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Abstract: Among oral tissues, the periodontium is permanently subjected to mechanical forces
resulting from chewing, mastication, or orthodontic appliances. Molecularly, these movements
induce a series of subsequent signaling processes, which are embedded in the biological concept of
cellular mechanotransduction (MT). Cell and tissue structures, ranging from the extracellular matrix
(ECM) to the plasma membrane, the cytosol and the nucleus, are involved in MT. Dysregulation
of the diverse, fine-tuned interaction of molecular players responsible for transmitting biophysical
environmental information into the cell’s inner milieu can lead to and promote serious diseases,
such as periodontitis or oral squamous cell carcinoma (OSCC). Therefore, periodontal integrity and
regeneration is highly dependent on the proper integration and regulation of mechanobiological
signals in the context of cell behavior. Recent experimental findings have increased the understand-
ing of classical cellular mechanosensing mechanisms by both integrating exogenic factors such as
bacterial gingipain proteases and newly discovered cell-inherent functions of mechanoresponsive
co-transcriptional regulators such as the Yes-associated protein 1 (YAP1) or the nuclear cytoskele-
ton. Regarding periodontal MT research, this review offers insights into the current trends and
open aspects. Concerning oral regenerative medicine or weakening of periodontal tissue diseases,
perspectives on future applications of mechanobiological principles are discussed.

Keywords: mechanotransduction (MT); nuclear mechanotransduction (NMT); YAP/TAZ; extracellular
matrix (ECM); gingipain proteases; periodontitis; oral squamous cell carcinoma (OSCC); regeneration

1. Introduction

Within tissues, cells are embedded in an extracellular matrix (ECM), consisting of both
fibrous proteins similar to collagen and the ground substance, which is mainly made up of
proteoglycans and glycoproteins [1]. Tissue homeostasis and regeneration is governed by a
plethora of different signals, involving differentiation and growth factors, endocrine signals,
and neuronal stimuli, which have been extensively studied in vitro and in vivo [2–6].
Above, the cells are in close contact with neighboring cells for the purpose of metabolic
coupling and, in the case of epithelia, to enclose a defined physiological milieu [7,8]. Thus,
a complex, three-dimensional environment is not only responsible for histogenesis during
development, but also for tissue homeostasis and regeneration [9,10].

This intimate relationship between cells and their ECM makes it necessary that signals
are exchanged between both compartments. Beneath biochemical factors and ion currents,
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mechanical cues are transmitted from the ECM to the cell and vice versa within a process
called mechanotransduction (MT). The same principles apply to cell-to-cell contact sites,
where cellular traction forces are transmitted between adjacent cells [11–15].

On the molecular level, MT relies on membrane-embedded cellular receptor proteins
that sense and bind to extracellular ligands, which are either ECM proteins in the case of
cell-to-matrix adhesion or cell-bound ligands in the case of cell-to-cell contacts [11–16].

Focal adhesions (FAs) are microscopically detectable contact sites between cells and
the ECM and consist of membrane-bound receptor proteins, called integrins, which can
bind to collagens, fibronectins, and various other ECM components [15]. Movements of
the ECM, such as shear stress or compression forces, induce the formation and consecutive
strengthening of FAs, which corresponds with mechanobiological cellular adaptation
processes [17]. Intracellularly, integrins are connected to diverse adaptor proteins, which
constitute a versatile signaling scaffold to address many different signaling pathways in
response to mechanical loading [15]. Finally, these cascades converge on actin-regulating
proteins (ARPs) as well as mechanosensitive co-transcriptional activators, such as the Yes-
associated protein 1 (YAP1, henceforth designated as YAP) [18,19]. Conversely, actin- and
myosin-dependent cellular traction forces are fed back to the ECM via integrins, rendering
FAs an outside-in and inside-out signaling hub [20,21].

Cell-to-cell contacts are mostly established by homophilic and Ca2+-dependent cellular
adhesion proteins, namely members of the cadherin (Cad) families. The histological
equivalents of these connections are called adherens junctions (AJs) and are indispensable
for epithelial integrity and barrier functions. Similar to FAs, AJs are intracellularly coupled
to further signal-transducing proteins comprising members of the catenin family and the
actin cytoskeleton [22–24].

Aside from the cytoplasmic cytoskeleton, more and more experimental evidence
proves the enormous contribution of nuclear mechanics and the nuclear cytoskeleton to
cellular MT, genomic integrity, and tissue regeneration [25,26]. In particular, nuclear lamins,
and their role in epigenetic regulation and chromatin structure, are tightly interrelated to
mechanobiological processes [27,28]. Thus, the concept of nuclear mechanotransduction
(NMT) widens the above-described ECM-cytosolic network to an integrative ECM-cytosol-
nucleus network, involved in cellular key functions as diverse as proliferation, migration,
differentiation, and apoptosis. Therefore, understanding the key concepts which govern
cellular MT is undoubtedly a prerequisite for a deeper understanding of periodontal tissue
homeostasis, regeneration, and disease.

Within the oral cavity, the periodontal structures consisting of the gingiva, the peri-
odontal ligament (PDL), cementum and the alveolar bone are permanently subjected to
cyclic and static mechanical loading, which is a direct consequence of chewing, occlusion,
mastication or orthodontic treatment [29]. Although the ECMs of the periodontium harbor
different biochemical and biophysical properties, their mechanical integrity and continuous
remodeling and regeneration is a basic requirement for oral health [30–32]. Imbalances in
matrix metalloproteinase (MMP) and the tissue-inhibitor of metalloproteinases (TIMPs) reg-
ulation or the presence of pathogen-derived proteases such as the Porphyromonas gingivalis
(P. gingivalis) gingipains can severely damage the periodontium and lead to inflammatory
processes with consecutive catabolic degradation of the ECM [33–36]. This, of course,
changes the mechanosignaling pathways and thus influences cell behavior. In conjunction
with the host’s inflammatory response, their susceptibility to pathogen-induced damage,
and further microbe-derived virulence factors can contribute to or result in the onset or
the progression of diseases such as periodontitis or, at worst, even oral squamous cell
carcinoma (OSCC) [37,38].

Regarding the various functions of MT in tissue homeostasis, regeneration and health,
this review summarizes the molecular principles of core mechanosignaling pathways in
the periodontium, including FAs, AJs, YAP1 and NMT. Moreover, potential applications of
MT-related processes for periodontal regeneration and disease weakening are described.
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2. The ECM, Focal Adhesions and Adherens Junctions in Periodontal Health
and Disease

The periodontium is a complex composite tissue consisting of the gingiva, the peri-
odontal ligament (PDL), cementum, and the alveolar bone. Beneath harboring various cell
types, amongst others, gingival keratinocytes (GKs), gingival fibroblasts (GFs), periodontal
ligament fibroblasts (PDLFs), cementoblasts and osteoblasts, the ECMs of the different
periodontal cell and tissue entities are considerably different [39].

The cementum and the alveolar bone consist of an inorganic hydroxyapatite matrix
and collagen type I as the major organic compound [40]. Additionally, the glycosaminogly-
cans (GAGs) decorin and biglycan as well as the glycoproteins (GPs) osteonectin, osteopon-
tin, fibronectin, and osteocalcin can be found in the ECM of both tissues [41,42]. The PDL
harbors the fibrous collagen types I and III, and small amounts of collagen V and VI [43].
Above, the basement membrane collagen types IV and VII and collagen type XII, which
is important for fibrillar organization, are expressed in the PDL [44]. Elastin, fibronectin
(FN) and chondroitin-/dermatan-/keratin-sulfate, containing GAGs, also support PDL
function [45].

The gingiva contributes to periodontal integrity via epithelium and connective tissue.
While the GKs form a stratified squamous epithelial layer, GFs are embedded in a lamina
propria with collagen type I, III, elastin and many other macromolecules [46].

Physical ECM properties are key determinants of cell behavior in vitro and in vivo.
The stiffness of the ECM, quantified by the Young’s modulus, as well as viscoelastic prop-
erties, spatial arrangement of adhesion points, and other geometric constraints, influence
cellular responses through MT and other signaling hubs [14,47,48]. This means that ECM
composition, homeostasis and MT are tightly coupled and are, therefore, highly interde-
pendent [49]. Cell morphology, migration, proliferation, differentiation, and apoptosis are
consequently not only influenced by biochemical signals, but also by the direct mechani-
cal properties of the respective ECM environment [50]. Interestingly, cellular responses,
namely the actomyosin-derived cell-inherent contraction forces, as discussed below, seem
to directly reflect ECM stiffness, meaning that the Young’s modulus of the ECM is encoded
within the cell’s response to that specific microenvironment [51].

Mechanistically, the above-mentioned ECM constituents directly or indirectly, i.e.,
mediated through adaptor proteins, interact with neighboring cells via surface receptors.
Regarding MT, the family of integrin proteins is especially important as they are the core
linking hub between the ECM and the cytosol. Within the plasma membrane, integrins
form heterodimers, which are composed of an α- and a β-subunit. Various combinations
of heterodimers have been described in different experimental systems and they proved
to have different ligand specificity. Table 1 summarizes the most important integrin
heterodimers and their corresponding ligands relevant to periodontal MT [52–58]. As can
be seen, one heterodimer can sometimes bind more than one ligand (e.g., α1β1-integrin)
and one ligand, such as fibronectin, is recognized by multiple heterodimers. Therefore, the
tissue- or cell-specific expression pattern of integrins determines its interaction with the
ECM. Periodontal cell populations foremostly harbor α2β1, α3β1 and α5β1 integrins. Of
interest, the expression pattern of periodontal integrins changes in response to damage or
during wound healing or carcinogenesis [59].

Table 1. Selected integrin heterodimers and their corresponding ligands.

Integrin
Heterodimers α1β1 α2β1 α3β1 α5β1 αVβ1 αVβ3 αVβ5

Ligand(s) Different collagens
(e.g. type I)

Different collagens
(e.g. type I) laminins fibronectin fibronectin fibronectin vitronectin

Upon mechanical loading, such as during mastication, occlusion or orthodontic treat-
ment, the ECM of the periodontal tissues is deformed. Exemplarily, occlusion forces that
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exert compressive load onto a tooth are transmitted to the PDL, which serves as a push-pull
transducer [60]. This means that the ECM components within the PDL, such as the collagen
fibers, are stretched. As they are either directly or indirectly connected to the integrin
receptors and these proteins undergo a conformational change, which is herewith the conse-
quence of the initial mechanical stimulus. Therefore, these surface receptors are considered
mechanoreceptors, as they transmit the ECM’s physical state into the cell’s interior.

Intracellularly, integrins are linked to various signaling proteins, which function as
a molecular clutch that couples integrin–ECM interaction to intracellular biochemical
signaling, the centerpiece of MT. Histologically, these integrin-dependent cell-to-matrix
connection structures are called FAs [15].

Next to the plasma membrane, a plethora of proteins form the “integrin signaling
layer”, where focal adhesion kinase (FAK), the head domain of talin and paxillin interact
with the cytoplasmic integrin domain. Vinculin and the tail of talin are designated as the
“force transduction layer” [61]. Finally, these proteins are linked to the actin cytoskeleton
through an “actin binding layer”, which consists of α-actinin, vasodilator-simulated phos-
phoprotein (VASP), and zyxin [62]. Beneath the listed proteins, many other cellular key
players, such as sarcoma (Src)-family kinases or the extracellular signal-regulated kinases
1/2 (ERK1/2) have been shown to directly interact with FAs and regulate the activity and
assembly status of its components (Figure 1A) [15,63,64].

The actin cytoskeleton is the common downstream target of all MT pathways [65,66]. It
not only consists of filamentous (F) actin, but also of actin-regulating proteins (ARPs), which
regulate the dynamic building and destruction of the filaments from globular (G) actin
monomers. G-actin binds adenosine-triphosphate (ATP) and hydrolyses ATP to adenosine-
diphosphate (ADP) within F-actin. This reaction goes along with conformational changes
of actin monomers and contributes to the dynamic turnover of actin-related cytoskeletal
structures [67–69]. Actin polymerization is regulated by a class of guanosine–triphosphate
(GTP) binding proteins, known as Ras homologue A (RhoA), cell division control protein
homolog 42 (Cdc42), Ras-related C3 botulinum toxin substrate 1 (Rac1), as well as the
Rho-associated, coiled-coil-containing protein kinase 1 (ROCK1) (Figure 1A) [70–73]. These
small GTPases are addressed by the mechanotransducing proteins of FAs and their activity
state determines the polymerization of G-actin as well as the formation of lamellipodia
or filopodia. ROCK1 is even more directly involved in periodontal differentiation, home-
ostasis, and regeneration, as the inhibition of ROCK1 prevents proper the differentiation
of PDL cells into osteoblasts and reduces ECM regeneration via the downregulation of
collagen I and fibronectin [74,75]. These findings underscore the essential role of actin
cytoskeleton regulation in the MT of the periodontium.

Actin filaments are additionally stabilized by ARPs, such as Arp2/3, tropomyosin or
profilin. Contrarily, severing proteins, such as gelsolin, support F-actin depolymerization or
destruction [76,77]. Altogether, the complex interplay of actin regulatory proteins governs
actin’s dynamic de- and repolymerization and enables complex cellular processes, such
as cell division or migration [78]. Further details of these complex cytoskeletal regulatory
principles are beyond the scope of this review and interested readers are referred to other
comprehensive discussions on this subject [79,80].

Thus far, the description of the actin cytoskeleton and its dynamics does not explain
how cells maintain their shape during mechanical stimulation and how cellular integrity
can be achieved by mechanisms of FAs-related signaling. To this end, cells need the ability
to actively generate forces to withstand external deformation or to exert mechanical stimuli
on their environment. This is possible through the action of cytoplasmic motor proteins,
known as myosins, which are coupled to the actin cytoskeleton. Via the hydrolysis of ATP,
these motor proteins can actively move along actin filaments [81–83]. Besides functions
in cargo transport, myosins can, therefore, generate tension and traction forces through
the relative displacement of actin filaments [84–87]. This mechanism immediately explains
that FAs are not only outside-in signaling platforms that transmit mechanical ECM signals
into the cell, but that actomyosin-generated cytoskeletal forces can also be transmitted to
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the ECM with the help of integrins and their neighboring adaptor proteins. Therefore, FAs
are bidirectional mechanosensitive signaling hubs.

Figure 1. The role of focal adhesions and adherens junctions in mechanotransduction. (A): Focal adhesions (FAs) are
adhesion structures that bind extracellular matrix (ECM) ligands via integrin receptors. The latter are composed of varying
combinations of an α- and a β-subunit. Each heterodimer has specific ECM ligands (see Table 1). Intracellularly, integrins are
linked to various signaling molecules that constitute a molecular clutch, which transmits mechanical information from the
ECM into the cell’s interior and vice versa. Focal adhesion kinase (FAK), paxillin, talin, zyxin, vinculin, vasodilator-simulated
phosphoprotein (VASP) and α-actinin are examples of important FAs proteins, connecting integrin receptors to the actin
cytoskeleton (yellow). The small GTP-binding proteins Ras-related C3 botulinum toxin substrate 1 (Rac1), cell division
control protein homologue 42 (Cdc42), and Ras homologue A (RhoA), together with Rho-associated, coiled-coil-containing
protein kinase (ROCK) modulate the dynamic de- and repolymerization of globular (G)-actin (yellow dots) and filamentous
(F)-actin. FAK activity and subcellular localization of yes-associated protein (YAP) and its cellular homologue transcriptional
co-activator with PDZ motif (TAZ) are strongly interconnected. The linker of nucleoskeleton and cytoskeleton (LINC)
complex couples the cytoplasmic cytoskeleton to the nucleus. Both mechanisms are important to regulate gene expression
in response to mechanical signals. Details are described in the main text. (B): Cell-to-cell adhesion depends on adherens
junctions (AJs). Cadherins, as exemplified by E-Cadherin, are transmembrane proteins that bind other cadherins on
neighboring cells in a Ca2+-dependent manner (red dots). Intracellularly, cadherins are linked to various proteins, such as
p120, α-catenin, β-catenin, and vinculin, which indirectly connect cadherins to the actin cytoskeleton (yellow). YAP/TAZ
regulation is also dependent on AJs integrity. β-catenin can also serve as a transcription factor in the nucleus and its
subcellular localization contributes to determining cell behavior. Further details are described in the main text.
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Of interest, this is of enormous importance for ECM homeostasis and regeneration in
the PDL, as FN and collagen fibrillogenesis depends on intracellularly derived contractile
forces. Actin stress fibers serve as a guide trail for the centripetal movement of α5β1-
bound FN, which supports FN-FN interactions [88,89]. Collagen molecules can then be
deposited on the pre-existing FN fibrils. As this process is force-dependent, characteristic
ECM structures, such as the parallel arrays of collagen fibers within the PDL, can be
explained via this mechanism and are, therefore, a result of bidirectional MT related to FAs.
Interestingly, a recent study gave new insights into the actual nonuniformity of the PDL
and revealed the mechanical properties of different subregions within the gomphosis. The
so-called collar region is characterized by a high proportion of collagen type I, making it
resistant to tensile forces due to high mechanical stiffness. Contrary to that, the furcation
region is less stiff and contains less type I collagen, which seems to be associated with a
dual function in resisting compressive loads [30].

In periodontitis, collagen and other ECM components are degraded by proteases,
such as MMPs or bacteria-derived gingipains (see Section 4) [90]. This changes integrin-
dependent MT, leading to a decrease in intracellular actomyosin contractility (outside-in-
signaling). Consequently, inside-out signaling is also impaired, which leads to incorrect
collagen fibril deposition, worsening the catabolic destruction of the periodontium [36,59].

FAs related signaling also comprise an important step in (alveolar) osteocyte differenti-
ation and the cell’s response to fluid shear stress. The reduction in the protein sclerostin by
mechanical loading is mediated by FAK-dependent phosphorylation of the histone deacety-
lase 5 (HDAC5), which is translocated into the nucleus in response to this post-translational
modification. Sclerostin suppression leads to an increase in bone formation and thus
mediates an adaptation process by which shear stress leads to mechanical strengthening of
the exposed tissue [91,92].

Besides cell-to-matrix adhesion, cell-to-cell adhesion is of great importance, espe-
cially in epithelial tissues, such as parts of the gingiva. The main constituents of the
so-called adherens junctions (AJs) are cadherin (Cad)-family members (Cads), which are
Ca2+-dependent, membrane-embedded proteins that connect cells via homophilic inter-
action [93]. In the cytoplasm, Cads are connected to various proteins, amongst others
α-catenin, p120, vinculin or β-catenin [22,94–96]. These adaptor proteins are comparable
to the integrin-linked intracellular mechanotransducers, as they connect Cads to the actin
cytoskeleton. The same mechanisms and principles as discussed above also apply for
AJs and qualify the actin cytoskeleton not only as the common final pathway of AJs and
FAs signaling, but also as a crosstalk platform that integrates mechanical cues transmitted
through various MT pathways [97,98]. ERK1/2, YAP, and its cellular homologue transcrip-
tional co-activator with PDZ motif (TAZ), vinculin and FAK, are both addressed by AJs
and FAs, underscoring the complex mutuality of cell-to-cell and cell-to-matrix adhesion
(Figure 1B) [17,99–101]. This is the reason why current systemic approaches try to elucidate
the tissue- and cell-type specific interplay and fine-regulation of signaling crosstalk related
to MT [13]. It is of great interest, to shed light into these principles in periodontal tissues.

In the periodontal context, Cads fulfill different functions, ranging from maintenance
of cellular differentiation to epithelial barrier function, tumor suppression, and MT-related
tissue homeostasis. Specifically, β-catenin, in its function as a transcriptional regula-
tor, is important in PDLF differentiation and simultaneously inhibits the cementoblastic
phenotype [102].

The epithelial E-Cad, which is expressed in GKs, plays a significant role both in
periodontitis and oral carcinogenesis. Patients suffering from periodontitis show decreased
protein levels of E-Cad, which is indirect evidence for a dysfunctional epithelial barrier
function. This further promotes the inflammatory process [103]. Downregulation of E-Cad
has also been reported in many carcinomas, where it represents a key step during epithelial-
to-mesenchymal transition (EMT). Thereby, epithelial cells detach from their surrounding
cells and develop a migratory, fibroblastoid phenotype, which is a prerequisite for tissue
invasion and metastasis. Regarding oral carcinogenesis, reduced expression levels of E-Cad



Biomolecules 2021, 11, 824 7 of 42

and β-catenin are indicators of the progression from dysplasia to cancer and an aggressive
OSCC phenotype [104]. As chronic inflammation is a risk factor for cancer development,
the loss of E-Cad-related barrier function and MT offers valuable insights into the link
between periodontitis and OSCC [105,106].

Beneath E-Cad, Cadherin 11 (Cad11) is another member of the cadherin family ex-
pressed in periodontal tissues [107,108]. Upon mechanical loading, expression of Cad11
and β-catenin decreases in PDLFs, which consequently leads to a reduction in collagen
1 synthesis and changes in cellular morphology [109]. These findings clearly show that
not only FAs but also AJs are involved in ECM homeostasis and regeneration and that
cell-to-cell adhesion is not limited to intercellular information exchange. This hypothesis is
supported by other experimental results, where knock-down of Cad11 impairs elastin and
collagen synthesis [110]. In mice, Cad11 deficiency reduces cell contractility, which again
represents the involvement of AJs in both ECM structure and MT [111].

Taken together, the findings presented in this chapter show that the ECM and its
molecular composition are important determinants of periodontal cell behavior in the
context of MT. As the periodontal tissues are affected by diseases, such as periodontitis
or OSCC development, the relevance of MT in these pathophysiological processes is of
clinical relevance. So far, the convergence of FAs and AJs-mediated signal transduction on
the cytoskeleton has been discussed. However, the mechanisms by which the information
encoded within the contractility and tension of the actin-cytoskeleton is translated into
cellular adaptation, which depend on further cellular key players, such as the mechanore-
sponsive co-transcriptional activators YAP/TAZ and the nuclear cytoskeleton, will be
discussed in the subsequent sections.

3. Mechanotransduction to the Core: YAP/TAZ in the Periodontium

The Yes-associated protein YAP and its cellular homologue TAZ were originally
described as transcriptional co-activators in the context of the so-called Hippo signaling
pathway. The latter was identified in the fruit fly Drosophila melanogaster by mutagenesis
screening and the recognition that loss-of-function mutations of certain genes lead to
an increase in organ size (overgrowth phenotype) [112]. The core Hippo pathway is
evolutionary conserved and its homologues in mammals are involved in many cellular
functions, such as proliferation and differentiation, as well as carcinogenesis. The main
components are the serine-threonine kinases Ste-20-like kinases 1/2 (Mst1/2) and large
tumor suppressor kinase 1/2 (Lats1/2) as well as the above-mentioned co-transcriptional
activators, YAP and TAZ [13,113–116].

Unlike many other phosphorylation cascades, the activity of the Hippo kinases (Hippo
signaling turned “on”) leads to the inactivation of the effector proteins YAP/TAZ. This is
achieved by the phosphorylation of YAP on Serine127 or TAZ on Serine89, which promotes
the association of the proteins with their cytosolic sequestration protein 14-3-3σ [117]. Con-
versely, the inactivity of the Hippo kinases (Hippo signaling turned “off”) results in a shift
of the phosphorylation-dephosphorylation equilibrium towards dephosphorylation, which
enables YAP/TAZ to shuttle into the nucleus, where the proteins can exert their function as
co-transcriptional activators. Subsequently, depending on the cellular context, YAP/TAZ
promote proliferation, differentiation, or many other core physiological functions [114,117].
The slightly non-intuitive mechanism is easily understood by having a look at regulatory
upstream signals that govern the activity of the Mst1/2 and Lats1/2 kinases. For example,
in the apical junctional region of the epithelia, proteins such as Merlin/neurofibromatosis
2 (NF2), KIBRA, and Salvador-homologue 1 (Sav1) form a protein complex that responds
to cell-to-cell adhesion. Therefore, MT-relevant signals, such as a high cell density, ac-
tivate the Mst1/2 and Lats1/2 kinases via this junctional complex, and thereby inhibit
YAP/TAZ translocation into the nucleus, which in turn inhibits proliferation and organ
overgrowth [118,119].

Apart from canonical Hippo signaling, YAP/TAZ are also regulated by various other
upstream signals, which are at least in part independent of the above-discussed kinase



Biomolecules 2021, 11, 824 8 of 42

mechanisms. Signals from G-protein coupled receptors (GPCRs) as well as receptor tyrosine
kinases (RTKs) and receptor serine/threonine kinases also converge on YAP/TAZ, as exem-
plified by their regulation through platelet-derived growth factor (PDGF) or transforming
growth factor beta (TGF-β) [120–122].

Angiomotin (AMOT) is a family member of the angiostatin-binding proteins and was
described to bind to F-actin in the cytoplasm [123,124]. Upon the depolymerization of the
cytoskeleton, which can be the result of changes in MT, AMOT dissociates from its binding
partner and traps YAP/TAZ in the cytoplasm [125]. It is also a matter of debate if some
unknown serine kinases may additionally be able to change the phosphorylation status
of YAP/TAZ [126]. In the direct MT context, ROCK, FAK and Src have been described as
important upstream regulators of YAP activity (Figure 2) [127,128]. The exact mechanism
of how these proteins can interfere with the cytoplasmic-nuclear shuttling of YAP/TAZ
remains to be elucidated, but indirect dephosphorylation through phosphatases such
as PPM1A appears likely [129,130]. Similar to the bidirectional signaling of FAs, recent
experimental evidence in human mesenchymal stem cells (hMSCs) also shows that YAP
is not only regulated by FAK, but that FAK activity, as well as the protein abundancy of
FAK and other FA components, is influenced by the cellular sublocalization and activity of
YAP [61]. This leads to the conclusion that not only nuclear YAP exerts mechanobiological
gene-regulatory functions, but that cytoplasmic YAP is also involved in MT by feeding
back on FA activity and integrity. Additionally, the destruction of AJs by inhibiting the
interaction of E-Cad with α-actinin also favors nuclear translocation of YAP. The latter
mechanism was for example described in the context of enamel knot formation during
tooth development [131]. Therefore, FAs as well as AJs are input signals for YAP/TAZ
activity, which underscores their role as mechanoresponsive co-transcriptional activators.

Of interest, the transcription factor megakaryoblastic acute leukemia factor-1 and
3 (MKL1/3) is also translocated into the nucleus in a MT-related, force-responsive man-
ner. Mechanistically, MKL1/3 binds go G-actin in the cytoplasm and dissociates from its
binding partner as soon as G-actin is incorporated into growing actin filaments during
polymerization. Apart from the AMOT-regulated YAP/TAZ transition, a similar mecha-
nism might also apply to YAP/TAZ [132]. This elegant interdependency of YAP/TAZ and
the actin cytoskeleton would effortlessly explain the mechanoresponsive features of these
co-transcriptional regulators.

Within the nucleus, YAP/TAZ have to interact with transcription factors to regulate
gene expression. The TEA domain family (TEAD) of transcription factors are the most
important nuclear binding partners of YAP/TAZ. DNA binding of the YAP/TAZ-TEAD
complex leads to the expression of core proliferation factors such as cellular myelocytomato-
sis (c-myc) or Cyclin D1 [133,134]. However, regulatory mechanisms to inhibit YAP/TAZ
function also exist in the nucleus. The tight junction component zona occludens 2 (ZO-2),
a protein also involved in cell-to-cell adhesion, can enter the nucleus and bind dephos-
phorylated YAP there. This shows, again, the tight interrelationship between “junctional”
information and YAP/TAZ activity as well as the diverse signals that converge on these
proteins [135–137].

Regarding the periodontium, YAP/TAZ is a central regulator in tooth and craniofacial
development. Amongst others, the patterning genes of the Hox cluster are addressed by
YAP/TAZ activity and the former’s function determines oral epithelial proliferation and
the patterning of the enamel knot [138]. The formation of the cranial neural crest also
depends on YAP/TAZ function and the induction of Fox transcription factors. The latter
point is especially interesting in the context of periodontal regeneration as, e.g., stem cells
in the PDL are neural crest derivates [139,140].
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Figure 2. The transcriptional co-activators YAP and TAZ are regulated by many cellular key players. Yes-associated
protein (YAP) and its cellular homologue transcriptional co-activator with PDZ motif (TAZ) are master-regulators of
cellular mechanotransduction. A plethora of upstream signals converge on these proteins. Nonetheless, there seems
to be slight differences in the exact cellular functions of YAP and TAZ (details given in the main text). In the cytosol,
YAP/TAZ are phosphorylated (P) and are bound by proteins from the 14-3-3 family, which prevent their translocation
into the nucleus. YAP can additionally be bound by angiomotin (AMOT). Dephosphorylation of YAP/TAZ is mediated
through regulators as diverse as focal adhesion kinase (FAK), cellular sarcoma (Src), coiled-coil-containing protein kinase
1 (ROCK), G-protein coupled receptors (GPCR), α-actinin, or the junctional proteins neurofibromatosis 2 (NF), KIBRA, and
Salvador-homologue 1 (Sav1). RhoA also interacts with TAZ. In the nucleus, YAP may be trapped by zona occludens 2 (ZO-2)
protein. Otherwise, YAP/TAZ interact with TEA domain family (TEAD) transcription factors to regulate gene expression.
Genes written in green, such as cysteine-rich angiogenic inducer 61 (CYR61), connective tissue growth factor (CTGF),
runt-related transcription factor 2 (RUNX2), osterix (OSX), osteopontin (OPN), ARMUS, collagen 1 (COL1), α-smooth
muscle actin (α-SMA), cellular myelocytomatosis (c-myc), and cyclin D1 are upregulated by YAP/TAZ. Contrary to that, the
pro-apoptotic B-cell lymphoma 2 (Bcl-2) as well as cyclin-dependent kinase inhibitor (CDKI) transcripts are downregulated
by these transcriptional co-activators (yellow). Details are given in the main text.
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Specific findings in PDL stem cells (PDLCs) proved that cyclic mechanical stimulation
results in an increase in nuclear YAP abundancy. Consequently, transcriptional YAP tar-
gets, such as cysteine-rich angiogenic inducer 61 (CYR61) and connective tissue growth
factor (CTGF), are transcriptionally upregulated. By additionally inducing key differentia-
tion markers of osteoblasts—amongst others, runt-related transcription factor 2 (RUNX2),
osterix (OSX), osteopontin (OPN), and alkaline phosphatase—YAP is also involved in
supporting the differentiation of PDLCs into osteoblasts (Figure 2) [141–143]. An orthodon-
tic tooth movement (OTM) rat model as well as PDLCs in vitro experiments specifically
proved that not only YAP but also TAZ supports osteogenic differentiation. The protein
collagen triple helix repeat containing 1 (CTHRC1) was identified as a potent inductor of
TAZ activity, which lead to an increase in collagen type 1, alkaline phosphatase, RUNX2,
and osteocalcin [144]. However, YAP and TAZ seem to have slightly different biological
functions during OTM. The immunochemical staining of histological sections from another
rat OTM model pointed to the direction that TAZ activity might be more tightly coupled
with RUNX2 expression and thus osteogenesis, whereas YAP activity is more strongly
connected to differentiation and proliferation [145,146]. This example demonstrates a
common problem in YAP/TAZ research, namely that the cellular homologues are often
regarded as equal, concerning their function. This assumption is, however, not justified.
Another proof of a distinct regulatory mechanism of TAZ activity was described by Cui
and colleagues. They reported that the micro-RNA miR-140 is involved in the regulation of
osteogenesis of human PDLFs by interacting with a RhoA-TAZ signaling axis. In detail,
the expression of this micro-RNA inhibits the transcription of RhoA, which leads to a re-
duction in TAZ protein activity in the nucleus and thus reduced osteogenesis during OTM.
This is especially interesting as (i) this mechanism combines principles of transcriptional
regulation on the RNA level with protein activity of important mechanotransducers, and
(ii) was so far solely described for TAZ but not for YAP [147]. These slight differences
might be decisive when it comes to dental implants and regenerative approaches with
periodontal stem cells, as TAZ regulation and therefore cellular differentiation is sensitive
to the environmental nano topography [148].

Apart from genuine periodontal tissues, YAP/TAZ were shown to be translocated into
the nucleus in response to a static external magnetic field in human dental pulp stem cells
and, thereby, induced mineralization beneath the cells. A concomitant rearrangement of
the actin cytoskeleton was additionally reported [149]. This raises the general question of
to which extent cells can respond to forces generated from static magnetic fields [150–152].
In the context of dentistry, it needs to be considered that ferromagnetic compounds can
sometimes be found as part of a prosthetic material [153,154] within overdentures in
the oral cavity of patients. As this material may potentially interfere with cell biology
and MT, due to magnetism, and the exact molecular consequences are still a matter of
scientific debate, it will be of great clinical interest to further study YAP’s involvement in
these processes.

Concerning ECM homeostasis and regeneration, YAP promotes type I collagen syn-
thesis. This finding together with the promotion of the osteoblast phenotype might explain
the PDL-adjacent osteogenesis on the pull side during orthodontic treatment [142]. Alpha-
smooth muscle actin (α-SMA) is supposedly also an indirect regulatory target of YAP/TAZ,
as their nuclear presence was also shown to induce myo-fibroblast differentiation from
PDLCs [155]. All these processes in PDLCs are, as already described, connected with
actin-related cellular tension and thus MT. It is conceivable that a collagen 1-β1-integrin-
RhoA-ROCK-F-actin-YAP/TAZ-collagen 1 signaling loop facilitates both the sensing and
maintenance of the ECM and promotes PDLC lineage decision in a context-dependent
manner [142].

Not surprisingly, YAP can maintain the stem cell properties of PDLCs in vivo and
in vitro. When artificially overexpressed, YAP nuclear accumulation leads to an increase
in proliferation, reduces cellular senescence and promotes apoptosis resistance [156]. On
the molecular level, this is achieved via the upregulation of cyclin-dependent kinases
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(CDKs) and a downregulation of the latter’s inhibitors, the CDK inhibitors (CDKIs). Above,
expression of B cell lymphoma 2 (Bcl-2) family members, as pro-apoptotic cellular regu-
lators, is reduced (Figure 2). Moreover, mitogenic signaling, represented by ERK1/2 and
MAPK/ERK kinase (MEK) activity, increases [156]. The proliferative capacity of an immor-
talized PDLCs-derived cell line, which was established via lentiviral transfection of human
telomerase reverse transcriptase (hTERT), also depended on YAP nuclear activity. This can
be shown by experimentally inhibiting YAP nuclear translocation via the photosensitizer
Verteporfin [157,158]. Of interest, the cell line is not tumorigenic in nude mice, proving that
hTERT expression in combination with high YAP nuclear activity alone is not sufficient
for carcinogenesis [159,160]. Such experimental systems will be of great value for further
periodontal research regarding appropriate approaches in regenerative medicine.

In the context of oral carcinogenesis, these stem-cell-like properties mediated by YAP
bear the potential risk to support cellular transformation. Indeed, YAP overexpression was
reported in many cancers, including OSCC [114,134,161]. Apart from the anti-apoptotic
and proliferative activities, metabolic supply via the induction of autophagy as well as the
regulation of EMT, are functions, which are at least partially attributed to YAP activity.

Recently, a novel mechanism of YAP-dependent OSCC proliferation was proposed.
Piezo-type mechanosensitive ion channel component 1 (PIEZO1) is a mechanosensitive
calcium channel and transcriptional target of YAP [162]. PIEZO1 signaling consequently
leads to an increase in intracellular calcium concentrations, which promotes proliferation.
This interesting insight into two mechanoresponsive proteins in the context of OSCC pro-
gression offers new perspectives in the pharmaceutical targeting of cancer cell-associated
proliferative activity, by addressing the activity of PIEZO1 [163,164]. An up-to-date discus-
sion of the Piezo channel family members and their role in mechanobiology was recently
presented by Jiang and colleagues [165].

The increase in autophagic flux is mediated via the YAP/TAZ-dependent transcription
of Armus, a Ras-related in brain (RAB)-GTPase activating protein (GAP)-family member,
which is involved in maturation of autolysosomes from autophagosomes [166,167]. It is a
matter of ongoing research to further clarify the interdependency of MT, autophagy, and
metabolic integration, also with respect to periodontal tissues.

Regarding EMT, matrix stiffness is a key determinant of YAP activity. As also holding
true for OSCC, tumor stroma is often regarded as desmoplastic, which goes along with an
increase in the Young’s modulus and promotes nuclear YAP translocation [168]. β1-integrin-
FAK-RhoA activity is also elevated under such conditions, as shown in a hepatocellular
carcinoma (HCC) mouse model [169]. Nuclear YAP is then able to promote the switch
from an epitheloid to a fibroblastoid cellular phenotype, as it controls both the activity and
localization of Twist1. The latter, together with Slug and Snail, is a key transcription factor
responsible for the molecular changes that occur during EMT, such as the downregulation
of E-Cad and concomitant upregulation of fibroblastic marker proteins such as neural
cadherin (N-Cad) or vimentin [170–172]. Taken together, it is conceivable that YAP is an
important link between ageing, which is accompanied by an increase in ECM stiffness,
and carcinogenesis related EMT. Regarding dental research, the clinical or diagnostic
implications in the specific OSCC context remain to be elucidated.

Inflammatory periodontal diseases such as periodontitis are also linked to YAP and
its role in mechanobiology. Especially the combination of occlusal trauma and periodontal
inflammation seems to support periodontal destruction. As recently shown, the inhibition
of YAP dephosphorylation and thus its nuclear translocation, could decrease inflammatory
signaling in a mouse model of occlusal trauma and periodontitis. This shows the interrela-
tionship of mechanobiological and inflammatory cellular pathways [173]. Alveolar bone
loss was also linked to YAP activity and its interaction with Jun N-terminal kinase (JNK)
and activator protein 1 (AP-1) [174].

Taken together, the described mechanisms of the action of YAP and TAZ in the peri-
odontal context show both the complexity of the mechanobiological signaling integration
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and the decisive role of these processes in disease conditions such as periodontitis or OSCC
(Figure 2) [175].

4. The Gist of the Matter: Nuclear Mechanotransduction

Section 3 discussed the mechanisms of YAP/TAZ dependent MT and its implications
for periodontal tissues. As YAP/TAZ are soluble proteins, which shuttle between the
cytosol and the nucleus, their mode of action can be described as a biochemical way of
transmitting biophysical information. However, what about a higher physical intimacy
between the cytoplasm and the nucleus?

In recent years, it has become more and more evident that nuclear shape and genomic
integrity as well as gene regulation is directly linked to nuclear architecture and nuclear
mechanotransduction (NMT) [26,176,177]. It is important to note that the molecular find-
ings concerning NMT have been worked out in many different in vitro and in vivo model
systems. Direct studies in cells from periodontal tissues are barely reported in the literature.
As the proteins involved in NMT are highly conserved, it is, however, conceivable that the
general mechanisms discussed below also apply to cells of periodontal tissues [178–180]. It
is, therefore, a further research challenge to elucidate the cell-specific properties of NMT
and their role for tissue homeostasis in the periodontium.

Various proteins that are localized in the outer nuclear membrane (ONM), the perinu-
clear space (PNS), the inner nuclear membrane (INM), or the nucleoplasm are directly or
indirectly linked to mechanobiological functions and can, in many ways, be regarded as
the nuclear equivalent of FAs [26]. From this perspective, the cytosol, similar to the ECM,
represents the extranuclear environment in which cytoskeletal structures depict adhesion
points for nuclear receptors. The most important structure that mechanically connects the
cytoplasm with the nucleus is the linker of the nucleoskeleton and cytoskeleton (LINC)
complex. LINC consists of members of the Klarsicht, ANC-1, and Syne-homology (KASH)
domain protein family and members of the Sad1p and UNC-84 homology (SUN) protein
family [181,182]. The former consists of Nesprin 1-4 in humans, which are embedded in
the ONM. Of interests, Nesprins can physically interact with (i) plectin, a binding partner
of intermediate filaments (IFs), (ii) kinesin and dynein, which are the motor proteins of
microtubules, and (iii) directly with F-actin [183–187]. This means, that Nesprins can
get in contact with all kinds of cytosolic cytoskeletal filament systems, rendering them
the perfect adhesion proteins for transmitting cytoskeletal tension, including actomyosin
contractility, into the nucleus. Nesprins further bind SUN proteins, namely Sun1 and
Sun2, which span the PNS and the INM. Within the nucleoplasm, SUN proteins are in
direct physical contact with a network of Lamins, nuclear pore complexes (NPC), and
chromatin (Figure 3) [26,188].

Lamins are IFs in the nucleus and are encoded by three genes in men: LMNA, LMNB1
and LMNB2. LMNA encodes for the two protein isoforms, Lamin A and Lamin C. Lamin
B1 and Lamin B2 are the corresponding gene products of LMNB1 and LMNB2, respec-
tively [189,190]. All Lamin types form a tight meshwork of filaments of approximately
10–30 nm thickness along the INM [191]. Above, Lamins directly interact with chromatin,
transcription factors, and proteins, such as Emerin [192]. The functions of the respective
Lamin isoforms are interdependent and only partially redundant, as the deletion of one
isoform leads to a loosening of the whole meshwork [26,193]. NPC localization is also
associated with Lamin function. As the NPC is the central gate for the nuclear-cytoplasmic
shuttling of proteins and vice versa, Lamins indirectly influence the exchange of soluble
factors between both compartments [191,194]. Forces that lead to nucleus deformation,
such as during cellular spreading on 2D culture substrates, result in a mechanical open-
ing of NPCs and facilitate the nuclear entry of YAP [195]. However, sole osmotic nuclear
swelling does not lead to the same result [195]. This elegant mechanism shows the stringent
regulation of NPC opening and its relation to mechanobiology.
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Figure 3. LINC complex-dependent mechanotransduction at the cytosol–nucleus interface. Nuclear mechanotransduction
is a process at the cytosol–nucleus interface, where mechanobiological information is exchanged between the cyctosol and
the nucleus and vice versa. The linker of nucleoskeleton and cytoskeleton (LINC) complex consists of Nesprins, which are
embedded in the outer nuclear membrane, and Sad1p and UNC-84 homology (SUN) proteins in the inner nuclear membrane.
At the nuclear periphery and within the nucleus, LINC is connected to nuclear pore complexes (NPC), Emerin, and the
nuclear intermediate filament system, which consists of Lamins. This is the reason why LINC is directly and/or indirectly
connected to the chromatin and the nuclear actin filament system. In the cytoplasm, Nesprin interacts with all cytoskeletal
systems. Microtubules interact with Nesprins through the motor proteins Kinesin (K) and Dynein (D); intermediate
filaments are connected to Nesprins via Plectin. Filamentous actin (F-actin) can directly bind Nesprins. Mechanoresponsive
translocation of YAP/TAZ through NPCs into the nucleus is also connected to nuclear mechanotransduction (NMT). Details
are described in the main text.

Besides IFs, the nucleus also harbors actin and actin-binding proteins. G-actin has
been shown to act as a co-transcription factor for RNA-Polymerases 1−3, and to modulate
the activity of other transcription factors and epigenetic regulators, such as histone deacety-
lases [196–200]. Upon polymerization, nuclear G-actin can form nuclear actin filaments.
This process is triggered by cell spreading or adhesion and seems to correlate with the
activity of integrins, cytosolic actin and the LINC complex [201]. Emerin, as well as Lamin
A and B, have also been shown to bind nuclear actin [202–204]. Similar to its cytosolic
analogue, nuclear F-actin is involved in the maintenance of nuclear integrity and shape and
even participates in the cell’s stress response during replication [205]. Consequently, coor-
dinated gene expression and genomic integrity is not only a result of biochemical factors
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and their related signal transduction, but is also based on nucleo-cytoskeletal dynamics
and NMT.

The molecular architecture of the LINC complex in conjunction with its associated
molecules in the cytoplasm and the nucleus reveals how biophysical cues can be me-
chanically transmitted from the cytosol to the nucleus and back. Exemplarily, integrin-
transmitted forces can lead to changes in cytosolic actomyosin contractility, which is further
transduced into the nucleus via LINC. LINC addresses lamins, nuclear actin and chromatin
regulating proteins, and thereby regulates the condensation of chromatin, i.e., the transition
between eu- or heterochromatin, which changes the cell’s expression profile and promotes
cellular adaptation to the initial extracellular cue [26]. The reverse process; namely, the
transduction of nuclear mechanical properties, such as stiffness, to the cytoplasm and con-
sequently to the ECM via integrins is less well studied. Nonetheless, there is unambiguous
evidence that LINC-dependent NMT is no one-way road. A stiffer nucleus facilitates FA
formation and the newly built FAs are larger [206]. As above, the deletion of Nesprin-1
impairs the cell’s ability to adequately adapt to cyclic strain. This means that the nucleus is
directly involved in the regulation of cytoplasmic actomyosin contractility, which conse-
quently feeds back on FAs and the ECM through integrins [207]. Additionally, the nuclear
position within the cell changes during these NMT processes. To prevent nuclear damage,
the whole nucleus is oriented perpendicular to the stretch vector and parallels actin stress
fibers [208]. This extends the above-discussed ECM-cytosolic mechanosignaling network
to a bidirectional ECM–cytosol–nucleus network that is relevant to MT. Similar to cells as
a whole, the nucleus can, therefore, also be characterized by physical properties, such as
compressibility and elasticity [25,209].

Aside from the cytoskeletal coupling, described above, mechanosignaling-inherent
post-translational modifications, together with conformational changes in involved molecules,
also influence NMT. Lamin A and C, as well as Emerin, are subjected to phosphorylation
in response to mechanical cues, such as changes in culture substrate stiffness. Emerin
phosphorylation is mediated by Src, which is an FAs component and other kinases such as
Abelson murine leukamie viral oncogene homolog 1 (Abl1) [210–212]. Lamin was reported
to undergo conformational changes in response to mechanical loading, which might un-
cover the actual phosphorylation site [213]. This switch- or spring-like behavior has also
been shown for α-catenin, where mechanical stretching exposes the vinculin binding site
of α-catenin [214]. The phosphorylation is also a mean to mediate nuclear stiffness and
cytosolic-nuclear coupling as well as regulation of YAP/TAZ nuclear abundancy. This
indirect regulation of YAP nuclear import might explain why certain Lamin mutations lead
to unphysiologically high levels of nuclear YAP [215].

Chromatin structure and dynamics change in response to mechanical stimulation,
which is a result of the integration of the above-described signaling processes. Depend-
ing on the intensity and duration of the stimulus, the exact type of chromatin change
varies [216]. On the short time scale, a reduction in histone methylation and thus hete-
rochromatin leads to a nuclear softening. This means that the genome is protected from
damage by decoupling the chromatin from the lamina until adaptation processes, such
as cellular reorientation, have been accomplished [217]. Long-term effects include adap-
tations in methylation patterns and thus epigenetic changes. For example, an increase in
H3K27me3 (tri-methylation on Lysine residue 27 of Histone H3) can be detected, which
is a marker of heterochromatin and therefore gene downregulation [218]. Conversely, it
is unclear how specific genuine mechanosensitive genes are switched on in response to
mechanical loading, as so far experimental results are only available from artificial gene con-
structs [219]. It will thus be of great interest to analyze chromatin structure and dynamics
in mechanically stimulated periodontal tissues and to see, which cell-type specific changes
in cell behavior and gene expression can be attributed to NMT and related mechanisms.

As stated at the beginning, NMT concepts have, so far, been barely worked out in a
periodontal context. However, morphological findings give indirect evidence that cells
such as PDLFs also strictly depend on NMT and mechanical nuclear integrity. In one
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such study, an interesting link between ATP levels, ATP receptors and cell shape has
been made. According to these findings, extracellular ATP levels are upregulated upon
mechanical loading and nuclear deformation. The ATP-associated signaling cascades
result in an increase in the receptor activator of nuclear factor kappa-B ligand (RANK-L)
expression in PDLFs, which contributes to alveolar bone resorption. The latter process,
which is important for periodontal regeneration disease, might, therefore, be in part the
macroscopic correlate of periodontal NMT [220].

During tooth eruption, the PDL undergoes dramatic morphological and mechanical
changes. The Notch pathway is involved in this process and responds to cell-to-cell and cell-
to-matrix mechanical cues. Of interest, a transcriptional downstream target of mechanically
activated Notch signaling in the PDL is Lamin A, whose Notch signaling-derived increase
in expression supports the notion of the involvement of NMT in the periodontium [221].

In a broader medical context, it has been recognized for decades that mutations or
changes in nuclear Lamins can have dramatic consequences for the individual. There
exists a disease group called laminopathies, which are all related to aberrant functions of
Lamins [222]. Envelopathies additionally include the disease of Lamin-associated proteins,
such as Emerin or Nesprin [223]. The most relevant medical syndromes are Charcot–
Marie–Tooth neuropathies, Emery–Dreifuss muscular dystrophies, and Hutchinson-Gilford
syndrome, which is also known as Progeria [224–226]. Mechanically exposed tissues, such
as the skeletal muscle, cardiomyocytes and tendons, are often affected by these diseases [26].

Two different hypotheses in the current literature discuss the reasons of the deleterious
effects of the laminopathies. The gene regulation hypothesis claims that the mutations
or defects in LINC components or Lamin/Emerin lead to a severe dysregulation of gene
expression [227]. Consequently, cellular physiology is dysregulated, impairing, e.g., stem
cell differentiation, and thus resulting in the clinical disease manifestations such as prema-
ture aging or muscle weakness [228]. Contrary to this, the structural hypothesis states that
nuclear deformation and fragility caused by the mutations is the most important step in the
disease process. However, a more holistic “MT-hypothesis” of the pathophysiology should
actually incorporate both the gene dysregulation and the mechanobiological consequences,
as both are highly interdependent [229]. This can be explained by the above-discussed
functions of LINC and Lamins. The mutations associated with envelopathies are, therefore,
valuable models for elucidating both general and tissue-specific mechanisms of NMT
and its integration into the cellular context. One interesting molecular insight is the fact
that certain Lamin mutations increase the abundance of phosphorylated Lamin. This
subsequently increases the solubility of the protein and promotes its dissociation from
the Lamin meshwork and thus creates nuclear fragility [230,231]. Additionally, direct
DNA damage and cell-cycle arrest are associated with these mutations [232]. Reduction
in the function of the ATPase associated with diverse cellular activities (AAA+ ATPase)
TorsinA or rather its Caenorhabditis elegans ortholog OOC-5 have been shown to rescue the
Lamin mutation phenotype [233]. This is interesting, as TorsinA normally enhances NMT
through LINC regulation, and mutations in the gene are associated with dystonia and joint
contracture [234,235]. Thus, in the presence of a mutated and, therefore, dysfunctional
Lamin, an additional decrease in TorsinA activity with concomitant reduction in NMT
prevents nuclear damage. This means that, under certain circumstances, the decoupling of
cytoskeletal and nuclear mechanics is favorable for cell survival [236].

In the context of dentistry, delayed tooth eruption and impairments in dental root in-
tegrity as well as micrognathia are also related to Lamin mutations [237]. Patients suffering
from Hutchinson–Gilford–Syndrome sometimes show developmental abnormalities in the
craniofacial region and suffer from early onset periodontitis [238]. Based on the discussion
of NMT, we hypothesize that mechanobiological ECM–cytosol–nucleus networks are in
such a manner defective that both embryological processes as well as host–oral microbiome
interactions are fundamentally misguided. Testing this hypothesis experimentally will
shed light into both the pathophysiological mechanisms of envelopathies and their direct
consequences for periodontal tissues.
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Taken together, LINC-dependent NMT, Lamins and nuclear actin are fascinating as-
pects of an integrated ECM-cytosol-nucleus signaling hub, which orchestrates mechanobio-
logical signaling pathways. Mechanically exposed tissues are particularly dependent on
functional coupling of mechanical processes in the cytosol and the nucleus and dysfunc-
tions in this system lead to severe diseases, such as laminopathies.

5. Porphyromonas gingivalis-Derived Proteases: A “Heavy Load” for
the Periodontium

Having discussed the intrinsic properties and functions of cellular MT and NMT, it
is important to have a look at exogenic factors interfering with core mechanobiological
processes, which thereby affect periodontal tissue homeostasis. Approximately 20–50% of
the worldwide population is affected by periodontal disease. In particular, periodontitis,
an inflammatory condition thought to also support systemic cardiovascular and neurode-
generative diseases, as well as diabetes, leads to deleterious consequences such as loss of
teeth [239–241].

The exact pathogenesis of periodontitis, as well as the onset of gingivitis and its
shift towards periodontitis, are still incompletely understood. Many different models
have been proposed in the last few years that try to incorporate the host’s individual
susceptibility to periodontal disease, the immune system’s response to bacterial invasion,
as well as bacterial colonization and virulence factors [242–244]. Above, it is still a matter
of debate if bacterial infection is causal for periodontitis and if it really precedes the
host’s inflammatory response. Apart from that, it is, however, clear that changes in the
composition of the bacterial population, the oral bacterial load, and the oral milieu can
promote oral dysbiosis. The interindividual presence and variance of different bacterial
taxa in the subgingival region under healthy and pathological conditions has, therefore,
been intensively studied during the last few years with the help of, e.g., next-generation
sequencing (NGS) techniques [245,246].

The subgingival microbiome harbors around 500 different bacterial species, while
a few dominate under healthy conditions. Among them, the Gram-positive bacteria
Actinomyces naeslundi, Actinomyces meyeri, Rothia aeria, Rothia dentocariosa, Streptococcus
sanguinis, Streptococcus oralis, and Streptococcus intermediuas are commonly found in great
quantities. The Gram-negative bacterium Fusobacterium nucleatum also contributes to the
composition of the normal subgingival plaque [247,248]. The above-described aetiologic
factors can, however, induce qualitative and quantitative shifts in the oral microbiome,
which contribute to periodontal inflammation and subsequently periodontitis. This process
mostly functions with an increase in Gram-negative species, especially the bacteria from the
so-called “red complex” (originally described by Sigmund Socransky), namely P. gingivalis,
Treponema denticola, and Tannerella forsythia, emerge and play a pivotal role in periodontitis.
Moreover, a strong association of oral dysbiosis and periodontitis with Aggregatibacter
actinomycetemcomitans, Bacteroides spp., Fretibacterium spp., Desulfobulus spp., and Parvimonas
micra is reported in the literature [249,250]. All of those periodontopathogens lead to a
mixed infection of the periodontium and directly contribute to periodontitis via virulence
factors or indirectly through immunopathology.

Host factors contributing to periodontitis include various chemokines, pro-inflammatory
cytokines, and MMPs, as well as arachidonic acid derivates such as Leukotriene B4 and
Prostaglandin E2 [242,251]. Apart from that, the serum-like composition of the crevicular
fluid specifically promotes the growth of protease-rich taxa, which stimulate the progres-
sion of destructive processes during periodontitis [252,253]. These proteases are able to
destroy the host’s protease inhibitors, such as secretory leukocyte protease inhibitor (SLPI),
which further contributes to disease progression [254]. The actual inflammation conse-
quently arises from the complex spatio-temporal interplay of these host factors with the
subgingival microbiome and its virulence factors.

Among the many bacteria found in the subgingival region of periodontitis patients,
the anaerobe, Gram-negative bacterium, P. gingivalis, has been extensively studied and
is seen as one major etiologic factor in severe periodontitis [255]. This is the reason
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why its virulence factors and their interaction with MT are currently best understood
compared to the above-mentioned pathogens. Therefore, this section focuses on the
intricate interrelationship between periodontal MT and P. gingivalis.

Aside from lipopolysaccharides (LPS), the bacterial capsule and fimbriae, P. gingivalis,
expresses another group of virulence factors, named gingipains [256]. The latter are
cysteine proteases with a specificity for arginine (HRgpA and RgpB) or lysine (Kgp)
and are either secreted or non-covalently attached to the bacteria. Molecular studies
over the past few years have shed light into the exact functions of gingipains during the
initiation and promotion of periodontitis. Of interest, these proteases not only induce and
modulate pro-inflammatory cytokines but also digest host antibodies and are involved in
hemagglutination [257].

From a mechanobiological point of view, gingipain proteases serve as an important
example of how external pathogen-derived virulence factors can interfere with MT path-
ways by either interacting with or destroying its signaling components. Therefore, without
generating genuine mechanical signals, P. gingivalis metaphorically imposes “heavy loads”
on the periodontium via different mechanisms.

Concerning the ECM, gingipains have been shown to degrade various collagen iso-
forms, including collagen type I, III, IV and V, as well as fibronectin (FN). Interestingly,
HRgpA and Kgp possess hemagglutinin domains, which directly guide the proteases to
FN [258]. FN degradation generates FN fragments, which can be used as a periodontitis
biomarker in the crevicular fluid of patients [258]. These fragments also change the cell’s
perception of their environment, as integrin-related signaling changes upon the recogni-
tion of such fragments [259]. Moreover, the proteases induce the expression of MMPs in
tissue-resident fibroblasts, which further promotes catabolic ECM processes [260].

Gingipain-related ECM degradation is, however, not limited to fibrous components, as
these proteases, in conjunction with the receptor activator of nuclear factor kappa-B ligand
(RANK-L), promote osteoclastogenesis, which is a prerequisite for the destruction of the
mineral matrix during alveolar bone resorption in periodontitis [261]. In detail, gingipains
induce osteoclast-specific genes, such as cathepsin K, MMP-9, and alkaline phosphatase
type 5, in a dose-dependent manner [262]. This happens only in the presence of RANK-
L, the ligand of the receptor activator of nuclear factor kappa-B (RANK) expressed in
osteoclastic progenitor cells. RANK-dependent signaling is a strong inducer of osteoclastic
phenotype and osteoclast function. In vivo, RANK-L is secreted by osteoblasts and its
action can be perturbed via osteoprotegerin (OPG). The latter functions as a decoy receptor
of RANK and is digested by gingipains, who thereby further support osteoclast activation
by shifting the RANK-L to OPG ratio towards RANK-L [263,264]. Periodontal disease also
leads to round PDLF nuclear morphology in vivo, which is accompanied by a reduction
in actomyosin contractility and a decrease in OPG synthesis from PDLFs. This additional
mechanism might, therefore, contribute to this shift in biochemical signaling and is a direct
consequence of disturbed MT (Figure 4) [265].

Intracellularly, RANK downstream signaling activates inflammatory pathways such
as nuclear factor kappa B (NF-κB) and nuclear factor of activated T cell c1 (NFATc1)
signaling. Subsequently, the expression of β3 integrin is upregulated, whereas β5 integrin
is suppressed [266]. The former is necessary for the building of αVβ3, which mediates the
adhesion of osteoclasts to the bony matrix and enables the formation of resorption pits
for matrix degradation. During this adhesion process, FAK and paxillin phosphorylation
and activity increases, indicating active mechanotransduction between focal adhesion
structures and the cytoskeleton. Taken together, gingipains promote MT cascades in
the context of alveolar bone resorption by both facilitating osteoclast differentiation and
integrin-dependent resorption pit formation [261]. It remains to be elucidated how the
presence of gingipains exactly augments the function of RANK-L.
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Figure 4. P. gingivalis induces alveolar bone resorption through gingipain proteases. Secreted proteases, so-called gingipains
(GPs), from the microbe Porphyromonas gingivalis (P. gingivalis) interact with the receptor activator of nuclear factor kappa-B
ligand (RANK-L), osteoprotegerin (OPG), and receptor activator of nuclear factor kappa-B (RANK) system of osteocytes and
osteoclasts. In the presence of GPs, OPG is degraded, which favors RANK-L binding to RANK. Consequently, osteoclasts
differentiate out of pre-osteoclasts through upregulation of Cathepsin K, matrix metalloproteinase 9 (MMP-9), and alkaline
phosphatase type 5 (AP). Subsequently, osteoclasts can bind to the alveolar bone via αVβ3 integrins (green, dimeric sticks),
which regulate actin cytoskeletal tension (yellow lines). Altogether, these processes favor alveolar bone resorption within
resorption pits. Details are given in the main text.

Findings from other studies suggest that certain integrins are not only indirectly
targeted by gingipains through transcriptional regulation, but directly cleaved by the
proteases. Hydrolysis of β1, α2 and α5 integrin is repeatedly reported in the literature. This
leads to a loss of cell adhesions, as described for GKs, GFs, and osteoblasts. When a cell loses
its contacts with neighboring cells or the ECM, cytoskeletal changes induce a rounding of
the cell culminating in a specific form of apoptosis known as anoikis [267,268]. β1 integrin
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degradation was also shown to result in a remarkable decrease in cytoplasmic RhoA activity
but not RhoA abundancy in an osteoblast cell culture system. As RhoA is an important
regulator of actin cytoskeletal tension, the gingipain-induced events consequently led
to F-actin disruption and, therefore, cell shrinkage or apoptosis. Overexpression of β1
integrin or gingipain inhibition could rescue this phenotype, sustaining the conclusion
of a direct relationship between β1 degradation, cellular MT, and cell death. Apart from
the above-discussed activation of osteoclast activity, P. gingivalis can further contribute to
apoptotic bone loss in periodontitis [269].

Beneath extracellular catabolic processes, P. gingivalis is known to directly invade
cells such as GKs. Therefore, gingipains can also trigger intracellular processes related to
MT [270]. Kinane and colleagues reported that cytosolically released gingipains, especially
the lysine-specific form, hydrolyze actin and provoke the collapse of the cytoskeleton and,
consequently, apoptosis. This proves that the actin cytoskeleton, as the signaling hub of
both outside-in and inside-out MT, is vital for cells. Moreover, the bacterial proteases
downregulate caspase 3 activity, making it plausible that cell death occurs independently
of caspases [271]. A similar observation has been made for endothelial cells [272].

AJ-dependent cell-to-cell adhesion is also affected by P. gingivalis proteases. Generally,
E-Cad-mediated cell contacts, as well as tight junctions and desmosomes, are involved in
epithelial barrier function by physically defining different physiological milieus and polar-
ized cellular structures, such as apical-basal polarity. In GKs, this function is particularly
important to protect other periodontal structures from invasion of the oral microbiome.
GK and GF microtissue 3D models have clearly demonstrated that P. gingivalis invades the
connective tissue of the gingiva by bypassing the epithelial barrier. This occurs alongide
cytoskeletal changes and disruption of adhesion structures, thereby feeding back on MT
processes [273]. E-Cad is also directly cleaved by Kgp. Loss of the extracellular cadherin
domain disrupts the epithelial integrity of the oral mucosa [257]. Porphyromonas LPS
additionally promotes transcriptional downregulation of E-Cad and thereby enhances
gingival epithelial permeability [274]. Unsurprisingly, these processes go along with in-
flammatory responses, as can be seen from increases in reactive oxygen species (ROS) and
tumor necrosis factor α (TNF-α) levels. Together with the recruitment of immune cells,
this substantially contributes to periodontal destruction in periodontitis [105]. This subject
is also relevant regarding dental implants. As was shown for titanium–zirconium alloys,
gingipain-mediated E-Cad degradation prevents GK adhesion to the implants, which
hinders proper material incorporation into the dental alveolus [275].

In the context of oral carcinogenesis, the interplay of E-Cad and P. gingivalis, as
well as other periodontal pathogens, is also relevant, although the direct involvement of
the gingipain proteases has not, so far, been shown. However, GK cell culture models
clearly show that the pathogens promote epithelial to mesenchymal transition (EMT),
a core step in carcinogenesis, by the downregulation of E-Cad. This accounts for the
concomitant increase in neural (N)-Cad, vimentin, the transcription factor snail, as well as
MMP-2, which are markers of a fibroblastoid phenotype and accordingly characterize the
process of a phenotypic switch seen in malignant transformation. These observations are
paralleled by an increase in the migratory ability of the GKs and hint at a potential invasive
phenotype [276–278]. It is tempting to speculate that these phenomena at least in part
depend on gingipain-mediated proteolytic processes of surface adhesion receptors. OSCC
invasion is also promoted by an increase in MMP-9 in response to gingipain expression
in the host. MMP-9 related ECM degradation inevitably feeds back to MT pathways and,
hence, cell behavior.

From a regenerative perspective, microbial colonization of the oral cavity can also be
protective. The germ Akkermansia muciniphilia was recently described to counteract protease-
related damage of P. gingivalis by both sustaining an anti-inflammatory milieu through in-
terleukin 10 (IL-10) and by enhancing the transcription of E-Cad and β1-integrin. Probiotics
are, therefore, a tempting option in the treatment of bacteria-induced periodontitis [279].
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Taken together, the discussion of P. gingivalis- and gingipain-related changes in
mechanobiologically relevant signaling axes underscores the complex interplay of cells
and their ECM and the diverse mechanisms of action occurring during periodontitis.

6. May the Force Be with You: MT and Its Implications for Periodontal Regeneration

In the context of MT, the previous four sections discussed the molecular principles of
cellular mechanoperception and mechanotransmission, which are perspectively mandatory
for any kind of force/MT-related periodontal regeneration approach. As can be seen by the
enormous number of proteins involved and the extensive signaling crosstalk, it is evident
that artificially modulating MT pathways can lead to unexpected results [13,280]. It is
therefore of great importance to note that broader basic research is needed to elucidate
cell-type specific and spatiotemporal aspects of MT, its exact regulation during the lifespan
of an individual, and the dysregulation in pathological processes [281].

So far, there exists no therapeutic application in the context of oral regeneration
and health that directly addresses MT pathways in order to enhance treatment efficiency.
Nonetheless, it is worth discussing selected experimental strategies and rather theoret-
ical concepts, which could in the future be used to support regeneration or to mitigate
periodontal disease processes in patients by means of mechanobiological principles.

Regarding regenerative medicine, the development of innovative, mechano-active
biomaterials plays an increasingly important role in the field of bioengineering with
the ultimate goal to replace or imitate natural periodontal tissue environments [282,283].
Thus, ECM-mimetic, biocompatible substrates, such as hydrogels, are designed to initiate
or maintain cell differentiation, proliferation or migration and should ideally lead to a
restitutio ad integrum [284]. The increasing notion of the intricate role of periodontal
ECM, adhesion structures, as well as the cyto- and nucleoskeleton as biochemical and
biomechanical signaling platforms that govern cell behavior, makes it tempting to speculate
that the proper integration of inductive and, therefore, cell-instructive stimulatory signals
will allow researchers and clinicians to offer personalized therapeutic options to their
patients in the future.

However, mechanobiological studies are often conducted as in vitro experiments with
only a single cell type or with isolated tissue samples [146,285,286]. This leads to various
difficulties in interpreting the results and in transferring them to the in vivo situation. It
was shown by different groups that cell behavior is directly connected to their environment,
meaning that culturing cells in 2D or 3D substrates makes an enormous difference [287].
Two-dimensional substrates, such as the classical polystyrene culture dishes, are, from
a mechanobiological point of view, relatively simple, as they are easily characterized by
stiffness (Young’s modulus), the material’s physiochemical properties (composition), and
ligand density in the case of biofunctionalized materials [288,289]. Contrary to that, 3D
materials offer adhesion points in all three dimensions and further show differences in
porosity, microarchitecture, and local rigidity. This is the reason that processes, such as
cell migration, differ between 2D and 3D substrates [290]. A higher substrate porosity also
favors the migratory phenotype, which is especially important in studying pathologies
like OSCC [291,292]. Above, interactions of different cell types and the role of the immune
system and vasculature are seldomly addressed in mechanobiological studies [293–295].
These obstacles must be considered when discussing the application of MT principles
regarding the design of, e.g., innovative dental implants for periodontal regeneration [296].

Considering integrin-dependent FAs, their roles in fibrillogenesis of ECM molecules,
e.g., collagen or FN, wound healing, and osteocyte differentiation are particularly interest-
ing for regenerative approaches. Consequently, an optimal intervention strategy should
enable (i) tissue-specific ECM synthesis in response to integrin signaling, (ii) support and
sustain the proliferation, differentiation, and migration of embedded and neighboring
periodontal cells by also taking into account their developmental stage, (iii) inhibit matrix
degradation, and (iv) sustain an overall anti-inflammatory oral milieu. Exemplarily, in the
case of a periodontal defect or alveolar bone loss, a regenerative approach could either
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stimulate tissue-inherent stem cells in situ or make use of biomaterial-based strategies. The
latter are specifically interesting, as such generally polymer-based materials can stimulate
cells and guide their behavior by making use of biochemical and biomechanical signals.
As above, (stem) cells can be directly incorporated into scaffold matrixes via bioprinting
and transferred to the patient [297]. Besides, bioprinting offers the opportunity for tailored
periodontal defect coverage in case of trauma or surgery. By considering all of these prop-
erties, such materials are sometimes designated to be “cell-instructive”, meaning that they
harbor all necessary biochemical and biophysical information to properly integrate cells
into the site of defect [298,299].

Guo and colleagues recently presented a modular platform of biodegradable crosslink-
ers for hydrogel engineering that can be adapted to tissue-specific needs. This crosslinker
can be modified with small peptides or naturally occurring ECM components to specifically
stimulate receptors on target cells. The amino acid motif arginine-glycine-aspartate (RGD)
is important to bind integrins and can easily be incorporated into such synthetic hydrogels
to stimulate integrin receptors and, thereby, FAs-linked MT pathways [300].

In order to selectively induce osteocyte differentiation from mesenchymal stem cells
in the periodontium, such a stimulus alone is, however, not sufficient [301,302]. Additional
spatiotemporal factors as well as biochemical factors need to be included [303]. Of note,
biocompatible materials can be used as vehicles for drug delivery, which can for example
be antibiotics or differentiation factors. In this context, spatiotemporal control of drug
release is of enormous importance in order to induce and sustain the intended tissue
phenotype by simultaneously avoiding unwanted off-target effects, such as systemic
adverse effects, cellular toxicity, inflammation or the induction of malignant processes.
Therefore, the cautious selection of drug delivering biomaterials under the consideration
of tissue-specific conditions is obligatory [304]. In the periodontal context, this means that
such systems should promote, e.g., bone or PDL regeneration from stem cells in the case
of periodontitis-associated bone loss or mitigate inflammation in periodontitis through
antimicrobial agents.

Generally, implantable drug delivery devices, such as exemplified by the below-
mentioned injectable hydrogel, can be divided into passive polymeric implants or dy-
namic/active polymeric implants. The latter are mostly electronically regulated devices,
such as pump type implants (e.g., for diabetes therapy) and are not discussed further here.
The former can additionally be subdivided into non-biodegradable and biodegradable
implants [304,305].

Non-Biodegradable implants are composed of synthetic polymers that are biocom-
patible but cannot be degraded within the body. Generally, these kinds of implants need
to be removed after they have served their purpose. Silicones, poly(urethanes), and
poly(acrylates) are commonly used for such implants. In the case of monolithic implants,
the drug is homogeneously dispersed within the polymer, whereas reservoir-type implants
contain a compact drug core with some sort of polymer membrane around it that controls
diffusion and the release of the pharmacological compound [306–309].

Biodegradable polymers, such as poly(caprolactone), poly(lactic acid), or poly(lactic-
co-glycolic acid) or naturally occurring poylmers, such as collagen or fibrin, can be de-
graded within the body. The latter process can be achieved via simple hydrolysis, enzyme
degradation, redox reactions, or simply physical deterioration. The great advantage of
biodegradable polymers is the fact that they can remain within the body, i.e., there is no
need for removal [310–313].

Mechanistically, drug release in all these systems is either possible through controlled
swelling (e.g., in hydrogels), osmotic pumping, or passive diffusion. Moreover, chemical
triggers of drug release include pH-responsive sidechains or redox switches. Mechanically
induced drug release through ultrasound, magnetic or electric fields, and temperature
changes is also under investigation and these stimuli could work synergistically with tissue-
inherent MT pathways. Matrix degradation is also possible in the case of biodegradable
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polymers, where either the polymer itself or biodegradable crosslinkers are digested and
the drug is released thereby [304,314].

When considering drug delivery into a site of disease, it needs to be considered that
the local micromilieu is different from physiological conditions. This means that different
parameters, such as hypoxia, reactive oxygen species (ROS), blood vessel expansion,
temperature, and acidity, need to be considered [314]. As discussed above for periodontitis
in Section 5, the infection with a pathogen such as P. gingivalis can lead to the presence of
proteases, which are normally not found within the human body.

For example, minimally invasive alveolar bone regeneration with injectable hydrogels
offers a high degree of spatial and temporal control and are suitable for additional drug
delivery. A recently presented thermosensitive hydrogel, which gelatinizes upon heating
to 37 ◦C, made from β-glycerol phosphate, chitosan and collagen has been shown to
support PDLCs growth. By adding osteo-inductive drug compounds, such an approach
combines several stimulatory principles, thereby enhancing the bone regenerative capacity
of the material [315]. Another recently published article presents a cellulose/κ-carrageenan
oligosaccharid-based hydrogel with incorporated antimicrobial agents, which showed
strong antibacterial activities in a periodontitis model [316]. As there is a vastly growing
amount of such applications, the interested reader is referred to some recent, innovate
research work, which cannot be discussed in detail here [317–321].

Synthetic integrin ligands, among them some that contain mutated RGD motifs, have
also been shown to change MT in a mouse model [322,323]. It is, therefore, an interesting
perspective to search for integrin-subtype specific ligands, which can selectively stimulate
or inhibit integrins on different periodontal cell types and under different conditions, such
as during periodontal wound healing or periodontitis. By exemplarily stimulating α5β1
integrin on PDLFs in the right context, collagen or FN fibrillogenesis could be enhanced
to strengthen dentoalveolar integrity via MT pathways [324]. Khorolsuren, as well as
Matsugami and colleagues, presented a study with PDLCs and such synthetic integrin
ligands. Cell adhesion, as well as migration and osteogenic differentiation of the PDLCs,
was promoted by different cyclic integrin-ligand mimics, thus proving the suitability of the
concept [325,326].

Low-intensity pulsed ultrasound (LIPUS) is a method to mechanically stimulate tis-
sues via ultrasound in the range of 1–4 MHz and 0.01−90 mW/cm2. LIPUS was shown
to enhance ECM synthesis and regeneration and to be a potent stimulator of osteogenic
differentiation and is used, e.g., in the context of fracture healing [327–329]. Bone mass
and maturation is also increased upon LIPUS treatment in different animal models, and it
was shown that osteocytes in particular respond to LIPUS treatment [330,331]. Transcrip-
tional analysis in a mouse cell line revealed that approximately 180 genes from clusters
related to transcription, cellular secretion and immunity are responsive to the mechanical
stimulation [331].

Several studies have investigated the role of LIPUS in the periodontal context and it is
a tempting mean to enhance oral regenerative approaches. Upon stimulation of PDLCs
via LIPUS, osteogenesis in the alveolar region and ECM regeneration was observed [332].
Although not directly shown, it is conceivable that these adaptation processes are mediated
through MT signaling pathways [333]. The endoplasmic reticulum unfolded protein
response (ER-UPR) as well as autophagic pathways, as detected by an increase in LC3
and Beclin-1 expression, are molecularly involved in the regulation of PDLCs behavior
under inflammatory conditions [328,334]. LIPUS also reduces oxidative stress [335] and
downregulates the expression of pro-inflammatory cytokines such as IL-8 and inhibits the
NF-κB signaling axis [336]. This is of clinical interest, since inflammation, as observed
during periodontitis, normally inhibits osteogenesis. It is, however, not clear how the
mechanical ultrasound waves are transmitted to induce these cellular signaling responses.
A recent study on dento-alveolar integrity during orthodontic force application in normal
and diabetic rats could show that LIPUS leads to a significant increase in predentin and
cementum thickness in all study groups. As above, the number of odontoblasts, as well as
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periodontal ligament cells, increased. On the tension side, bone remodeling was enhanced,
whereas the number of resorption pits increased on the compression side [337]. LIPUS
also augments bone formation in the context of osseointegration of dental implants in
mice [338]. As the molecular mode of action of LIPUS is still insufficiently understood,
it is a further research challenge to determine if and to what extent the herein discussed
MT pathways are involved in the above-described cellular responses to the treatment. It
is conceivable to assume that different periodontal regenerative approaches could benefit
from additional LIPUS application in order to increase therapeutic effects.

Receding gums are, likewise, a relatively common problem and, therefore, gingival
regeneration is of high clinical interest [339]. Stratified epithelia, such as the gingival
epithelium, show a complex pattern of differentiation markers in an apical-basal direction,
such as different keratin isoforms or involucrin in the gingival epithelium [340,341]. In vitro
experiments with electrospun, gelatin-based matrices with a specific elasticity of 3.2 kPa
proved to promote proper gingival morphogenesis, which was independent of a co-culture
with mesenchymal cells. Molecularly, this process depends on the ERK1/2-β1-integrin
signaling axis, underlining the role of MT-triggering basal integrins for gingival epithelial
tissue morphogenesis [342–344]. These promising results show that addressing MT through
integrins by choosing a biocompatible material with the right stiffness is a cornerstone for
tissue engineering and prospective regeneration of periodontal tissues, such as the gingiva.

The modulation of AJs-related signaling is important in the context of mucosal barrier
function and OSCC suppression. As discussed in Section 1, Cads also sustain periodontal
ECM and induce collagen 1 and elastin synthesis [345]. Cad-dependent signaling can
be addressed and mimicked by the same principles as discussed above for integrins.
Additionally, we hypothesize that the cleavage sites of gingipains within the E-Cad amino
acid sequence could be an interesting target to be addressed by mutational studies. It is
tempting to mutate the sequence of E-Cad, rendering it insensitive to gingipain digestion.
Cell culture experiments and animal studies would need to support the idea of reducing
destructive and inflammatory consequences of gingipains and the normalization of AJs-
dependent MT by this approach. If successful, patients suffering from severe periodontitis
could then be treated with autologous epithelial stem cells, expressing the protease-resistant
E-Cad under the control of a constitutively active promotor in the long run [346,347]. Thus,
in combination with pro-epitheliogenic biomaterials, gingival integrity could potentially
be increased while simultaneously decreasing the chance of periodontitis associated OSCC
development. This hypothesis is, of course, highly speculative, but should be considered
by addressing it experimentally.

The indirect modulation of E-Cad expression and the activity of inflammatory cellular
pathways in the periodontium is possible via vitamin D administration. Oh and colleagues
showed that GKs respond to the vitamin by upregulating E-Cad and downregulation
of NF-κB and MMPs. This offers the possibility to change the expression pattern of
mechanobiologically relevant proteins by the simple administration of a widely available,
single biochemical molecule [348]. Similarly, junctional epithelial function in a model of
peri-implantitis was enhanced by application of a low molecular weight JNK inhibitor.
Mechanistically, this promoted E-Cad upregulation and F-actin regulation [349]. Both
examples show that biochemical modulation, apart from actual mechanical stimulation, is
a promising alternative to influence MT through changing the expression patterns of its
molecular constituents.

The actin cytoskeleton as the central hub of AJs, FAs, and NMT signaling is an-
other interesting target to be addressed by intervention strategies for periodontal tissue
regeneration [350,351]. The difference in addressing AJs or FAs on the cellular surface
is that RhoA, Rac1, Cdc42 or ROCK cannot be modulated via direct interaction with a
biomaterial. As these are all cytoplasmic proteins, low molecular weight pharmacological
compounds or RNA-based strategies are promising candidates. A recently published proof-
of-principle study addressed RhoA transcription via a drug-releasing polymer containing
a RhoA-siRNA embedded in a nanocarrier [352]. Efficient drug delivery and subsequent
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downregulation of RhoA was shown, and this principle could also be used in periodontal
tissues to modulate cytoskeletal stiffness during different phases of regeneration.

The well-known RhoA activator Calpeptin is another candidate to influence cytoskele-
tal MT processes. Contrary to siRNA, Calpeptin enhances the activity of RhoA and is able
to increase actomyosin contractility and thus cell stiffness [353,354]. This is especially im-
portant in the context of alveolar bone osteogenesis, where increased ECM and cytoskeletal
stiffness favors osteogenic differentiation patterns [355].

Furthermore, cell penetrating peptides (CPPs) offer the possibility to deliver cargos
to the cell’s interior [356]. CPPs are covalently or non-covalently linked to small drugs,
peptides, proteins, or nucleic acids, which are thereby delivered to the cell [357]. Thus,
the small GTPases or modulators of their activity could be directly transported to the cell
via CPPs. This regenerative strategy would be suitable for local and targeted therapy of
periodontal defects without implanting a foreign material into the patient. First clinical
trials with the application of CPPs in humans have been reported and have shown no
severe toxic effects so far [358,359]. Therefore, this technology may be broadly available
in the future. The applicability and effectiveness in oral tissues, however, remains to
be determined.

YAP and TAZ have been implicated in many in the periodontium, including myofi-
broblast differentiation, osteogenesis, and oral mechanobiological carcinogenesis processes.
Addressing these Hippo components pharmacologically is not a new concept, as their
role in many different human cancers makes them a promising target to slow down dis-
ease progression or hopefully to suppresses features of malignant transformed tumor
cells [164,360,361]. There exist different mechanisms of how to prevent YAP nuclear entry
and thus induction of proliferation and EMT.

Verteporfin is a photosensitizing pharmakon, which is already in clinical use in oph-
thalmology [362]. Verteporfin enhances cytoplasmic 14-3-3σ, which in turn binds YAP
and prevents its translocation into the nucleus [363]. Regarding the stiff, desmoplas-
tic stroma in OSCC, Verteporfin-enhanced treatment strategies could help to reduce the
stiffness-susceptible and thus MT-sensitive proliferative capacity and migratory potential
of malignant cells.

Nuciferin is an alkaloid compound from lotus plants and was recently shown to
sensitize cancer cells to chemotherapeutic agents [364]. Mechanistically, Nuciferin promotes
adenosine monophosphate-activated protein kinase (AMPK)-related YAP phosphorylation
on Ser127 and consequently cytoplasmic trapping of the co-transcriptional activator. It will,
therefore, be interesting to see if similar principles apply to OSCC.

Sophisticated, innovative biomaterials have also been evaluated in the context of
mechanobiology and YAP. As regenerative stem cell therapies have great therapeutic po-
tential, it is still an active field of research, if such approaches in mechanically exposed
tissues such as joints or the periodontium benefit from concomitant mechanical stimulation
of the transplanted cells. The so-called “loading history” of the cells might, therefore, play
an important role in regenerative stem cell therapies and underscore the pivotal role of
MT [365–367]. To study these potential influences, Kojima and co-workers presented a
micropatterned, polymer-based micropillar research platform that enables the study of FAK
and YAP activity in response to mechanical loading. As a special feature, the skillful combi-
nation of two biocompatible polymers guarantees highly specific cell adhesion on the top
surfaces of the micro-posts. The simultaneous integration of magnetic nanoparticles into
the polymer additionally offers the possibility to magnetically actuate the pillars to exert
shear forces on the cells [368]. The first biological data from human mesenchymal stem cells
show that early adaptation of cells to cyclic mechanical loading includes the recruitment
of phosphorylated and, thus, active FAK to the cellular periphery and the translocation
of YAP into the nucleus [369], thereby potentially supporting regeneration-relevant cell
proliferation or differentiation. It will be interesting to apply such mechanobiological test
platforms to periodontal cells and even to try to develop the principle further to actual
mechano-active, implantable biomaterials.
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Concerning innovative biomaterials that have the potential to regulate YAP/TAZ ac-
tivity, the technique of guided bone regeneration (GBR) offers great regenerative potentials.
In the GBR of periodontal tissues, biocompatible materials are used as spacers between
connective tissue and the alveolar bone in order to prevent overgrowth of gingival soft
tissues by simultaneously allowing the regeneration of bone. This is especially important
in periodontitis, where alveolar bone loss and hence the ensuing loss of teeth is a major
problem [370,371].

Different materials and strategies for periodontal GBR have been proposed in recent
years. Porrelli and colleagues presented an electrospun polycaprolactone-based bioma-
terial, which was functionalized with lactose-modified chitosan and antimicrobial silver
nanoparticles. They could show that osteoblast adhesion and proliferation was significantly
enhanced with this regenerative approach. As above, the incorporation of the antibacterial
nanoparticles prevented biofilm formation of bacteria such as Staphylococcus aureus and
Pseudomonas aeruginosa. Cytotoxic effects were not reported [372]. Another study by Bal-
binot and co-workers used a polybutylene adipate terephthalate biodegradable membrane,
which was enhanced with niobium-containing bioactive glasses. Again, the material was
permissive for osteogenesis [373]. GBR can also be enhanced via incorporation of phar-
macologically active compounds. Recently, a thermosensitive Pluronic F127/poly(lactic
acid) formulation with zoledronic acid nanoparticles was reported, which lead to lamellar
bone formation in a rabbit model, while tissue fibrosis was inhibited [374]. A similar
study with a silicon dioxide nanoparticle-loaded, non-resorbable membrane that was either
functionalized with zinc or doxycycline revealed induction of osteogenic marker genes in
cell culture experiments, while simultaneously suppressing RANK-L expression [375,376].
Clinical data from a 5-year period of patients treated with GBR materials also revealed
promising outcomes [377].

New generations of GBR materials even offer in situ mineralization and thus stiffening
of membranes, which is important in the context of cellular mechanosensing. According
to Li et al., the modification of a Bio-Guide® membrane with polyacrylic acid led to
self-mineralization of the material after transplantation in a murine bone defect model.
Additionally, osteogenesis from mesenchymal stem cells was induced. Molecularly, a clear
nuclear accumulation of both YAP and TAZ was registered, which shows both the decisive
role of both proteins for osteogenesis and the applicability of such dynamic materials for
regenerative purposes [378]. The complex histological composition of the periodontium
will, therefore, be an optimal candidate to apply such self-regulating biomaterials, which is
especially important regarding tissue–tissue interfaces [148,379].

One major challenge in the application of GBR remains the fact that cells behave
differently on 2D or 3D substrates, as already mentioned in the beginning of this section.
As above, the actual “cell-guidance”, i.e., the induction of the desired cell behavior, is
strongly connected to the material’s properties and topography. Therefore, biophysical and
biochemical cues of biomaterials need to be carefully selected in order to enable the clinical
success of periodontal regeneration via GBR and other methods. Matrix stiffness, pore size
and porosity, the nanotopography, and the stress–relaxation behavior need to be considered
from a biomechanical point of view. From the biochemical perspective, the incorporation
of growth factors, cytokines, small bioactive molecules, ions, genetic information or other
compounds relevant to cellular physiology is noteworthy [380–383].

In 2D systems, different materials have been tested for their capacity to guide cell
behavior. Generally, guided adhesion, migration, spreading, proliferation, differentiation,
and stemness maintenance can be distinguished. Adhesion is established via material
composition and stiffness. Migration results from compositional gradients, which induce
chemotaxis, or mechanical stimuli, which induce mechanotaxis. Cell spreading is the con-
sequence of positive charges or a moderate material hydrophobicity. Compositional motifs
are able to stimulate proliferation, while a tissue-like stiffness induces differentiation. In
general, soft substrates support stemness maintenance [384]. For instance, graphene-based
materials induce osteogenic differentiation of hMSCs [385]. As above, they sustain cell
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adhesion, spreading, and proliferation. Boron nitride, Tungsten disulfide or molybdenum
disulfide materials are other examples for such cell-instructive 2D materials [386]. The
exact molecular interplay with the herein presented MT pathways, however, remains to
be elucidated.

Studies on 3D-directed cell migration on biocompatible polymers offer great potential
to further study cell-guidance. Compared to 2D materials, the third dimensions offer the
possibility to construct a certain nanotopography, which feeds back on cellular physiology.
For instance, photopolymers are used in fabrication techniques known as laser ablation or
direct laser writing (multiphoton lithography). This enables researchers to generate a broad
variety of biomaterials with complex 3D nanotopographies. Other possibilities for scaffold
preparation include freeze-drying, electrospinning, or 3D printing [387]. Consequently,
cell behavior changes upon contact with the material in response to the geometry and
physical properties. Exemplarily, Cheng and colleagues observed cell migration parallel to
ridges, also known as contact guidance, on a material fabricated with direct laser writing.
Therefore, this technique offers the possibility for 3D spatial control of cell behavior [388].
Controlled cell-alignment, which is important for tissue organization, especially in complex
composite organs such as the periodontium, is also achievable on such substrates [387]. By
using materials with varying matrix stiffnesses, an effect called durotaxis can be observed,
meaning that cells migrate from softer to stiffer regions. The incorporation of such a “strain
field” in combination with the material’s nanotopography enables even more control on
cell behavior and guidance [389]. The exact molecular signaling events that occur during
these processes are so far only incompletely understood. Of interest, laser-guided direct
writing is not limited to the fabrication process of the biomaterial, but optical forces can
be directly used to deposit cells. Thus, cell-to-cell distances and the spatial control of
cell-to-cell interaction as well as the interplay of different cell types can be experimentally
manipulated [390]. Thus, GBR in combination with the above-discussed properties of 2D
and 3D materials in the context of cell guidance in the periodontium harbor great potential
to improve oral regenerative therapy approaches.

NMT is less well understood in the context of periodontal health, pathology, and
regeneration. Further molecular studies on the regulation of nuclear mechanics and its
interplay with other mechanobiological players will shed light into its mechanisms of
regulation. In turn, the elucidation of such interplay-governing mechanisms and their
underlying molecules opens the road for the discovery of potential targets for therapeutic
approaches. As Lamins and Emerin are subjected to phosphorylation, it is tempting to
speculate that pharmacologic inhibition of kinases, for instance with currently available
tyrosine kinase inhibitors (TKI), will influence NMT and related signaling processes [391].
Screening for mechanobiological consequences of TKI application could clarify regulatory
principles of NMT. This is also interesting regarding the many TKIs that are currently
applied in cancer therapy [392,393].

To summarize, the discussed principles of therapeutically addressing MT in the con-
text of periodontal homeostasis and regeneration have again demonstrated the importance
and complexity of the interconnectedness of MT and NMT, thereby rendering it a fas-
cinating issue of basic and translational research to achieve and/or improve oral tissue
regeneration. Apart from growth factors, endocrine stimuli, and the general extracellular
milieu, it is of great importance to consider the various mechanisms of actions of MT-
inherent mechanobiological signaling and its related processes. In the future, MT will be
an indispensable cornerstone of research with respect to oral regenerative medicine.

7. Conclusions

MT-immanent mechanobiological signals are key determinants of cell behavior and
tissue adaptation to the external cell and tissue environment. The interplay of molecular
mechanosensors and mechanotransducers is complex and represents the tight interrelation-
ship between different cellular compartments and signaling hubs. FAs, AJs, YAP/TAZ, the
cytoskeleton, LINC, and the nucleoskeleton only represent a small subset of cellular players



Biomolecules 2021, 11, 824 27 of 42

involved in MT and NMT but reveal important principles of how the cell percepts and
integrates biophysical mechanical information. Periodontal tissues are of special interest to
MT research and are a paradigm of how the above-discussed signaling networks, cascades,
and molecules govern tissue development, homeostasis and regeneration, cell prolifera-
tion, differentiation, and pathologic processes, such as periodontitis or OSCC. By further
elucidating the cell-type specific and spatiotemporal fine-tuning of mechanobiological
processes, the future translation of these principles into clinical applications will prove to
be a strong tool in the field of oral regenerative medicine.
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