
entropy

Article

A Hybrid Analysis-Based Approach to Android Malware
Family Classification

Chao Ding , Nurbol Luktarhan *, Bei Lu † and Wenhui Zhang †

����������
�������

Citation: Ding, C.; Luktarhan, N.; Lu,

B.; Zhang, W. A Hybrid Analysis-

Based Approach to Android Malware

Family Classification. Entropy 2021,

23, 1009. https://doi.org/10.3390/

e23081009

Academic Editor: Gholamreza

Anbarjafari

Received: 26 June 2021

Accepted: 27 July 2021

Published: 3 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

College of Information Science and Engineering, Xinjiang University, Urumqi 830046, China;
dingchao@stu.xju.edu.cn (C.D.); lubei@stu.xju.edu.cn (B.L.); zwh@stu.xju.edu.cn (W.Z.)
* Correspondence: nurbol@xju.edu.cn
† These authors contributed equally to this work.

Abstract: With the popularity of Android, malware detection and family classification have also
become a research focus. Many excellent methods have been proposed by previous authors, but
static and dynamic analyses inevitably require complex processes. A hybrid analysis method for
detecting Android malware and classifying malware families is presented in this paper, and is
partially optimized for multiple-feature data. For static analysis, we use permissions and intent as
static features and use three feature selection methods to form a subset of three candidate features.
Compared with various models, including k-nearest neighbors and random forest, random forest
is the best, with a detection rate of 95.04%, while the chi-square test is the best feature selection
method. After using feature selection to explore the critical static features contained in this dataset,
we analyzed a subset of important features to gain more insight into the malware. In a dynamic
analysis based on network traffic, unlike those that focus on a one-way flow of traffic and work on
HTTP protocols and transport layer protocols, we focused on sessions and retained all protocol layers.
The Res7LSTM model is then used to further classify the malicious and partially benign samples
detected in the static detection. The experimental results show that our approach can not only work
with fewer static features and guarantee sufficient accuracy, but also improve the detection rate of
Android malware family classification from 71.48% in previous work to 99% when cutting the traffic
in terms of the sessions and protocols of all layers.

Keywords: android malware; malware detection and family classification; machine learning; hybrid
analysis; dynamic networking flow

1. Introduction

The growth in applications on the Android platform has become unstoppable with
the proliferation of smartphones and the advent of 5G, the latest generation of communi-
cation technology. The Ericsson Mobility Report [1] indicates that the number of mobile
subscribers worldwide is approximately 8 billion at present, and this number is expected
to increase to 8.9 billion by the end of 2025, of which mobile broadband subscribers will ac-
count for 88% of the total. By the end of 2019, there were 5.5 billion smartphone subscribers
worldwide, and the report predicts that, by 2025, the number of smartphone subscribers
will account for 85% of all cell phone users, with this number expected to reach 7.5 billion.
Android OS accounted for 84.8% of global smartphone shipments in 2020, according to
Smartphone Market Share [2], and the agency also predicts that Android OS is expected
to account for 85.7% by 2024. Based on these two reliable data sources, the vast majority
of smartphones worldwide in 2020 were Android OS, and their growth will continue at a
high rate.

The explosion of malicious mobile applications has followed the growth in the number
of smartphone subscribers. Internet Security Threat Report 2019 [3] data show that, in
2018, Symantec blocked an average of 10,573 malicious mobile apps per day, with a total
of 2.238 million new mobile malware variants and 230 new malware families. In the TOP

Entropy 2021, 23, 1009. https://doi.org/10.3390/e23081009 https://www.mdpi.com/journal/entropy

https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0001-6008-7863
https://orcid.org/0000-0001-6477-7781
https://doi.org/10.3390/e23081009
https://doi.org/10.3390/e23081009
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/e23081009
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e23081009?type=check_update&version=3

Entropy 2021, 23, 1009 2 of 23

MALICIOUS MOBILE APP CATEGORIES for 2018, Tools topped the list, accounting for
39% of malicious apps, with LifeStyle and Entertainment at 15% and 7%, respectively. The
mobile malware family Malapp accounted for 29.7% of the year’s malware volume and was
the most intercepted malware family, followed by Fakeapp at 9.1% and MalDownloader
at 8.9%. In addition, the percentage of mobile apps using invasive advertising techniques
has declined, from 30% in 2017 to 26% in 2018. The total number of malware infections
on mobile devices also declined in 2018, although the number of ransomware infections
increased rapidly, by approximately 33% compared to 2017. The United States was the
country most affected by mobile ransomware, accounting for 63 percent of all infections,
followed by China with 13 percent and Germany with 10 percent. Securing mobile devices
can be very challenging for organizations. During 2018, one in 36 devices used in an
organization were classified as high-risk, including those with a high degree of certainty of
being installed with malware.

This is even more serious, as shown in the 2019 Android Malware Special Report [4]
released by the 360 Security Brain. The agency intercepted approximately 1.809 million new
malware samples on mobile devices in 2019, of which fee consumption was the main type
of new malware on mobile devices throughout 2019, totaling 847,000, or 46.8%, followed
by privacy theft at 41.9% and remote control at 5.0%. In the third quarter of 2019, more
than a quarter (26%) of in-app ads on Android worldwide contained fraudulent fake
traffic content, with the highest rate of fake traffic being 33% for in-app programmatic ads
registered in China [5]. On e-commerce platforms, media, advertising and other industries,
there are fake traffic figures. The common methods of mobile traffic flow include malware
infection, script-simulated clicks, tampering with API execution results, and cracking SDK
code [4]. Therefore, it is crucial to detect Android malware and pay attention to malware
family behavior at the same time. For more effective Android malware detection and
family classification, this paper makes the following contributions to Android malware
detection and family classification:

• The static detection of Android malware based on permissions and intents has been
improved. We applied three feature selection methods, which eliminated more redun-
dant features; a subset of candidate features was input to multiple machine learning
methods, and the random forest was compared to yield the best detection results.
The chi-square test is the optimal feature selection method and is briefly analyzed.
Afterwards, we analyze the top 20 features in the optimal feature subset and one
feature associated with them;

• The classification of Android malware families based on network traffic has been
updated. In the dynamic analysis of Android malware, focusing on “sessions and all
layers of protocols” in network traffic and applying Res7LSTM is considered feasible
compared to focusing only on HTTPS in the application layer;

• Detection and classification processes are based on hybrid analysis. Permissions
and intents are selected as static features and, after feature selection, different algo-
rithms are applied to select the optimal algorithm and the optimal feature subset, and
the results are directly output or input to the dynamic detection layer according to
their prediction probability. In dynamic analysis, network traffic is split and imaged
as “sessions and all layers of protocols”, and Res7LSTM is used for detection and
classification.

This article is organized as follows: Section 2 discusses relevant work. Section 3 details
our method of building the model. Section 4 introduces the experimental process and
results. The conclusion and limitations of this paper is presented in Section 5.

2. Related Work

Android malware detection and family classification methods are divided into three
main categories, namely, static analysis, dynamic analysis and hybrid analysis, and each of
the three methods has its own advantages and shortcomings. Static analysis can guarantee
a significant detection rate with less resource consumption than dynamic analysis, but

Entropy 2021, 23, 1009 3 of 23

static analysis does not capture the dynamic execution behavior of malware and is largely
influenced by techniques such as obfuscation and packing. Hybrid analysis is a method
that combines static and dynamic analysis but also requires as many resources and complex
feature engineering as dynamic analysis. Static analysis mainly takes program compo-
nents, permission declarations, etc., as detection features. Liu X and Liu J. [6] proposed
a two-layer detection scheme to detect malware in Android applications based on the
permissions contained in the manifest file. They requested permission pairs of applications
as additional conditions for detection, and improve detection accuracy with the informa-
tion contained in the used permissions, and the results show that the permission-based
two-layer detector has a high malware detection rate. Although machine learning has
been well-researched and explored in malware detection, this research is still lacking for
ransomware detection. F. Noorbehbahani et al. [7] experimentally tested the validity of
applying machine learning methods to ransomware detection in 2019, and demonstrated
that random forests outperformed other tested classifiers on each experiment and that
there was no significant change in the performance of the classifiers after different trainings
on each classifier. Blanc W et al. [8] developed a lightweight static analysis method and
defined a set of metrics for inspecting Android malware. Although the method achieves an
FPR of 1.2% on the extracted features using random forests, it may still fail to identify code
that has been obfuscated or shelled.

Dynamic analysis technology generally analyzes the characteristics generated when
malicious software is dynamically executed, such as short messages or telephone numbers,
API call sequences, and data access. The dynamic detection method obtains the behavior
characteristics of application software by executing programs on sandboxes or real devices.
Compared with static analysis, dynamic analysis is less affected by obfuscation and shelling,
but it consumes resources and has difficulty covering all execution paths. GDroid [9] maps
applications and their APIs to construct a heterogeneous graph, which performs better in
both detection and family classification, but does not take into account the network behavior
characteristics of malware, and therefore uses traffic files as a feature for dynamic analysis
in our work. Describing malware as a two-dimensional image [10] is more convenient in
feature engineering, which somewhat inspired our treatment when dealing with traffic
files. [11] propose a feature fusion method, which uses both AlexNet and Inception-v3,
and this method allows the model to extract different features from different aspects. [12]
uses full connectivity and CNN for stacked ensembles. The stacked ensemble of these two
different models is an effective method for complex traffic files.

Many types of malware have the ability to differentiate between environments, which
makes dynamics-only analysis much less reliable. Hybrid analysis is an analysis technique
that combines static and dynamic analysis to compensate for the shortcomings of static
and dynamic analysis [13–15]. Lashkari A H et al. [16] proposed a systematic approach
for generating Android malware datasets using real smartphones rather than emulators.
In addition, 80 traffic features are used as the traffic feature set, and three classifiers—
random forest, KNN and decision tree—are used to detect and classify malware families.
Ref. [17] used random forests for both malware detection classification and malware family
classification, with permission and intent as static features, and API calls and network
traffic as dynamic features. Although the aforementioned studies have proposed many
methods for malware analysis, some of them are less effective for multiclassification tasks
such as family classification and category classification. First, we propose a hybrid-analysis-
based multilevel approach to malware detection and family classification. This uses
both a malware detection method based on static features such as permission and intent
and a malware detection and family subclassification method based on mobile software
network traffic. Second, we propose the Res7LSTM model with network traffic as the
feature input as the second classification level. In the following sections, we discuss our
model in more detail, and present our proposed approach from both methodological and
experimental perspectives.

Entropy 2021, 23, 1009 4 of 23

3. Modeling

In this section, we propose a hybrid-analysis-based model for detecting Android
malware and classifying malware families. Static detection is used as the static detection
layer. First, static features are extracted, and then three feature selection methods, the
chi-square test, analysis of variance (ANOVA) F-value, and mutual information, are used
for feature selection [18]. Then, a 10-fold cross-validation was performed on the selected
feature subset using machine learning methods such as KNN, multinomial NB, decision
tree, random forest, SVC, NuSVC, LinearSVC, logistic regression, GBDT, and XGBoost [19].
Through experimental comparison, random forest was finally determined as the detection
model for the static detection layer. In the second classification layer, dynamic analysis
is used to extract features from the mobile traffic generated by the run, and then the
Res7LSTM model is used to classify the software samples entered in the previous layer.
The Res7LSTM model is also used to classify the malware into four major categories and
40 families. Figure 1 shows the overall structure of this paper.

Figure 1. The framework of the model in this paper.

3.1. Static Features-Manifest File Characterization

The static detection layer is a benign-malicious binary model with static features
such as the permissions and intent of Android malicious code as input. Static features are
extracted from the decompiled AndroidManifest.xml file, and then a subset of candidate
features is obtained by feature selection. For optimal feature subsets and detection algo-
rithms, the performance of various machine learning algorithm models on these feature
subsets is compared. Although previous work [16,17,20] in this dataset is to be commended,
little or no analysis of static features has been performed, leaving us with little insight
into the behavior and intentions of the samples and the families they represent within the
dataset. Therefore, we analyzed the static features of the dataset during the static detection
process. The analysis of some of the features is shown in Section 4.4.

3.1.1. Sample Decompiling and Obtaining Features

The Android malware samples used in this paper were obtained from the CICAn-
dMal2017 dataset [16]. The samples were decompiled to obtain the files containing the
features. The Apktool [21] tool was used to decompile all the apk samples to fetch *.smali,
AndroidManifest.xml, etc., files for static analysis.

In [6], it is mentioned that the permission-based detection method is more suitable as
a preliminary filtering mechanism for malware classification systems. The static features
required by this method are acquired from the AndroidManifest.xml file, which contains
information such as the permissions and intent of the apk sample application or use. By
parsing the xml node data and namespaces in the AndroidManifest.xml file, we filter
and obtain the permission and intent information it contains. As the attributes of the
parsed node information will be changed by the namespace, the feature result is processed
according to the value of the namespace “xmlns”, and 8111 static features are finally
obtained.

Entropy 2021, 23, 1009 5 of 23

3.1.2. Initialize Static Feature Space and Obtain Numerical Feature Expression

The feature space of the dataset is obtained based on the features of all samples. On the
basis of the feature space, the sample features are numerically expressed, and the frequency
of the sample features is defined as their feature values. Before the feature vectors are used
in the next step of detection, they should have preprocessing, such as normalization.

3.1.3. Feature Selection and Mobile Malware Detection

Due to the large number of irrelevant and redundant features in the acquired feature
vector, feature selection is necessary to analyze the static features and optimize the perfor-
mance of the algorithm in a more reasonable way. We adopt the filter approach for feature
selection to be independent of the detection algorithm. For more details, please see Algo-
rithm 1. The three methods of feature selection, i.e., chi-square test, analysis of variance
F-value, and mutual information, were used to obtain a subset of three candidate features.
To select the optimal feature subset and the optimal detection model, the performance of
different models on the three feature subsets is further compared. The optimal detection
model is first determined based on the average performance of the different algorithmic
models on the feature subset, and then the optimal feature subset is determined based
on the performance of the selected optimal model on the different feature subsets. In this
paper, it is experimentally concluded that the optimal detection model is random forest and
that the optimal feature selection method is the chi-square test. We used scikit-learn [22], a
machine learning library for Python, to implement the above methods. A more detailed
feature analysis is provided in Section 4.4.

Algorithm 1 Feature Selection.
Input: Training set with permissions and intent static features;
Output: Optimal subset of features after selection;

1: Step1: Feature importance ranking
2: The feature importance scores were calculated using chisquare test, analysis of

variance Fvalue, and mutual information, respectively.;
3: Removal of features with scores of Nan and 0;
4: Obtain the corresponding candidate feature sets separately;
5: EndStep
6: Step2: Comparing the average performance of different algorithms
7: Apply some detection algorithms to the three candidate feature sets;
8: Calculate the average performance of each algorithm on the three feature sets;
9: EndStep

10: Step3: Obtain the optimal subset of features
11: Compare the average performance and find the best-performing detection algo-

rithm;
12: Compare the performance of this optimal detection algorithm on three feature

subsets and find the best performing feature set;
13: EndStep
14: Return the optimal subset of features.

To further understand the behavioral intent of Android malware as opposed to benign
software, we analyze and discuss a selection of the top 20 important features and an
interesting feature related to them. These will be found in Table 1.

Entropy 2021, 23, 1009 6 of 23

Table 1. The Top 20 Important Features and One Interesting Feature.

Feature Score

<actionandroid:name=“android.intent.action.USER_PRESENT”/> 316.54
<actionandroid:name=“android.net.conn.CONNECTIVITY_CHANGE”/> 259.02
<actionandroid:name=“android.intent.action.VIEW”/> 243.52
android.permission.SYSTEM_ALERT_WINDOW 225.62
<actionandroid:name=“android.app.action.DEVICE_ADMIN_ENABLED”/> 185.42
android.permission.READ_PHONE_STATE 185.31
android.permission.SEND_SMS 175.83
<actionandroid:name=“android.intent.action.PACKAGE_ADDED”/> 175.34
android.permission.CHANGE_NETWORK_STATE 150.87
android.permission.RECEIVE_SMS 150.55
android.permission.MOUNT_UNMOUNT_FILESYSTEMS 140.80
<actionandroid:name=“android.provider.Telephony.SMS_RECEIVED”/> 138.15
android.permission.GET_TASKS 136.95
<actionandroid:name=“android.intent.action.BOOT_COMPLETED”/> 124.74
android.permission.READ_SMS 123.28
android.permission.RECEIVE_BOOT_COMPLETED 122.16
android.permission.CHANGE_WIFI_STATE 113.41
android.permission.WRITE_SMS 106.71
<actionandroid:name=“android.intent.action.MAIN”/> 104.34
<actionandroid:name=“.ACTION_DECABDCE”/> 103.92
......
<actionandroid:name=“android.permission.BIND_DEVICE_ADMIN”/> 0.35

3.2. Dynamic Features—Mobile Network Traffic Data Mining

The inputs to this level are the dynamic traffic characteristics corresponding to the
output samples from the static detection layer. Based on the benign–malicious probability
of the output in the static detection layer and a predetermined threshold value, it is
determined whether the second classification layer should be input, or whether the results
should be directly output. If the output label of the previous layer is benign and its
probability is equal to or greater than the threshold (in this paper, the threshold is set
to 1), it can be confirmed as benign and the “benign” label can be directly output; if the
probability of the benign label is less than the threshold, the sample will be input to the
current classification layer for further detection and classification; if the output label of
the previous layer is malicious, it can be directly input to the current classification layer
for further detection and classification. The sample is input into the current classification
layer to perform further classification. The second classification layer uses our proposed
Res7LSTM model to perform classification tasks such as benign–malicious classification
(two classification categories), malware class classification (four classification categories),
and malware family classification (forty classification categories) on the dynamic network
traffic characteristics of the input sample. The design of this method is as follows.

3.2.1. Dataset

The dynamic network traffic characteristics used in this method are derived from the
CICInvesAndMal2019 [17] dataset, the second part of the CICAndMal2017 [16] dataset. The
dataset collected 10,854 samples (4354 malware and 6500 benign) from multiple sources,
with the benign samples being collected from Google Play in 2015, 2016 and 2017. The
dataset installs 5000 collected samples (426 malware and 5065 benign) on real devices and
divides malware samples into four categories (adware, ransomware, scareware and SMS
malware). A total of 426 of these malware were from 42 malware families. To overcome
the stealthy nature of advanced malware, three data-capture states were defined (during
installation, before reboot and after rebooting the phone) capturing all log files (including

Entropy 2021, 23, 1009 7 of 23

network traffic, battery state, log state, program packages, process logs, etc.) generated by
the samples in a real smartphone environment connected to the network.

3.2.2. Preprocessing

The granularity of network traffic splitting is TCP connection, traffic, session, service
and host [23]. Different splitting methods yield different units of traffic. A session is a
bidirectional flow and includes two-way traffic. A flow is defined as a set of contiguous
packets with the same five tuples (source IP, source port, destination IP, destination port,
and transport level protocol), and a session is a bidirectional flow in which the source and
destination IPs are exchanged.

Our handling of network traffic is different from [20], which focuses more on the
HTTP protocol and the UDP and TCP protocols in the transport layer and treats pcap file
by filtering out the protocols of interest and separating them into the basic flow. We believe
that, in general, a session contains more interactive information than a unidirectional
flow. In addition, the all-layer representation of a packet contains more layers than the
transport layer representation, especially including information that the transport layer
does not contain, such as IP Header and Frame Number, so more critical information can
be expressed. To preserve more vital information, we chose to slice the traffic file in terms
of the session and all layer protocols.

(1) Labeling and Pcap2Session.
To slice the traffic file, Wang et al. [24] proposed a new traffic classification method
for malware traffic based on convolutional neural networks using traffic data as
images. USTC-TK2016, the paper’s publicly available traffic handling tool, is based
on SplitCap.exe and integrates applications such as finddupe.exe. When all layers
are preserved, the data link header contains information about the physical link. This
information, such as the media access control (MAC) address, is essential for forward-
ing frames over the network, but it has no information for application identification
or traffic characterization tasks [25]. Since the MAC address changes when crossing
domain gateways, causing inconsistency problems, we filter the source and destina-
tion addresses as traffic packets for MAC addresses. The traffic files are organized
in a structure of “two-classification-labels/four-classification-category-labels/forty-
classification-family-labels/network-traffic-files” (the four classification and forty
classification labels for a benign sample are all None) to facilitate subsequent labeling.
The resulting folder has the same name as the pcap file and maintains its folder
organization.

(2) Pcap2Png and Png2Mnist.
This step first divides the sliced and filtered mac address pcap files randomly into
training and test sets at a ratio of 9:1. The divided pcap files are then unified to the
same length. The work of Wang Wei et al. [24] shows that trimming the cut pcap file
to 784 bytes leads to better results, and that dividing by session is better than dividing
by flow. Therefore, the choice was made to slice by session with the the length = 784.
The obtained pcap file in the previous step is converted to a single-channel grayscale
png image with three kinds of label (benign–malicious labels, category labels and
family labels). Three kinds of ubyte dataset file were constructed with reference to
the Mnist dataset format [26].

3.2.3. Dynamic Analysis, Training and Evaluation

The converted data in Mnist format were used as the input of the Res7LSTM model,
and the labeled binary, four-category and forty-category data were used to train the
Res7LSTM to obtain the three classification models. The performance evaluation metrics of
the models include accuracy, precision, recall and F-measure.

Entropy 2021, 23, 1009 8 of 23

3.3. Detection and Classification

The Res7LSTM model in this paper combines a residual network (ResNet) and a
long short-term memory (LSTM) model as a second classification layer used for detection,
category and family classification.To avoid overfitting, we used batchnormallization and
DropOut [27] in the construction of the model. In addition, the combination of models
using Res7LSTM also avoids overfitting to some extent.

3.3.1. Residual Network

The degradation problem occurs when the deeper networks start to converge: as the
depth of the network increases, the accuracy saturates and then degrades rapidly. However,
this degradation is not caused by overfitting, and adding more layers to a suitably deep
model leads to more training errors [28,29]. ResNet (residual neural network) [30] proposed
a deep residual learning framework to solve the degradation problem of deep networks.
A connection method called “shortcut connection” is used in ResNet, which allows the
network to retain a portion of the output of the previous layers. ResNet50 is a typical model
of this type of network with two types of “shortcut connections”, as shown in Figure 2.

Figure 2. The connection of ResNet50.

3.3.2. Long Short-Term Memory

LSTM [31] is a special recurrent neural network (RNN) [32]. LSTM solves the long-
term dependence problem in RNNs, i.e., gradient disappearance or explosion. LSTM differs
from RNNs in their basic units. The basic structure of the cells of both models is shown in
Figure 3. The advantage of LSTM is its ability to select and determine what information
can be retained or ignored by the gate structure. There are three basic structures in each cell
node of this network structure, which are input gates, forgetting gates, and output gates,
as shown in Figure 3b.

(a) (b)

Figure 3. Basic units of RNN and LSTM. (a) Basic units of RNN. (b) Basic units of LSTM.

3.3.3. Malware Category and Family Classification

The Res7LSTM model in this paper is a combination of a residual network (ResNet)
and long short-term memory (LSTM). Figure 4 depicts the network structure built by this

Entropy 2021, 23, 1009 9 of 23

model. The BatchNormalization layer, the activation layer, and some pooling layers are
ignored for the sake of simplicity and clarity. As depicted in the figure, we constructed a
neural network with seven layers of ResNet and an LSTM. First, the input goes through
a residual network with seven layers of convolution, then a GlobalMaxPooling2D layer;
meanwhile, the initial input goes through an LSTM network with 128 hidden neurons
and a fully connected layer. The two vectors above are connected and input to a fully
connected output layer with a softmax activation function. Res7LSTM contains a residual
network, which has a convolution layer, a residual block with three convolution layers
and no convolution layers in the side path, and a residual block with four convolution
layers and one convolution layer in the side path, where the activation functions of the
convolution layers are ReLU. Finally, the model’s optimizer is selected as Adam, and its
learning rate is set to 0.01.

Figure 4. The Res7LSTM structure.

4. Experimental

In this section, first, the dataset used is presented in Section 4.1. The data-processing
scheme of this method is described in Section 4.2. Next, the performance metrics used in the
evaluation of our experiments are presented in Section 4.3. In Section 4.4, the experiments
of feature selection and the performance comparison of candidate models on a subset of
features are described in detail, and the optimal model and the optimal subset of features
are identified. Additionally, in this section, we provide a brief analysis of the validity of the
chi-square test and the 20 features selected. In the final Section 4.5, our proposed method is
compared with other methods.

4.1. Complete Dataset Description

We use data from the CICAndMal2017 [16] dataset and CICInvesAndMal2019 [17].
This dataset collected over 6000 benign apps from the Google Play Marketplace, of which
1435 were removed (leaving a total of 5065 apps) because they were flagged as suspicious
or adware by more than two antivirus products in Virustotal [33]. The dataset collected
4354 malware items from multiple data sources. Due to “sample errors” and “inconsistent
malware labels”, they installed and ran only 429 malware and 5065 benign software on
real devices.

In the network traffic generated by the 42 malware families published in this dataset,
two families are not included in the static detection used in the static detection layer, which
are Koodous in Adware and FakeApp. AL in Scareware. To accurately evaluate our model
and to ensure the consistency of the detection and classification layers, we finally chose
to drop these two families based on the samples used in the static detection layer. This
paper uses 1190 and 404 captured network traffic generated by benign and malicious
samples, respectively. There are four categories of malware, namely, Adware, Ransomware,
Scareware, and SMS; there are 40 malware families, and the distribution of families and
datasets is shown in Table 2.

Entropy 2021, 23, 1009 10 of 23

Table 2. Data set distribution and flow file processing results.

Binary Category Family Samples
Number of Traffic Pcap/Png

Train Test Total

Benign None None 1190 393,364 44,418 437,782

Malware

Adware

dowgin 10 18,785 2091 20,876
ewind 10 21,950 2443 24,393
feiwo 15 28,390 3163 31,553

gooligan 14 44,211 4918 49,129
kemoge 11 21,663 2410 24,073

mobidash 10 15,618 1741 17,359
selfmite 4 6472 721 7193
shuanet 10 20,060 2234 22,294
youmi 10 18,650 2078 20,728

TOTAL 94 195,799 21,799 217,598

Ransomware

charger 10 19,807 2207 22,014
jisut 10 12,951 1445 14,396
koler 10 22,516 2507 25,023

lockerpin 10 12,732 1420 14,152
pletor 10 2027 229 2256

porndroid 10 24,692 2749 27,441
RansomBO 10 20,090 2238 22,328
simplocker 10 18,394 2051 20,445

svpeng 11 27,512 3064 30,576
wannalocker 10 16,352 1820 18,172

TOTAL 101 177,073 19,730 196,803

Scareware

android.spy.277 6 12,815 1427 14,242
AndroidDefender 17 27,976 3117 31,093
AvForAndroid 10 21,246 2365 23,611

avpass 10 20,695 2304 22,999
fakeapp 10 17,469 1946 19,415
fakeav 9 18,790 2093 20,883

fakejoboffer 9 15,124 1686 16,810
FakeTaoBao 9 17,171 1911 19,082
penetho 10 12,576 1402 13,978

virusshield 10 14,728 1640 16,368
TOTAL 100 178,590 19,891 198,481

SMS

beanbot 9 3349 377 3726
biige 11 18,563 2068 20,631

fakeinst 10 7080 792 7872
fakemart 10 3095 349 3444

fakenotify 10 18,653 2078 20,731
jifake 10 3442 388 3830

mazarbot 9 3267 367 3634
nandrobox 11 22,426 2496 24,922
plankton 10 20,065 2234 22,299

smssniffer 9 17,102 1905 19,007
zsone 10 5587 625 6212

TOTAL 109 122,629 13,679 136,308

TOTAL NaN 404 674,091 75,099 749,190

TOTAL NaN NaN 1594 1,067,455 119,517 1,186,972

Entropy 2021, 23, 1009 11 of 23

4.2. Static and Dynamic Feature Data Preprocessing

The static features used in this method were extracted from the AndroidManifest.xml
file in the decompiled sample generation file. The dynamic features used for analysis are
the network traffic that is captured while the mobile application is run dynamically. To
apply deep learning methods and simplify feature engineering, we trimmed the network
traffic to a fixed length (784 bytes) after slicing the file by session and converting it to
grayscale images in png format. The total number of grayscale images after processing
was 437,782 for benign samples and 749,190 for malicious samples; 217,598 for Adware
and 196,803, 198,481 and 136,308 for Ransomware, Scareware and SMS, respectively.

4.3. Evaluation Metrics

The performance metrics used during the experiments will be presented in this sub-
section due to the requirements of selecting the optimal feature subset and comparing the
performance of different algorithms in the static detection layer and other methods in the
second classification layer.

The commonly used metrics for performance evaluation are precision, recall, F1-
measure [34], and accuracy. Accuracy is the proportion of samples that are correctly
classified to the total number of samples, calculated as in Equation (1). Precision is t heratio
of samples that are predicted to be positive and are actually positive to the samples that are
predicted to be positive, as calculated in Equation (2). Recall refers to the ratio of samples
that are predicted to be positive and are actually positive to the samples that are actually
positive, using Equation (3). Equation (4) represents the F-measure, which is the harmonic
mean of the precision and recall rates, α=1 in this paper.

accuracy =
TP + TN

TP + FP + FN + TN
(1)

precision =
TP

TP + FP
(2)

recall =
TP

TP + FN
(3)

f − measure =
(α2 + 1)precision ∗ recall

α2(precision + recall)
(4)

In the above equations, FP denotes the number of samples that were predicted to be
positive but were actually negative, TN denotes the number of samples predicted to be
negative and actually negative, TP denotes the number of samples predicted to be positive
and actually positive, and FN denotes the number of samples predicted to be negative but
actually positive. When evaluating the performance of multiple classifications, the common
metrics were calculated in two ways: macroaverage and microaverage. Macro calculates the
precision and recall on each confusion matrix, then calculates the average value, and finally
calculates the F1-measure. Equations (5)–(7) were used for the calculations. Micro is the
average of the corresponding elements of the confusion matrix, resulting in TP,FP,TN,FN,
on the basis of which Micro-P, Micro-R, and Micro-F1 are calculated. Equations (8)–(10)
were used for the calculations.

Macro − P =
1
n

n

∑
i=1

precisioni (5)

Macro − R =
1
n

n

∑
i=1

recalli (6)

Macro − F1 =
2 ∗ Macro − P ∗ Macro − R

Macro − P + Macro − R
(7)

Entropy 2021, 23, 1009 12 of 23

Micro − P =
TP

TP + FP
(8)

Micro − R =
TP

TP + FN
(9)

Micro − F1 =
2 ∗ Micro − P ∗ Micro − R

Micro − P + Micro − R
(10)

4.4. Feature Selection and Detection Algorithm Comparison

The static features used in the static detection layer of this thesis had a total of 8111
features after numerical analysis. We used three feature-selection methods based on the
chi-square test, analysis of variance F-value, and mutual information to rank the features
in terms of feature significance, and the feature selection results are shown in Figure 5.
After feature importance ranking, only 2949 features in Figure 5a,b had nonzero feature
importance indicators, and 4031 features in Figure 5c had nonzero feature importance
indicators. Finally, we determined the number of features to be 784 for the purpose of
applying the model more broadly, and obtained three feature subsets: chi2_784, f_784, and
mutual_info_784. Despite our expectation that the dimensions of the selected subset of
features would be suitable for more deep learning models, the model we selected was
so unsatisfactory that we abandoned the idea of using and comparing the selected deep
learning models. Therefore, we hope to gradually improve this aspect in our future work,
to find a suitable model and method. This is also the second reason that we chose 784 as
the final number of features but did not compare the deep learning models.

(a) (b)

(c)

Figure 5. Feature selection. (a) chi-squared test. (b) ANOVA F-value.(c) mutual information.

To select the optimal detection model and feature subset, we compared the average
values of accuracy, precision, recall, and F1-measure of the candidate models on three
feature subsets chi2_784, f_784, and mutual_info_784 after 10-fold cross-validation. The

Entropy 2021, 23, 1009 13 of 23

candidate models we use are k-nearest neighbor (KNN), multinomial naive Bayesian (M-
NB), decision tree (DT), random forest (RF), support vector classification (SVC), nuclear
support vector classification (NuSVC), linear support vector classification (L-SVC), logistic
regression (LR), gradient boosting decision tree (GBDT), and eXtreme gradient boosting
(XGBoost). Figure 6 shows the performance of the models on each feature subset, where
Figure 6a–c are the accuracy, precision, recall, and F1-measure on chi2_784, f_784, and
mutual_info_784”, respectively, and Figure 6d is the average performance on the three
feature subsets.

The experiments show that the random forest performs better on all three feature
subsets and that the average performance is optimal, as seen in Figure 6d. Its average
accuracy on the three feature subsets is 94.82%, and its average precision, average recall,
and average F1-measure are 94.08%, 91.99%, and 92.97%, respectively. Among them,
random forest has an overall advantage when comparing the average performance of the
three feature subsets with XGBoost and NuSVC. Random forest significantly outperformed
XGBoost in terms of accuracy, precision, recall, and F1-measure, with 93.96%, 91.89%,
92.23% and 92.04%, respectively. Random forest is significantly better than NuSVC in all
four evaluation metrics, which showed a 93.82%, 92.33%, 91.12% and 91.70% performance
in the four aspects. Finally, we identified the random forest as the static detection layer of
the algorithm model.

(a) (b)

(c) (d)

Figure 6. Models’ Performance on Candidate Feature Sets. (a) Chi-Squared Test. (b) ANOVA F-value.
(c) Mutual Information. (d) Average Performance.

Features selected using the chi-square test outperformed the other methods. Com-
paring the performance of the three feature subsets on random forests, the corresponding
feature set of the chi-square test outperformed the other two methods on four measures.
Figure 6a shows that the accuracy of random forest on the subset of chi2_784 is 95.04%,
and from Figure 6b,c, it can be concluded that f_784, mutual_info_784 were 94.95% and
94.46%, respectively. In terms of the F1-measure, chi2_784 achieved 93.28%, and f_784 and

Entropy 2021, 23, 1009 14 of 23

mutual_info_784 achieved 93.17% and 92.46%, respectively. Although the cardinality test
does not differ significantly from the ANOVA f-value, it still presents a slight advantage.

The chi-squared test is a common hypothesis testing method, based on the chi-squared
distribution, which belongs to the category of nonparametric tests and mainly compares the
association between two categorical variables. The calculations are shown in Equation (11).

χ2 =
k

∑
i=1

(xi − mi)
2

mi
(11)

For a clearer representation of the feature selection results, Table 1 shows the top 20
features of the 2494 features selected after feature selection and their scores in order of
importance. Among them, android.intent.action.USER_PRESENT is the most important,
and is “a listener for unlocking”. The intent of this is explained in the official Android API
Reference [35], as follows: “Broadcast Action: Sent when the user is present after the device
wakes up (e.g., when the keyguard is gone). This is a protected intent that can only be sent
by the system.” The cecond most important is android.net.conn.CONNECTIVITY_CHANGE,
which is responsible for monitoring the network status of connections, and the third is
android.intent.action.VIEW, which serves to display data to the user.

Of the top 20 most important features, five are SMS-related and, in addition to
the common send and receive messages, the most notable is <actionandroid:name= “an-
droid.provider.Telephony.SMS_RECEIVED”/>, the intent commonly used by malware when
implementing blocking SMS. There appear to be three network-related features, all of
which can be used to change the network state of a device. In addition, <actionan-
droid:name=“android.intent.action.BOOT_COMPLETED”/> and android.permission.
RECEIVE_BOOT_COMPLETED, which are logically required for the behavior to occur
simultaneously, also exist in Table 1. These two features can monitor the boot-up of the
phone and are used when an application intends to self-start from power-up.

Note that the <actionandroid:name=“android.app.action. DEVICE_ADMIN_ENABLED”/>,
which appears in Table 1, in fifth place, is required if the application is to gain administrator
privileges with the BIND_DEVICE_ADMIN at the same time; to some extent, this intent
is very dangerous. However, the latter’s score was only 0.35, ranking 2651 in importance.
According to statistics, there were 79 training samples that included only the former, none
that included only the latter, and only one that included both features. Of the samples that
contained only the first characteristic, there were six benign samples (7.6%) and 73 malicious
samples (92.4%); Ransomware and Scareware accounted for 43.0% and 26.6% of the total,
respectively. A detailed data comparison is shown in Table 3. The sample that contains
both features is com.gtp.nextlauncher.trial; however, this sample is benign, which may mean
that the malicious sample in the dataset dynamically requires BIND_DEVICE_ADMIN to
gain admin access to the device. Therefore, to some extent, dynamic analysis is necessary.

Table 3. Distribution of DEVICE_ADMIN_ENABLED features in the sample.

Binary Category Samples %

Malware

Ransomware 34 43.0
Scareware 21 26.6
Adware 12 15.2
SMS 6 7.6

Begin None 6 7.6

After the above, the detection algorithm for the static detection layer was implemented
with random forest, with a detection rate of 95.04%. Although lower than the 95.22% of [20],
our method uses only 784 static features, which are only one-tenth of the 8115 features
used in [20]. This was acceptable to us despite the reduced detection rate.

Entropy 2021, 23, 1009 15 of 23

4.5. Res7LSTM Performance Comparison

The malicious samples in the output of the static detection layer and the benign
samples with corresponding probabilities below the threshold are the inputs used in this
layer. The current classification layer uses the Res7LSTM model algorithm to perform three
classification tasks on the dynamic network traffic characteristics of the input samples.
Detailed experiments will be presented later.

Figure 7 is a comparison of the training accuracy of LSTM, CNN, and Res7LSTM
when applied to the three classification tasks, where Figure 7a shows the changes in the
training accuracy of the three models when performing the binary classification task, and
Figure 7b,c show the accuracy trends for malware category classification and malware
family classification, respectively.

(a) (b)

(c)

Figure 7. Comparison of the accuracy of CNN, LSTM and Res7LSTM. (a) Binary classification. (b)
Category classification. (c) Family classification.

The training accuracy changes of the CNN, LSTM and Res7LSTM models are com-
pared in three classification tasks. Res7LSTM exhibited an excellent performance in both
binary classification and family classification, as shown in Figure 7a,c. Although the latter
two performed similarly, LSTM did not perform steadily in this experiment, and CNN
was the worst of the binary classification tasks. Figure 7b shows that all three models
exhibited good performance for malware category classification. Our model Res7LSTM
outperformed the first two models on all three tasks and achieved an accuracy of 99.98%
on binary classification. On the four-category task, i.e., category classification, all three
models achieved 99.99% accuracy. For 40-category classifications, i.e., family classification,

Entropy 2021, 23, 1009 16 of 23

Res7LSTM achieved 99.91% precision and 99.93% recall, whereas CNN only achieved
94.50% and 93.04%.

Figures 8–10 depict the confusion matrices of the three models in malware family
classification. Figure 8 shows the confusion matrix of CNN, which is less effective in
classifying beanbot, jifake, mazarbot, and zsone families, where the precision rate of
mazarbot is only 50.54%(184 samples were correctly predicted and 183 were incorrectly
predicted) and that of beanbot is only 52.79% (199 samples were correctly predicted and
178 were incorrectly predicted) and 65.90% (230 samples were correctly predicted and 119
were incorrectly predicted) on fakemart. It should be noted that all three families belong
to the same SMS category, which could means that although CNN learns the differences
between categories very well, it is still difficult to detect the differences within the malware
families.Figure 9 shows the results of the LSTM on the test set, which is significantly better
than the CNN, but regrettably the model does not work as well on the smssniffer, with
a precision rate of 93.70%; in addition, the family RansomBO has a precision rate of only
94.13%. The confusion matrix is given in Figure 10 for our model, on a test sample of 75,099
traffic grayscale maps. Plotting from the True Positive Rate (TPR) and False Positive Rate
(FPR) yields Receiver Operating Characteristic (ROC) curve. Figures 11–13 show the ROC
curves for each of the three models, and iy can be seen in Figure 13 that the curves are closer
to the (0, 1) coordinate point compared to the others. It was experimentally demonstrated
that our approach overcomes the shortcomings of the previous two models and exhibits an
excellent performance on family classification.

Figure 8. Confusion Matrix for CNN.

Entropy 2021, 23, 1009 17 of 23

Figure 9. Confusion Matrix for LSTM.

Entropy 2021, 23, 1009 18 of 23

Figure 10. Confusion Matrix for Res7LSTM.

Entropy 2021, 23, 1009 19 of 23

Figure 11. ROC for CNN.

Figure 12. ROC for LSTM.

Entropy 2021, 23, 1009 20 of 23

Figure 13. ROC for Res7LSTM.

To compare the performance difference between our method and other methods,
refs. [16,17,20], which also use the CICAndMal2017 dataset, are used as comparators, and
the comparison results, in terms of precision rate and recall, are shown in Figure 14. The
precision rates for the binary classification, malware category classification, and malware
family classification were 85.8%, 49.9%, and 27.5% in [16], 95.3%, 83.3%, and 59.7% in [17],
and 99.2%, 98.4%, and 73.5% in [20], respectively. Our method achieved 99.98% accuracy
in binary classification, 99.99% accuracy in malware category classification, and increased
accuracy, to 99.6%, in malware family classification. In terms of recall, the classification
performance for 2, 4 and 40 categories was 88.3%, 48.5% and 25.5% in [16], 95.3%, 81%, and
61.2% in [17] and 98.2%, 96.4%, and 74.2% in [20], respectively. Our approach achieves
a 99.98% recall rate in the binary classification task and improves the malware category
classification and malware family classification to 99.99% and 99.93%, respectively. After
this comparison, our method solves the difficulties and problems faced by the previous
methods in malware family classification.

(a) (b)

Figure 14. Res7LSTM vs. [16,17,20]. (a) Comparison of Precision. (b) Comparison of Recall.

Entropy 2021, 23, 1009 21 of 23

5. Conclusions and Limitations

This study proposes a hybrid analysis-based process for Android malware detection
and classification, improving both static features and dynamic network traffic features. In
the detection layer, permissions and intent are used as input static features, and after feature
selection and a comparison of their performance on different algorithms, the optimal static
detection algorithm and the optimal feature selection method are determined, namely,
random forest and chi-square test. A final detection rate of 95.04% was obtained. Despite
the loss of the 0.18% detection rate, we used very few features and found that there were
many irrelevant and redundant features in the original features through experimentation.
At the end of the static test, we analyzed some important features. To further detect
low-trust benign samples and detected malware, a dynamic analysis layer will detect
and classify these samples. In the dynamic analysis layer, images of the network traffic
generated by the application software during dynamic execution were further classified and
detected using Res7LSTM. After different classification experiments, our method shows
excellenct abilities for malware detection and further subclassification, among which the
Android malware category and family classification were much improved compared to
other methods, especially in terms of family classification. Overall, the combination of
static detection and an analysis of dynamically generated network traffic can effectively
solve the problem of low-trust benign samples that are not detected correctly while, at the
same time, helping to classify malware families.

However, there are still some problems with our work. The code obfuscation and
encryption were not considered in the static detection process, i.e., no validity check was
performed on the obfuscated and encrypted samples, which may not be sufficient for such
malware detection. Code obfuscation and encryption are a major threat to the validity of
the results of this experiment. In the dynamic analysis, the dynamic analysis features used
are relatively singlular, using only traffic files and ignoring other features such as memory
logs, API operation logs, and device information logs, which may not be sufficient to carry
out an effective detection for malware that is not primarily network-based. This, likewise,
has a significant impact on the validity of the experiment. In addition, dynamic analysis
methods using flow images are less interpretable. These issues will be the focus of our
future work.

Author Contributions: Conceptualization, C.D. and N.L.; methodology, C.D.; software, C.D.; valida-
tion, C.D. and B.L.; formal analysis, C.D.; investigation, C.D. and B.L.; resources, C.D. and W.Z.; data
curation, B.L.; writing—original draft preparation, C.D.; writing—review and editing, C.D., B.L. and
W.Z.; visualization, C.D.; supervision, W.Z.; project administration, N.L.; funding acquisition, N.L.
All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported in part by the Innovation Environment Construction Special
Project of Xinjiang Uygur Autonomous Region under Grant PT1811, and in part by the Key grant
Project of The National Social Science Fund of China under Grant 20&ZD293.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank the anonymous reviewers for their contribution
to this peper.

Conflicts of Interest: The authors declare no conflict of interest.

Entropy 2021, 23, 1009 22 of 23

Abbreviations
The following abbreviations are used in this manuscript:

SMS Short Message Service
NuSVC Nuclear Support Vector Classification
ResNet Residual Neural Network
RNN Recurrent Neural Network
LSTM Long short-term Memory Network
RF Random Forest
KNN k-nearest neighbor
GBDT Gradient Boosting Decision Tree
XGBoost eXtreme Gradient Boosting
TP True Positives
TN True Negatives
FP False Positives
FN False Negatives

References
1. Ericsson Mobility Report June 2020. Ericsson Mobility Report. Available online: https://www.ericsson.com/49da93/assets/

local/mobility-report/documents/2020/june2020-ericsson-mobility-report.pdf (accessed on 27 July 2020).
2. Smartphone Market Share. Available online: https://www.idc.com/promo/smartphone-market-share/os (accessed on 5 April

2021).
3. Symantec, I. Internet Security Threat Report 2019. Available online: https://docs.broadcom.com/doc/istr-24-executive-

summary-en (accessed on 15 March 2012).
4. 2019 Android Malware Special Report by 360 Security Brain. Available online: https://blogs.360.cn/post/review_android_

malware_of_2019.html (accessed on 5 April 2021).
5. 2019 Mobile Ad Supply Chain Safety Report. Available online: http://info.pixalate.com/mobile-advertising-supply-chain-

safety-report-2019 (accessed on 5 April 2021).
6. Liu, X.; Liu, J. A Two-Layered Permission-Based Android Malware Detection Scheme. In Proceedings of the 2014 2nd IEEE

International Conference on Mobile Cloud Computing, Services, and Engineering, Oxford, UK, 8–11 April 2014; pp. 142–148.
7. Noorbehbahani, F.; Rasouli, F.; Saberi, M. Analysis of machine learning techniques for ransomware detection. In Proceedings of

the 2019 16th International ISC (Iranian Society of Cryptology) Conference on Information Security and Cryptology (ISCISC),
Mashhad, Iran, 28–29 August 2019; Institute of Electrical and Electronics Engineers (IEEE): New York, NY, USA, 2019; pp. 128–133.

8. Blanc, W.; Hashem, L.G.; Elish, K.O.; Almohri, M.J.H. Identifying android malware families using android-oriented metrics.
In Proceedings of the 2019 IEEE International Conference on Big Data (Big Data), Los Angeles, CA, USA, 9–12 December 2019;
Institute of Electrical and Electronics Engineers (IEEE): New York, NY, USA, 2019; pp. 4708–4713.

9. Gao, H.; Cheng, S.; Zhang, W. GDroid: Android malware detection and classification with graph convolutional network. Comput.
Secur. 2021, 106, 102264. [CrossRef]

10. Hemalatha, J.; Roseline, S.A.; Geetha, S.; Kadry, S.; Damaševičius, R. An Efficient DenseNet-Based Deep Learning Model for
Malware Detection. Entropy 2021, 23, 344. [CrossRef] [PubMed]

11. Nisa, M.; Shah, J.H.; Kanwal, S.; Raza, M.; Khan, M.A.; Damaševičius, R.; Blažauskas, T. Hybrid Malware Classification Method
Using Segmentation-Based Fractal Texture Analysis and Deep Convolution Neural Network Features. Appl. Sci. 2020, 10, 4966.
[CrossRef]

12. Damaševičius, R.; Venčkauskas, A.; Toldinas, J.; Grigaliūnas, Š. Ensemble-Based Classification Using Neural Networks and
Machine Learning Models for Windows PE Malware Detection. Electronics 2021, 10, 485. [CrossRef]

13. Zhao, S.; Li, X.; Xu, G.; Zhang, L.; Feng, Z. Attack tree based android malware detection with hybrid analysis. In Proceedings of
the 2014 IEEE 13th International Conference on Trust, Security and Privacy in Computing and Communications, Beijing, China,
24–26 September 2014; IEEE: New York, NY, USA, 2014; pp. 380–387.

14. Arshad, S.; Shah, M.A.; Wahid, A.; Mehmood, A.; Song, H.; Yu, H. Samadroid: A novel 3-level hybrid malware detection model
for android operating system. IEEE Access 2018, 6, 4321–4339. [CrossRef]

15. Fauskrud, J. Hybrid Analysis for Android Malware Family Classification in a Time-Aware Setting. Master’s Thesis, NTNU,
Trondheim, Norway, 2019.

16. Lashkari, A.H.; Kadir, A.F.A.; Taheri, L.; Ghorbani, A.A. Toward developing a systematic approach to generate benchmark android
malware datasets and classification. In Proceedings of the 2018 International Carnahan Conference on Security Technology
(ICCST), Montreal, QC, Canada, 22–25 October 2018; IEEE: New York, NY, USA, 2018; pp. 1–7.

17. Taheri, L.; Kadir, A.F.A.; Lashkari, A.H. Extensible android malware detection and family classification using network-flows and
api-calls. In Proceedings of the 2019 International Carnahan Conference on Security Technology (ICCST), Chennai, India, 1–3
October 2019; IEEE: New York, NY, USA, 2019; pp. 1–8.

18. Guyon, I.; Elisseeff, A. An introduction to variable and feature selection. J. Mach. Learn. Res. 2003, 3, 1157–1182.

https://www.ericsson.com/49da93/assets/local/mobility-report/documents/2020/june2020-ericsson-mobility-report.pdf
https://www.ericsson.com/49da93/assets/local/mobility-report/documents/2020/june2020-ericsson-mobility-report.pdf
https://www.idc.com/promo/smartphone-market-share/os
https://docs.broadcom.com/doc/istr-24-executive-summary-en
https://docs.broadcom.com/doc/istr-24-executive-summary-en
https://blogs.360.cn/post/review_android_malware_of_2019.html
https://blogs.360.cn/post/review_android_malware_of_2019.html
http://info.pixalate.com/mobile-advertising-supply-chain-safety-report-2019
http://info.pixalate.com/mobile-advertising-supply-chain-safety-report-2019
http://doi.org/10.1016/j.cose.2021.102264
http://dx.doi.org/10.3390/e23030344
http://www.ncbi.nlm.nih.gov/pubmed/33804035
http://dx.doi.org/10.3390/app10144966
http://dx.doi.org/10.3390/electronics10040485
http://dx.doi.org/10.1109/ACCESS.2018.2792941

Entropy 2021, 23, 1009 23 of 23

19. X Developers. Xgboost Python Package. XGBoost Developers. Available online: https://xgboost.readthedocs.io/en/latest/
python/python_intro.html (accessed on 20 July 2020).

20. Feng, J.; Shen, L.; Chen, Z.; Wang, Y.; Li, H. A two-layer deep learning method for android malware detection using network
traffic. IEEE Access 2020, 8, 125786–125796. [CrossRef]

21. Winsniewski, R. Apktool: A Tool for Reverse Engineering Android apk Files. Available online: https://ibotpeaches.github.io/
Apktool/ (accessed on 27 July 2016).

22. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.;
et al. Scikit-learn: Machine learning in python. J. Mach. Learn. Res. 2011, 12, 2825–2830.

23. Dainotti, A.; Pescape, A.; Claffy, K.C. Issues and future directions in traffic classification. IEEE Netw. 2012, 26, 35–40. [CrossRef]
24. Wang, W.; Zhu, M.; Zeng, X.; Ye, X.; Sheng, Y. Malware traffic classification using convolutional neural network for representation

learning. In Proceedings of the 2017 International Conference on Information Networking (ICOIN), Da Nang, Vietnam, 11–13
January 2017; IEEE: New York, NY, USA, 2017; pp. 712–717.

25. Lotfollahi, M.; Siavoshani, M.J.; Zade, R.S.H.; Saberian, M. Deep packet: A novel approach for encrypted traffic classification
using deep learning. Soft Comput. 2020, 24, 1999–2012. [CrossRef]

26. LeCun, Y. The Mnist Database of Handwritten Digits. Available online: http://yann.lecun.com/exdb/mnist/ (accessed on 20
July 1998).

27. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks
from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.

28. He, K.; Sun, J. Convolutional neural networks at constrained time cost. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; IEEE: New York, NY, USA, 2015; pp. 5353–5360.

29. Srivastava, R.K.; Greff, K.; Schmidhuber, J. Highway networks. arXiv 2015, arXiv:1505.00387.
30. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; IEEE: New York, NY, USA, 2016; pp. 770–778.
31. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef] [PubMed]
32. Bengio, Y.; Simard, P.; Frasconi, P. Learning long-term dependencies with gradient descent is difficult. IEEE Trans. Neural Netw.

1994, 5, 157–166. [CrossRef]
33. Total, V. Virus Total. Available online: https://www.virustotal.com (accessed on 20 July 2013).
34. Powers, D.M.W. Evaluation: From precision, recall and f-measure to roc, informedness, markedness and correlation. arXiv 2020,

arXiv:2010.16061.
35. API Android. Available online: http://developer.android.com/reference/packages.html (accessed on 14 October 2015).

https://xgboost.readthedocs.io/en/latest/python/python_intro.html
https://xgboost.readthedocs.io/en/latest/python/python_intro.html
http://dx.doi.org/10.1109/ACCESS.2020.3008081
https://ibotpeaches.github.io/Apktool/
https://ibotpeaches.github.io/Apktool/
http://dx.doi.org/10.1109/MNET.2012.6135854
http://dx.doi.org/10.1007/s00500-019-04030-2
http://yann. lecun. com/exdb/mnist/
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276
http://dx.doi.org/10.1109/72.279181
https://www.virustotal.com
http://developer.android.com/reference/packages.html

	Introduction
	Related Work
	Modeling
	Static Features-Manifest File Characterization
	Sample Decompiling and Obtaining Features
	Initialize Static Feature Space and Obtain Numerical Feature Expression
	Feature Selection and Mobile Malware Detection

	Dynamic Features—Mobile Network Traffic Data Mining
	Dataset
	Preprocessing
	Dynamic Analysis, Training and Evaluation

	Detection and Classification
	Residual Network
	Long Short-Term Memory
	Malware Category and Family Classification

	Experimental
	Complete Dataset Description
	Static and Dynamic Feature Data Preprocessing
	Evaluation Metrics
	Feature Selection and Detection Algorithm Comparison
	Res7LSTM Performance Comparison

	Conclusions and Limitations
	References

