrated
anti-inflammatory and anti-oxidant effects and are considered for use as antitumoral
agents based on the rising number of studies where they demonstrated efficiency against
various cancers [5,6]. In this regard, capsaicin is one of the most promising substances as
it has shown anticancer activity by diminishing the tumoral progression, decreasing the
metastasis rates, and increasing survival in a variety of studies on different cancers [7,8].

2. Capsaicin in Gastrointestinal Cancer

Capsaicin (trans-8-methyl-N-vanillyl-6-nonenamide) is the major component that
produces the burning sensation when ingesting hot peppers. Capsaicin is an alkaloid found
in various species of hot peppers and is part of the Capsaicinoids family, which consists
mainly of capsaicin, dihydrocapsaicin, nordihydrocapsaicin, homodihydrocapsaicin, and
homocapsaicin.

Capsaicin agonists consist of three molecular regions: a vanillyl group named “head”
with the structure of an aromatic ring, an amide bond (“neck”), and a hydrophobic side-
chain referred to as aliphatic “tail”; structural variety in these regions may influence the
agonist activity potency, and this is particularly important for synthetic derivatives, as new
studies seek out artificial compounds with superior potency and less or no pungency [9].
While capsaicin accounts for more than 80% of capsaicinoids, its analogues are very similar
in structure and show variations mainly in the length and degree of double bonds presence
in the “tail” [10].

Capsaicin is well absorbed in the gastrointestinal tract when administered orally, but
also through the skin when administered topically because of its properties: hydrophobic
aggregate, presenting a nonpolar phenolic structure. In oral administration, absorption
of capsaicin in the gastrointestinal tract is a passive process with up to 90% rates of
absorption [11]. A study on the gastrointestinal absorption of capsaicin in rats has shown
that the main site of absorption is the jejunum, followed by the ileum and stomach [12].
However, capsaicin is almost entirely metabolized in the liver with the production of
several metabolites: 16- and 17-hydroxycapsaicin, 16,17-dehydrocapsaicin, 5,5′-dicapsaicin,
vanillylamine, and vanillin [13,14]. There are reports that these metabolites may bind to
TRPV1, albeit with less potency than capsaicin, and may exhibit similar yet weaker effects
compared to capsaicin. However, conclusive data related to gastrointestinal cancers are
scarce [15–17]. Capsaicinoids escaping liver metabolization may be found unchanged in
the urine, albeit in small concentration compared to the orally administered dose [12,18].
However, the intake of dietary capsaicin varies significantly between individuals and
populations and may average anywhere between several milligrams to 10 or more grams
per day [19,20].

The capsaicin receptor is a transient cation channel type belonging to the subfamily V
member 1 of TRP receptor group (TRPV1) [21,22], a channel also activated by heat [23]. This
is how capsaicin produces the burning sensation [24]. The docking to TRPV1 is performed
in a specific orientation, with the “tail” pointing upwards and allowing a more flexible
configuration while the “head” is disposed deep into the binding pocket causing activation
through structural changes [25,26]. TRPV1 is expressed in the digestive tract, but with
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varied distribution depending on the presence of inflammation or tumors, which can also
induce the expression of calcitonin gene-related peptide (CGRP) or substance P (SP) [27].

Capsaicin targets some signaling pathways involved in carcinogenesis and tumor
invasion, but its global impact is not entirely known, despite the observation that it may
disturb cancer cell metabolism [28] implying some anti-neoplastic biologic effects. How-
ever, in most cases, this action on cancer cells’ metabolism seems to be independent of
TRPV1 [29].

In numerous in vivo studies, capsaicin has demonstrated anticancer effects by dimin-
ishing tumor cells progression in mice. The antitumor properties of capsaicin have been
explored in a series of other studies as well [30,31]. In the gastrointestinal tract, capsaicin
shows antitumoral effects in gastric cancer [32,33], cholangiocarcinoma [34], hepatocellular
carcinoma [35], pancreatic cancer [36], and colon cancer [37,38]. A study from 1998 has
established that capsaicin caused programmed cell death by increasing the ROS (reactive
oxygen species) production, inducing cell apoptosis by affecting a series of cellular sig-
naling networks such as tumor suppressor p53 pathway [39]. Various in vitro and in vivo
models have been used to demonstrate the antitumoral effects of capsaicin (Table 1).

Table 1. The antitumoral effects of capsaicin on various gastrointestinal cancers in in vitro and in vivo models.

Cancer
Type

Dose or
Concentration/Duration
of Application/Ingestion

Effect/Mechanism Experimental Model References

Esophageal squamous
cell carcinoma

60 µM for 24 h
Glycolysis inhibition

hexokinase-2 expression
downregulation

in vitro (Het-1A, 293T,
KYSE150, KYSE410,

and KYSE510)
[40]

50 µM for 24 h inhibition of MMP-9 via AMPK
activation in vitro (Eca109) [41]

Gastric cancer

10–300 µM for 12 h

Apoptosis, inhibition
of cell proliferation,

growth of cleaved caspase-3,
decrease of the BCL-2

in vitro (Human gastric
carcinoma
AGS cells)

[33]

10–200 µM for 24 h Induction of apoptosis via a Bcl-2
mediated pathway

in vitro (Human gastric
carcinoma
AGS cells)

[32]

Colorectal carcinoma

20 mg/kg orally for
28 days Limitation of the growth of polyps in vivo (APCMin+/ mice) [42]

100 µM for 24 h Suppression of the caspase-like
action of proteasome 20S

in vitro (SW480, HCT116,
LoVo, and Caco-2) [42]

40–160 µM for 24 h Apoptosis via increasing
expression of p53 and Bax in vitro (HCT116 and HT-29) [43–45]

Cholangiocarcinoma

150–200 µM for 24–96 h
Apoptosis,

Modulation of Hedgehog
pathway

in vitro (TFK-1 and SZ-1) [34]

150 mg/kg/day decrease in tumor volume through
increased apoptosis

in vivo (mice with tumor
xenografts) [46]

40 µM for 24 h
Facilitates 5FU antitumor actions

by activating the AKT/mTOR
pathway

in vitro (QBC939, SK-ChA-1,
and MZ-ChA-1) [46]

Hepatocellular carcinoma

100 µM for 72 h
Apoptosis,

p-ERK intensification,
p-STAT3 reduction

in vivo (nude mice with
PLC/PRF/5 xenograft) [47]

50–200 µM for 24 h

Induction of apoptosis via p53 and
AMPK-mediated cell cycle arrest,
PLC-dependent Ca2+ release, ROS
modulation, and TRAIL induction

in vitro (HepG2 cells) [35,48–51]
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Table 1. Cont.

Cancer
Type

Dose or
Concentration/Duration
of Application/Ingestion

Effect/Mechanism Experimental Model References

80–120 µM for 24–72 h

Prevention of metastasis by
inhibition of EMT and the EGFR
and PI3K/Akt/mTOR pathways

(combined with sorafenib)

in vitro (LM3) [52]

5 mg/kg intraperitoneal
injection for 28 days

Inhibition of tumor growth,
proliferation, invasion, metastasis

by activation of autophagy and
apoptosis (combined with

sorafenib)

in vivo (BALB/C nude mice
with LM3 xenografts) [52]

Pancreatic cancer

100–200 µM for 24 h Apoptosis, activation of
mitochondrial death pathway

in vitro (AsPC-1, BxPC-3, and
PANC-1) [53]

2.5–5 mg/kg, 3–5 days a
week, oral intake for 39

days
Inhibition of tumor growth in vivo (mice xenograft) [53]

10–20 ppm Capsaicin
supplemented diet

Inhibition of cell proliferation in
preneoplasic lesions by blocking

Hedgehog and Kras/ERK
pathways

in vivo (Pdx1-Cre and
LSL-Kras/G12D mice with

chronic pancreatitis via
caerulein injection)

[54]

However, carcinogenic effects of capsaicin on gastrointestinal tumors were also cited
in multiple studies [55]. Nevertheless, these reports are scarce and often the findings have
not been confirmed by newer studies and hence published papers. Most of these reports
are based on animal models that use induction of cancer through cancer cell lines that
undergo adaptations and show particular signaling and genomics. Extrapolation to human
subjects is in most cases impossible due to the large number of confounding variables and
specific differences [56]. However, since all these observations might also be applied when
considering the anti-tumor effects, a summary of some of the most important reports on
carcinogenic effects of capsaicin on different study models is depicted in Table 2.

Table 2. Carcinogenic effects of capsaicin on various gastrointestinal cancers.

Cancer
Type Dose Effect Experimental Model References

Esophageal squamous
cell carcinoma 15 µM increased cell

proliferation in vitro (Eca109 cells) [57]

Gastric cancer

90–250 mg/day
oral intake

increased risk of
carcinogenesis

(especially diffuse type
gastric cancer)

Human case-control study [58]

5g/kg/day oral intake Cocarcinogenic in vivo (Sprague–Dawley
rats treated with MNNG 1) [59]

Colorectal carcinoma ≤10 µM increased cell migration
and proliferation

in vitro (HCT116 human
colon cancer cells) [60]

Hepatocellular carcinoma 10% chili pepper
oral intake

stimulating
carcinogenesis in vivo (rats) [61]

1MNNG = N-methyl-N’-nitro-N-nitrosoguanidine.

2.1. Esophageal Squamous Cell Carcinoma

Esophageal cancer is an extremely aggressive cancer due to its poor survival rate and
ranks sixth in cancer mortality [62]. Some of the most common risk factors in develop-
ing esophageal cancer are smoking, alcohol, diet (hot tea, high red meat intake, and low
vegetable intake), genetics (Tylosis-an autosomal dominant disease), obesity, low socioeco-
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nomic status, and caustic injury [63]. A recent study has demonstrated that capsaicin has
the power to inhibit tumor glycolysis in esophageal squamous cell carcinoma (ESCC) by
acting on hexokinase-2 expression, an enzyme participating in the process of glycolysis, a
mechanism that is involved in the rapid growth of cancer cells [40]. In this study, it was
revealed that capsaicin downregulates the hexokinase-2 expression and inhibits cancer
cells glycolysis. In vitro results showed that capsaicin induces a suppressive effect on
esophageal squamous cell carcinoma cells and the cellular response is dose-dependent [40].
The activity of hexokinase-2 was investigated in other malignancies such as non-small cell
lung cancer and breast cancer and it was suggested that hexokinase-2 has a negative impact
on the treatment of cancer by promoting chemoresistance and the inhibition of glycolysis
through hexokinase-2 increases the cancer cells chemotherapy sensitivity [64–66].

In another recent in vitro study, capsaicin inhibited the dissemination of ESCC cells
by activating the 5’ AMP-activated protein kinase (AMPK) signaling pathway that caused
a decrease in the expression of matrix metalloproteinase (MMP) 9, a known regulator of
cancer invasion and migration [41].

Conversely, in a 2019 study, Huang et al. presented salient findings regarding the
overactivation of TRPV1 by capsaicin and TRPV4 stimulation by hypoosmotic solutions.
In an in vitro study on Eca109 and TE-1 ESCC cell lines, the vanilloid receptors were
functionally expressed in the tumor cells and their overactivation promoted tumor growth
and invasion. Capsaicin exposure between 1 and 5 days stimulated the proliferation of
ESCC cells at a concentration of 15 µM, which is below the EC50 for the induction of [Ca2+]i
increase, while the apoptotic effects on cancer cells were obtained at concentrations above
the EC50 threshold [57]. Further in vivo studies are needed for validating these findings
and advancing the understanding of the capsaicin involvement in the networked pathways
regulating tumor development and dissemination.

2.2. Gastric Cancer

Gastric cancer is one of the leading causes of death by cancer worldwide despite a
sustained decrease in incidence due to continuous efforts in restricting the exposure to
various risk factors [67].

2.2.1. Antitumoral Effects of Capsaicin in Gastric Cancer

Various studies have suggested that capsaicin could act as an important agent against
gastric cancer. Several in vitro studies have shown that capsaicin has the potential to inhibit
the proliferation of gastric cancer cells and to promote their apoptosis. It was revealed that
these actions are performed by reducing the expression of Bcl-2 [68,69]. Similar results
were emphasized in an in vitro study on a human gastric adenocarcinoma cell line which
has shown that exposure to a dose of 10 to 200 µmol/L of capsaicin reduces the BCL-2 ex-
pression in these cells [32]. BCL-2 is an antiapoptotic protein, responsible for the regulation
of the transmembrane calcium fluxes. Dysfunction of calcium-permeable channels was re-
vealed as a possible inducer for cancer development, including gastrointestinal tumors [70].
Ca2+ is a main factor in the process of apoptosis and BCL-2 is blocking the programmed cell
death induced by Ca2+-ionophores in various cell lines such as thymocytes, T-cell leukemia
lines, and PC12 cells [71].

Other studies have shown that, in addition to the decreased activity of BCL-2, capsaicin
produces an increase of cleaved caspase [33]. Caspase-3 is a protease that is systematically
activated in the process of apoptosis [72]. Apoptosis may be achieved in a caspase-3
dependent or independent manner. The activation pathway of this protease is dependent
of mitochondrial cytochrome c release and caspase-9 [73,74], and, by increasing cleaved
caspase-3, capsaicin promotes the apoptosis of cancer cells in a multifaceted way: cell
reduction or cell shrinking, blebbing of cytoplasmic membranes chromatin condensation
and DNA disintegration. BCL-2 is known as the “antiapoptotic protein”, and a study
from 2005 has revealed that the capsaicin intake promotes a reduction in the expression
of BCL-2 [32]. As mentioned above, studies have shown that BCL-2 is responsible for the
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regulation of the transmembrane calcium fluxes [71]. In the same regard of antitumor effect
of capsaicin in gastric cancer, it was revealed that capsaicin has the ability to inhibit the
mutagenicity of different agents, such as aflatoxin B1 and the tobacco-specific nitrosamine4-
(methylnitrosamino)-1-(3-pyridyl)-butanone (NNK)—two very potent carcinogens, by
inhibiting their activation: [75] aflatoxin B1 is found in peanuts and different grains and
shows mutagenic and teratogenic proprieties [76] while NNK has been linked with damage
to the mitochondrial genome [77].

A recent study by Wang et al. showed a new epigenetic action of capsaicin capable of
regulating cell growth in gastric cancer [28]. The authors showed that capsaicin promotes
the activity of histone acetyltransferase hMOF inducing a positive feedback loop ending in
cell cycle arrest and apoptosis in SGC-7901 and MGC-803 gastric cancer cells. The antitu-
moral effects of capsaicin on gastric cancer seem to be dose-dependent, as a Meta-Analysis
demonstrated that a low intake exhibits protective effects against gastric cancer [78,79].

2.2.2. Carcinogenic Effects of Capsaicin in Gastric Cancer

One of the carcinogenic factors involved in the development of gastric cancer is Heli-
cobacter pylori [80]. The link between capsaicin and Helicobacter pylori in the development of
cancer has been studied and results did not confirm interactions between the two counter-
parts connected to the risk of developing gastric cancer [58]. As already mentioned, p53 is
an important factor in cancer development, and Helicobacter pylori may cause the inacti-
vation of the P53 gene in gastric cancer through different mechanisms such as mutations
or deletions [81], while capsaicin may counterbalance this negative effect of Helicobacter
pylori. However, a high intake of capsaicin has proven to increase the risk of diffuse-type
gastric cancer, and the mechanism has not yet been expounded [58]. It is known that
intestinal-type gastric cancer is distinguished by overexpression of HER2 while diffuse-
type gastric cancers are characterized by amplification of c-met receptor and aberrations
in the EGFR kinase pathway [82]. Capsaicin’s connection with the EGFR pathway has
been the subject of many studies, but its dose-dependent carcinogenic effect has not been
definitively demonstrated. Furthermore, in vivo studies on mice have revealed capsaicin’s
effect of promoting gastrointestinal tumor development in mice [83]. Other studies re-
garding gastric cancer have suggested a cocarcinogenic effect of capsaicin in some murine
models (i.e., N-methyl-N’-nitro-N-nitrosoguanidine-induced gastric cancer) but not in
other carcinogenesis models, such as the one induced by azoxymethane [84,85]. A large
case-control study demonstrated the potential of capsaicin to stimulate the development
of cancer cells in consumers of spicy food [86]. However, human populational studies
measuring the dietary intake of capsaicin may suffer from significant limitations and bias
related to nondifferential measurement errors, recall bias, selection and sampling bias,
flaws in statistical methods, and the presence of various confounding variables [56,86]. As
such, improving the design of these studies and analyzing larger data sets may yield more
relevant results. Overall, even though prooncogenic effects have been cited in a variety of
papers, the relevance of these studies is uncertain and further research is needed to confirm
these results.

2.3. Colorectal Carcinoma

Colorectal cancer is the third most commonly diagnosed cancer in males and the
second in females [87]. The majority of colorectal cancers (around 90%) are adenocarcino-
mas [88]. Other cancer types are less common: neuroendocrine, squamous cell, adenosqua-
mous, spindle cell, and undifferentiated carcinomas [88]. Overall, 5–10% of all patients
are affected by hereditary colorectal cancer syndrome. Lynch syndrome and familial ade-
nomatous polyposis are two of the most common syndromes among colorectal cancer
patients [89]. The incidence of colon cancer and daily diet are strongly linked [90]. However,
while some studies have suggested a possible role of capsaicin-rich diet in carcinogenic
processes of colonic mucosa [91], other numerous studies have indicated an anticancer
effect of capsaicin [92–94]. One possible explanation of the anticancer properties of cap-
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saicin in colorectal cancer is associated with Cyclin D1 degradation and 20S proteasome
activity [42]. Cyclin D1 is a subtype of cyclin regulating cell cycle advancement from
phase G1 to phase S [95]. Cyclin D1 expression is high in colorectal cancer due to the
abnormal adenomatous polyposis coli or β-catenin genes [96]. The ubiquitin–proteasome
is a regulatory complex with important roles in managing cancer development and consists
of many factors that include E3 ubiquitin ligases, ubiquitin hydrolases, ubiquitin, and
ubiquitin-like molecules [97–99]. Cyclin D1 is associated with ubiquitin and then relocated
to the 26S proteasome, playing a main role in colorectal cancer by inducing the transition
through the restriction point in the G1 phase [100,101].

2.3.1. Anticarcinogenic Effects of Capsaicin in Colorectal Carcinoma

TRPV1 is expressed in the intestinal epithelial cells where a close connection with the
epidermal growth factor receptor (EGFR) pathways has been emphasized [102]. Epidermal
growth factor (EGF) is a 53-amino acid peptide that is responsible for cellular development,
growth, survival, movement, programmed death, propagation, and differentiation [103].
The stimulation of EGFR is associated with an intrinsic activation of TRPV1. Further,
TRPV1 initiates direct negative feedback on the EGFR, and blocking EGFR may keep cancer
cells from developing and growing. Conversely, hyperactivation of EGFR pathways is
stimulated by the lack of TRPV1 signaling which may promote cell proliferation increasing
the risk of intestinal epithelium malignancies [104].

TRPV1 is a strong nonselective calcium channel that could powerfully affect the evo-
lution of colorectal cancer cells [105], knowing from several studies that the imbalance of
calcium influx is a stimulus for colon cancer development [105,106]. In an interesting study
by Vinuesa et al., it has been revealed that mice with TRPV1 deficiency may develop cancer
of the distal colon [107]. Calcium signaling is an important modulator in different cell cycle
processes and numerous studies have highlighted its role in a variety of cellular mecha-
nisms, involved in all major stages of cancer development [108,109]. For example, calcium
signaling impacts both promotion and invasiveness, being involved in the regulation of
cell proliferation and apoptosis through the Ca2+/calmodulin complex [110].

Another possible link is the effect of capsaicin on P53, a suppressor gene located on
chromosome 17 [111,112] with an important role in cell cycle control and apoptosis. P53
may suffer various mutations and can contribute to the development of tumors [113]. The
p53 mutant gene may have a pro-oncogenic function [114]. It has been shown that oncologic
patients with mutations in the p53 gene may develop resistance to chemotherapy [115]. In
a study performed in 2019, it was shown that treatment with TRPV1 agonist capsaicin can
activate the p53 gene leading to inhibition of the development of colorectal cancer cells
and stimulation of their apoptosis [105]. This confirmed previous similar findings by other
authors [43–45].

The optimal dose of capsaicin needed to exhibit the maximum antitumoral effect
in colon adenocarcinoma was investigated in a 2020 study by Nisari et al. [116]. The
research team used silver staining of nucleolus organizer regions (AgNOR) in Caco-2
cells to determine the correspondent dose of capsaicin in the highest values of AgNOR
and Total AgNOR area/nuclear area. This led to the conclusion that 50 to 75 uµ log
concentrations of capsaicin solution is the most reliable dose for exhibiting the maximum
chemopreventive effect.

Time-dependent antitumor effects of capsaicin on colon cancer cells were also de-
scribed in a combined in vivo and in vitro study on Colo 205 cells and xenograft mice. The
study showed that ROS generation and Bax/Bcl-xL modulation are of great importance
in the induction of apoptosis in colon cancer cells [117], and these findings confirm other
similar results [44,94], reinforcing the potential use of capsaicin as an anticancer agent in
this pathology (Figure 1).
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trations. Capsaicin causes a degrading of Cyclin D1 and decreased activity of the 20s proteasome.
The inter-activation and signaling feedbacks of TRPV1 and EGFR receptors are represented with a
double arrow. CaM = calmodulin.

2.3.2. Carcinogenic Effects of Capsaicin in Colorectal Carcinoma

As stated before, carcinogenic effects of capsaicin on colorectal carcinoma were also
mentioned. An in vitro study by Liu et al. showed that capsaicin in low concentrations (be-
tween 0.1 and 10 µM) for 24 h can induce tumor cell growth and migration in HCT116 cells
by upregulating the expression of tumor-associated NADH oxidase (tNOX). Furthermore,
tNOX knockdown in HCT116 cells inhibits cell migration and proliferation suggesting
this mechanism may mediate the oncogenic effect of capsaicin [60]. Conversely, a study
published in 2020 deemed capsaicin as a safe food product in high doses as it failed to
impact carcinogenesis progression in a preneoplastic colon cancer model in rats [118]. This
data advises that further research is needed not only to establish the reliability of using
capsaicin in colon cancer but also to find a safe dose for clinical use.

2.4. Cholangiocarcinoma

Cholangiocarcinoma (CCA) is a malignant tumor of the bile ducts, yielding high
mortality, with intra- or extrahepatic locations, a factor related to the prognosis [119].
Research has demonstrated that CCA is resistant to a series of chemotherapeutic regimens
including Fluorouracil (5FU), an analog of the pyrimidine uracil acting as a pyrimidine
antagonist [120]. Fluorouracil interferes with DNA replication, RNA processing, and
protein production [121,122] and inhibits cell proliferation [123].

In vivo and in vitro studies have shown that capsaicin is an important antiproliferative
factor in various cancers and dietary use is now considered for its chemopreventive
effect [55]. Among the antitumoral mechanisms cited in various studies, capsaicin has the
capacity to diminish the activation of the hedgehog pathway, a signaling cascade with major
roles in different mechanisms such as embryonic development and tissue homeostasis [124].
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In CCA, capsaicin has yet again demonstrated its anticancer potential in an in vitro study
which revealed that capsaicin can block the Hedgehog pathway activation and promote
antitumor functions [34].

Capsaicin was proven effective in preventing CCA metastasis in a recent in vitro
study on HuCCT1 cells by suppressing the expression of MMP-9 via the activation of the
AMPK-NF-κB pathway [125]. The capsaicin-induced phosphorylation of AMPK inhibited
the translocation and deacetylation of NF-κB p65 causing significant inhibitory effects on
CCA cells migration.

Another interesting study has revealed promising results regarding the utility of
capsaicin in the treatment of CCA. The authors employed in vitro and in vivo methods to
show that capsaicin yields great results in association with 5FU by increasing the 5FU anti-
tumor effects through 5FU-induced autophagy inhibition. Therefore, by using capsaicin in
a complementary manner in the treatment of CCA, the chemoresistance met in CCA may
be overcome [46].

Unfortunately, there is a scarcity of papers investigating the effects of capsaicin in
CCA leading to grand anticipation of further studies, especially considering the poor
prognosis and high mortality of this type of cancer and the paucity of therapeutic options
in advanced disease.

2.5. Hepatocellular Carcinoma

Hepatocellular carcinoma (HCC) is the most common primary liver cancer, and
its development is influenced by multiple factors that induce the uncontrolled division
and transformation into cancer cells. The appearance of mutations in p53, PIK3CA, and
β-catenin are common findings in the development of HCC [126]. Wnt/β-catenin is com-
monly altered in HCC and holds an important role in the differentiation and development
of cancer [127]. The P53 mutant gene may have a pro-oncogenic function, p53 being a main
cell-cycle catalyst protein that can suffer mutations and promote cancer development not
only in the hepatic tissue but in different areas as well.

There is strong evidence regarding the expression of TRP channels in the liver, TRPV1
being involved in hepatocytes migration [128]. Moreover, the altered expression of TRPV1
holds a potential role in the development and progression of hepatocellular carcinoma.
Thus, it is not surprising that in various research regarding capsaicin’s antitumor action,
TRPV1 is the main catalyst [129]. However, other studies showing that capsaicin reduces
HCC aggressiveness by inducing apoptosis in hepatic cancer cells have emphasized that
this is a cumulative effect of different mechanisms that act against cancer cells: increase of
intracellular Ca2+ production, the elevation of ROS, and regulation of the Bcl-2 protein [35].

The variety of actions that capsaicin exhibits in HCC may be organized into effects
on tumor differentiation, genomic stability, cellular proliferation, oxidative stress, and
angiogenesis [7]. Several studies have shown that capsaicin can induce cell cycle arrest
and apoptosis in HepG2 cells mainly through the interaction with p53 and the AMPK
pathway [35,48]. Moreover, capsaicin triggered apoptosis in HCC cells through other mech-
anisms such as ROS generation [50], endoplasmic reticulum stress [35], and phospholipase
C-mediated Ca2+ release [49], and tumor necrosis factor-related apoptosis-inducing ligand
pathway [51].

The suppression of angiogenesis may be promoted by capsaicin via the suppression
of the vascular endothelial growth factor pathway and receptor. The use of monoclonal
antibodies against VEGF has shown that HCC cells growth may be inhibited [130], and
capsaicin is known to exhibit VEGF-induced cell proliferation [131], however, further
studies are needed to confirm the antiangiogenic role of capsaicin in HCC.

Oxidative stress seems to play a major role in the metabolism of HCC cells [132]
and capsaicin is able to modulate ROS causing apoptosis through NADPH-mediated
pathways [133,134]. ROS generation can also lead to the accumulation of ceramide in some
cancers [135], which may alter the cellular metabolism and trigger apoptosis via TRAIL
activation [136]; however, these findings have not yet been corroborated in HCC.
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2.5.1. Synergistic Antitumoral Effects of Capsaicin and Sorafenib in
Hepatocellular Carcinoma

An important area of research regards the combined effects of capsaicin and sorafenib,
a kinase inhibitor considered to be the main treatment course for HCC in the advanced
disease stage. In HCC, sorafenib significantly extended the median progression-free
survival as compared with placebo [137], but as a relatively new molecule, it needs new
ways to have its effects enhanced. A study from 2018 has shown that adding capsaicin to
sorafenib has increased its apoptotic effect in HCC [47]. The study has displayed that the
tumor activity and lifespan were diminished by the sorafenib and capsaicin compared to
sorafenib or capsaicin alone. The ability to induce apoptosis and to diminish the tumor
cell viability is dose-dependent, as a high concentration promotes a stronger effect. The
same study has shown the increment of tumor sensitivity by an intensification of p-ERK
and reduction of p-STAT3 signaling. P-ERK is a protein that opposes the MEK/ERK
signaling cascade. The study has shown that the P-ERK levels are different in HCC patients.
P-ERK is a crucial element of the RAf/MEK/ERK pathway. The Ras/Raf/MEK/ERK
signaling pathway is involved in various cellular mechanisms that promote cancer cell
development and is a key component in the development of HCC [138,139]. Sorafenib
plays a major role in the treatment of HCC by inhibiting the Ras/Raf/MEK/ERK signaling
cascade [140]. Signal transducer and activator of transcription–3 (STAT3) is a kinase that
plays an important role in the induction, development, and dissemination of HCC [141].
A higher expression of STAT3 is linked with a worse prognosis. Sorafenib has the ability
to inhibit tumor development by reducing STAT3 phosphorylation [142,143]. Therefore,
combining sorafenib and capsaicin yields a synergic antitumor effect by inducing apoptosis
and diminish tumor cell proliferation.

A necessary step in the spread of malignant HCC cells is the epithelial-mesenchymal
transition, a complex process where MMPs play a major role, in particular MMP-2 and
MMP-9 [144]. In a recent study, Dai et al. showed that the combined sorafenib and
capsaicin treatment inhibits the development and metastasis of HCC cells, both in vitro
and in vivo, through a variety of mechanisms including the downregulation of EGFR and
PI3K/Akt/mTOR pathways and decreasing MMP-2, MMP-9, Bcl-2, and mesenchymal
markers vimentin and N-cadherin [52].

2.5.2. Carcinogenic Effects of Capsaicin in Hepatocellular Carcinoma

Even though numerous studies have shown that capsaicin has anti-inflammatory ef-
fects, promotes apoptosis, and reduces tumor cell proliferation, some research has pointed
towards the mutagenic potential of capsaicin. Various studies have shown that capsaicin
may be a prooncogenic substance that promotes cancer development, through different
mechanisms [56,145]. In an early study published in 1952, researchers have demonstrated
that rats fed with 10% chili peppers may be at risk of developing liver tumors [61]. This
study was later criticized for not considering the potential effects of other hepatocarcino-
gens present in the rats’ diet [146]. The overall relevance of these controversial data is yet
to be established.

2.6. Pancreatic Cancer

Globally, pancreatic cancer is the seventh cause of death caused by neoplasms [147].
This disorder is split into two categories of pancreatic cancer: pancreatic adenocarcinoma
(85%, with a very poor prognosis) and pancreatic neuroendocrine tumors [148,149].

Ample studies have been developed investigating the possibility of improving survival
in pancreatic cancer with new therapies [150]. As in other neoplasms presented above,
capsaicin has been shown to have beneficial effects in pancreatic cancer. In a 2008 study,
capsaicin has displayed apoptotic action against pancreatic cancer cells [53]. This action
is mainly mediated by the activation of the mitochondrial death pathway which can be
activated by ROS generation and Jun kinases (JNKs) activation [151]. Numerous stimuli can
affect the mitochondrial membrane promoting the permeabilization of the outer membrane.
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Bcl2 is an antiapoptotic protein and an important factor in the regulation of membrane
permeabilization. In addition to regulating the transmembrane calcium fluxes [152], Bcl-2
is blocking the programmed cell death induced by Ca2+-ionophores in different cell lines.
Capsaicin intake was proven effective in reducing the expression of Bcl-2, offering another
possible explanation for its antitumor effects in pancreatic cancer [32].

Other studies cited preventive effects of capsaicin against pancreatitis and it was re-
vealed that chronic pancreatitis is an important risk factor for the development of pancreatic
cancer [153]. Chronic pancreatitis favors the development of pancreatic cancer through the
prolonged inflammatory process that leads to the production of increased concentrations
of ROS and nitrogen species. Long-lasting oxidative stress is one of the main factors in the
development of cancers via the induction of anomalies in cellular metabolism [154]. In an
experimental mice model, a specific diet containing capsaicin over a period of eight weeks
decreased the severity of chronic pancreatitis and significantly inhibited the progression of
pancreatic intraepithelial neoplasia [54]. This was achieved most likely by inhibiting the
inflammatory process within the pancreatic tissue as well as blocking the activation of the
mutant Kras/ERK pathway.

The potential use of capsaicin in the treatment of pancreatic cancer is of particular
interest due to the very low survival rates in these patients, despite the employment of mul-
timodal therapy [155]. Therefore, the use of capsaicin alongside conventional chemothera-
peutic drugs may be beneficial due to their combined and complementary effects.

3. Conclusions

In summary, capsaicin displays antitumoral effects in different stages of GI cancers
through numerous molecular mechanisms. As mentioned above, the approach to therapies
for these highly aggressive cancers is an evolving mission; new therapies and novel
compounds are tested and perfected to increase survivability and quality of life. In multiple
in vivo studies, capsaicin has shown anticancer activity by diminishing the progression of
cancer cells on murine models by acting on various signaling pathways and cancer-related
genes in HCC, CCA, pancreatic, and colorectal carcinoma. Recent studies have shown the
potential of capsaicin in the treatment of HCC and CCA and its effects in enhancing the
anticancer activity of other chemotherapeutic drugs employed in these patients.

However, the existence of studies showing the carcinogenic effect of capsaicin in
animal models of esophageal, gastric, colorectal carcinoma, or HCC should also be men-
tioned. These effects seem to be dose-dependent, which adds uncertainty regarding the
chemopreventive effects of dietary usage due to intake dose and frequency inconsistencies.
Some authors have observed in vitro carcinogenic effects of capsaicin, using doses in the
range of daily intake, but in order to obtain cell proliferation, a prolonged exposure to
the compound was required. This finding is balanced by the fact that capsaicin is quickly
absorbed and then metabolized, so these effects might not actually be possible in normal
dietary conditions. However, there is data to support that even capsaicin metabolites may
carry on some effects which adds new layers of difficulty in correctly assessing the net ef-
fects and building adequate study designs. Further meta-analyses and human trials should
clearly delineate the intricate effects of capsaicin, but the increasing number of publications
and experimental models developed for evaluating the capsaicin efficiency in GI cancers
demonstrate great interest in its potential and emerging evidence is encouraging.
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