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Introduction

Novel technologies for single-cell next-generation sequenc-
ing (NGS) offer new opportunities for understanding varia-
tions among the genomes, epigenomes, and transcriptomes 
of seemingly identical cells.1–6 Although early studies on 
gene expression on the single-cell level focused on small 
sets of selected transcripts, single-cell RNA sequencing 
offers unbiased exploration of the variability and heteroge-
neity among the transcriptomes of different cells. Individual 
mammalian cells are estimated to contain an average of 1 
million messenger RNA (mRNA) molecules, adding up to 
approximately 10 pg of total RNA.7 The relative propor-
tions of different transcripts are highly variable depending 
on the cell type and environment.8 To study the transcrip-
tional differences between cell types, the influence of the 
cellular environment on transcriptional profiles, and the 
potential subpopulations present within cell types, there is a 
need to develop methods that can be feasibly used to ana-
lyze large numbers of single-cell transcriptomes.

With the rapidly decreasing cost of sequencing, library 
preparation costs have become an increasingly significant 

fraction of the total cost of NGS, especially in applications 
that require analysis of large numbers of libraries, such as 
single-cell RNA sequencing. The ability to decrease reac-
tion volumes without compromising library quality would 
result in lower reagent costs. Historically, bottlenecks to 
this miniaturization process include the inability of standard 
liquid handlers to accurately dispense volumes under 2 µL 
and the relatively large volumes needed for the physical 
nucleic acid shearing steps used in many RNA-seq proto-
cols. We have overcome these barriers by using the mos-
quito HTS liquid handler (TTP Labtech, Royston, UK) 
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Abstract
As the cost of next-generation sequencing has decreased, library preparation costs have become a more significant 
proportion of the total cost, especially for high-throughput applications such as single-cell RNA profiling. Here, we have 
applied novel technologies to scale down reaction volumes for library preparation. Our system consisted of in vitro 
differentiated human embryonic stem cells representing two stages of pancreatic differentiation, for which we prepared 
multiple biological and technical replicates. We used the Fluidigm (San Francisco, CA) C1 single-cell Autoprep System for 
single-cell complementary DNA (cDNA) generation and an enzyme-based tagmentation system (Nextera XT; Illumina, San 
Diego, CA) with a nanoliter liquid handler (mosquito HTS; TTP Labtech, Royston, UK) for library preparation, reducing 
the reaction volume down to 2 µL and using as little as 20 pg of input cDNA. The resulting sequencing data were 
bioinformatically analyzed and correlated among the different library reaction volumes. Our results showed that decreasing 
the reaction volume did not interfere with the quality or the reproducibility of the sequencing data, and the transcriptional 
data from the scaled-down libraries allowed us to distinguish between single cells. Thus, we have developed a process to 
enable efficient and cost-effective high-throughput single-cell transcriptome sequencing.
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(SF1), which accurately dispenses volumes between 25 nL 
and 1.2 µL using true-positive displacement technology in 
conjunction with an enzyme-based fragmentation method 
(Nextera XT; Illumina, San Diego, CA), which can be per-
formed in extremely low-reaction volumes.

Here we present a high-throughput workflow in which 
single-cell RNA-seq libraries are prepared using the C1 
single-cell Auto Prep System (Fluidigm) combined with the 
mosquito liquid handler to simultaneously decrease the 
reaction volume and increase the number of reactions. This 
system allows us to significantly decrease library prepara-
tion costs and increase throughput. To establish the quality 
of the libraries, we applied this system to the analysis of 
human embryonic stem cells differentiated in vitro to two 
early stages of pancreatic differentiation. We analyzed the 
resulting single-cell RNA-seq data to determine the repro-
ducibility of this system and its ability to distinguish not 
only between cells at different stages of differentiation but 
also between individual cells within each stage.

Materials and Methods

Cell Culture and Differentiation

All cell cultures were maintained in vitronectin-coated plates 
at 37 °C and 5% CO2. WA09 human embryonic stem cells 
(hESCs) were maintained in undifferentiated conditions in E8 
media (GIBCO, Carlsbad, CA). To obtain definitive endoderm 
cells (stage 1), we initially induced primitive streak formation 
by treatment of cells for 24 h with 100 ng/mL ActivinA 
(Stemgent, Cambridge, MA), 2 µM CHIR99021 GSK-3 inhib-
itor (TOCRIS, Bristol, UK), 10 ng/mL BMP4 (R&D Systems, 
Tustin, CA), 10 µM LY294002 (Calbiochem, San Diego, CA), 
and 20 ng/mL FGF2 (Millipore, San Diego, CA). After primi-
tive streak commitment, cells were treated for 2 days with 100 
ng/mL ActivinA, 10 µM LY294002, 20 ng/mL FGF2, and 100 
nM dorsomorphin (Axon Medchem, Reston, VA). For stage 1 
differentiation, cells were grown in CDM-PVA media, which 
contains 250 mL DMEM-F12 (GIBCO, Carlsbad, CA) and 
250 mL IMDM (GIBCO) mixed 1:1, 1% Glutamax, 1% con-
centrated lipids (GIBCO), 450 mM Monohioglycerol (Sigma, 
St. Louis, MO), 1% insulin-transferrin-selenium ITS supple-
ment (GIBCO), and 1 mg/mL polyvinylalcohol (Sigma). To 
obtain posterior foregut (stage 2), cells were cultured for 3 
days in advanced Dulbecco’s modified Eagle’s medium 
(Advanced-DMEM) supplemented with 10 µM SB431542 
(Selleckchem, Houston, TX), 2 µM retinoic acid (Sigma), 100 
nM dorsomorphin (Axon Medchem), and 50 ng/mL FGF10 
(Peprotech, Rocky Hill, NJ).

Cells were collected and dissociated to a single-cell suspen-
sion using Cell Dissociation Reagent (GIBCO) and resus-
pended in culture media. An average cell concentration of 
250,000 cells/mL was loaded into Fluidigm C1 Single-Cell 
Auto Prep Arrays for mRNA-Seq, using medium and small 
chips for the stage 1 and stage 2 cells, respectively.

Single-Cell Library Generation

The C1 Single-Cell Auto Prep System (Fluidigm) was used 
to perform SMARTer (Clontech, Mountain View, CA) cDNA 
generation and amplification. Prior to loading the single-cell 
suspension onto the C1 chips, we stained the cells with the 
LIVE/DEAD Viability/Cytotoxicity Kit for mammalian cells 
(Life Technologies, Carlsbad, CA). After loading, we visual-
ized each microchamber in the C1 chip to identify those 
chambers that contained a single live (Calcein+/Ethidium 
homodimer−) cell. We selected two cells from stage 1 (cell A 
and cell B) and two cells from stage 2 (cell C and cell D), 
with an average cDNA concentration of 0.4 ng/µL in an 
approximate output volume of 15 µL (ST1). DNA concentra-
tion was quantified using the Qubit dsDNA High Sensitivity 
Kit (Life Technologies), according to the manufacturer’s 
instructions. The resulting cDNAs were diluted to a final 
concentration of 0.1 ng/µL and then converted to Illumina 
sequencing libraries using the Nextera XT (Illumina) kit 
using protocols specifically designed for the mosquito HTS 
(TTP Labtech) (ST2). We generated libraries in three differ-
ent final reaction volumes (2 µL, 4 µL, and 8 µL) using 
Axygen (Palo Alto, CA) 384 plates. Dual indexing was per-
formed using the Nextera XT Index Kit v2 Set A (96 Indexes) 
to enable multiplexing of libraries.

PCR

PCR reactions were performed using a CFX384 Real Time 
System C1000 Touch Thermal Cycler (Bio-Rad, Hercules, 
CA) in 384 PCR hard-well microplates (Axygen). PCR 
cycling conditions were as follows: 72 °C for 3 min; 95 °C 
for 30 s; 12 cycles of 95 °C for 10 s, 55 °C for 30 s, and 72 °C 
for 60 s; 72 °C for 5 min; and a hold step at 10 °C.

Cleanup

Samples were pooled using the mosquito HTS, taking 500 
nL of each single-library prep from the destination plate. A 
total of 48 independent single-cell libraries were pooled and 
subjected to bead cleanup using AMPure XP beads 
(Beckman Coulter, Brea, CA). Specifically, 24 µL total of 
pooled PCR-amplified libraries was mixed with 21.6 µL 
AMPure XP beads (a 0.9x DNA/bead ratio), according to 
the Nextera XT DNA Library Prep Kit (Illumina) protocol. 
After two washes with 80% ethanol, the beads were air-
dried and then resuspended in 20 µL TE buffer. For the 
unpooled single-cell libraries shown in SF2, 2 µL of each 
single-cell library was diluted with 8 µL TE buffer and then 
mixed with 9 µL AMPure XP beads. After two washes with 
80% ethanol, dried beads were carefully resuspended in a 
final volume of 6 µL TE buffer and analyzed with 
BioAnalyzer in High-Sensitivity DNA Chips (Agilent 
Technologies, Santa Clara, CA) (see SF2 for quality con-
trols in pooled and single-cell libraries).
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Sequencing

The 48 pooled libraries were sequenced on one lane of an 
Illumina HiSeq 2500 at an average total read depth of 5.6 
million reads per sample (ST3). Average read length was 
100 bps, paired-end mode, high-throughput run, and dual 
indexing with v3 chemistry.

Data Preprocessing

The raw reads were trimmed using cutadapt (1.8.1)9 and 
mapped onto the human genome (version Hg19) using 
STAR (version 2.3.0).10 Normalization and differential 
expression was performed using DESeq.11 To avoid arti-
facts that could result from differences in the depth of 
sequencing, 1.5 million uniquely mapped reads were ran-
domly selected from each library for further analysis. The 
data were then filtered by removing the transcripts that had 
zero counts in all samples.

Data Analysis

Pearson correlation, hierarchical clustering, principal com-
ponent analysis (PCA), Venn diagrams, coefficient of varia-
tion analysis, and CLICK12 were used to analyze the 
processed data. Calculations, dendrograms, and PCA plots 
were performed in R (3.2.0).13 

Results

In this work, we combined three state-of-the-art technolo-
gies to develop a novel workflow for automated single-
cell RNA-seq library generation at extremely low reaction 
volumes. In this workflow, we used the Fluidigm C1 
Single-Cell Auto Prep System to generate cDNA from 
single cells, followed by library preparation using the 
Nextera XT DNA Library Prep Kit (Illumina) on the mos-
quito HTS liquid handler (TTP) (Fig. 1A). Given the effi-
cient conversion of mRNA to cDNA afforded by the 
Fluidigm C1 System, the efficiency of the Nextera XT kit, 
and the low-volume liquid handling capabilities of the 
mosquito HTS, we were able to perform multiple techni-
cal replicates at three different reaction volumes from 
each of four individual cells (Fig. 1B).

In our experimental design, we incorporated two levels of 
biological replication (two individual cells from each of two 
stages of in vitro pancreatic differentiation), as well as exten-
sive technical replication (Fig. 1B). For each cell, we used 
the cDNA generated by the Fluidigm C1 System to prepare 
libraries in quadruplicate at three different final reaction vol-
umes (8 µL, 4 µL, and 2 µL), using the Nextera XT kit on the 
mosquito HTS liquid handler. We sequenced each sample to 
an average depth of 5.6 million paired-end reads per sample 
(ST3), as it has been reported that single-cell expression esti-
mates stabilized at relatively low read depths.2

Technical Reproducibility in Library Construction

For each library, we randomly selected 1.5 million 
uniquely mapped reads to avoid artifacts due to varia-
tions in sequencing depth. After DEseq normalization of 
the data set, we calculated the Pearson correlation coef-
ficients between each set of replicates for each cell at 
each reaction volume (Table 1, ST4). In this analysis, we 
found that nearly all of the mean correlation coefficients 
were >0.936 (Table 1) for each cell at each reaction vol-
ume, both with and without down-sampling, indicating 
that the reproducibility was extremely high. We also 
noted that the correlation coefficients between different 
reaction volumes for a given cell were nearly as high 
(Table 1). We noticed two exceptions to these extremely 
high correlations. First, the 2-µL reactions for cell D had 
a mean correlation coefficient of 0.943 for all reads and 
0.940 for the down-sampled reads (Table 1). We believe 
these low correlation coefficients can be attributed to a 
low total read count of replicate 4 for the 2-µL reactions 
for cell D (ST3) and a lower correlation coefficient of 
0.900 to 0.903 compared with the other cell D libraries 
(ST4). In routine RNA sequencing analysis pipelines, 
such a library would be discarded during initial quality 
control assessment of the RNA-seq data. However, in our 
study, we retained this sample to demonstrate the perfor-
mance of suboptimal libraries. Second, we found that the 
correlation coefficients for the cell C libraries were 
between 0.936 and 0.943 after down-sampling (Table 1). 
In this case, there were no outliers (ST3). However, we 
noted that the cDNA concentration for cell C was lower 
than that for the other cells (ST1), suggesting the possi-
bility that the higher variability among the cell C librar-
ies may have resulted from a less efficient cDNA 
generation step.

To further determine whether there was an effect of 
reaction volume on the reproducibility of the library 
preparation process, we calculated the coefficient of 
variation (CV) for each library, using the number of 
counts per cell. The CVs were very similar, with the only 
statistically significant difference in CV being found 
between the 2-µL and 4-µL reaction volumes for cell A, 
and in this comparison, the lower reaction volume was 
the one with the lower CV (Fig. 2A, ST5). We note that 
the standard error of the mean for the 2-µL reactions for 
cell D is higher than for the other categories. We believe 
this is again is due to the low sequencing depth of the cell 
D 2-µL replicate 4 library.

To examine whether the CV for low-expressed tran-
scripts compared with highly expressed transcripts is differ-
ent for the different reaction volumes, we plotted the CV 
against the mean transcript expression level (Fig. 2B,C). 
These results indicate that the reproducibility among tech-
nical replicates that pass basic quality control metrics is 
very high and not influenced by the reaction volume.
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Clustering to Evaluate Technical Reproducibility 
in the Context of Biological Variance

We explored the relationships among the libraries using two 
unsupervised clustering methods: 2D PCA (Fig. 3A) and 
hierarchical clustering (Fig. 3B). Using both methods, we 
could easily distinguish between the libraries from each of 

the four cells, and as expected, the stage 1 cells (A and B) 
separated from the stage 2 cells (C and D) along the first 
principal component (Fig. 3A) and at the first branchpoint 
of the dendrogram (Fig. 3B; plate localization of each inde-
pendent library is shown in SF3). Importantly, the libraries 
did not cluster according to reaction volume, even within a 
single cell.

Figure 1. Experimental scheme. (A) After differentiation, the cell cultures were dissociated to single-cell suspensions and loaded 
onto a Fluidigm C1 Single-Cell Auto Prep Array for mRNA-Seq. On the arrays, the cells were lysed, and reverse transcription of the 
mRNA and PCR amplification of the cDNA were performed using the C1 Single-Cell Auto Prep System (Fluidigm). Libraries were 
then prepared using the Nextera XT DNA Library Prep Kit and mosquito HTS liquid handler (TTP). For the final PCR reactions, we 
used a Bio-Rad 384 Thermal Cycler. Libraries were pooled and sequenced on an Illumina HiSeq 2500. (B) WA09 human embryonic 
stem cells were differentiated in vitro to the pancreatic lineage. Cells from stages 1 and 2 were collected and analyzed using the 
procedures outlined in A. Two independent cells from stage 1 (cell A and cell B) and two cells from stage 2 (cell C and cell D) were 
selected and yielded with similar cDNA concentrations (mean [SD] concentration = 0.38 [0.04] ng/µL). For library preparation, we 
tested 2-µL, 4-µL, and 8-µL final volume reactions, with four replicates per reaction volume.
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Complexity and Sensitivity of Libraries from 
Different Reaction Volumes

A potential concern with decreasing the reaction volume for 
library sample preparation is that we could introduce sam-
pling error, which could result in decreased detection of 
low-expressed transcripts, thus decreasing the complexity 
and sensitivity of the libraries. If there was higher sampling 
error in the lower reaction volumes, we would expect that 
the intersection in detected transcripts for the four replicates 
of the 2-µL libraries would be lower than for the 4-µL or 
8-µL libraries. We therefore determined the overlap in 
detected (read count >10) transcripts among the four repli-
cates for each reaction volume for each cell (Fig. 4A, ST6, 
set 4–6 comparisons) and found that there was a significant 
difference in the percentage of overlapping transcripts only 
between the 2-µL and 8-µL reaction volumes for cell C. In 
inspecting the percent overlaps for this comparison, we 
found that the percent overlap for the 2-µL reactions was 
actually better (higher) than that for the 8-µL reactions. We 
also examined the percentage of overlapping transcripts 
compared across reaction volumes for each cell. We did this 
in three ways: taking the union of overlapping transcripts 
among the four replicates for each reaction volume for each 
cell and then inspecting the overlaps between the 2-µL, 
4-µL, and 8-µL libraries (Fig. 4B, top); taking the intersect 
of overlapping transcripts among the four replicates for 
each reaction volume for each cell and then inspecting the 
overlaps between the 2-µL, 4-µL, and 8-µL libraries (Fig. 
4B, bottom); and determining the percent overlap for all 
pairs of libraries within each cell across reaction volumes 
(ST6, set 1–3 comparisons). In some cases, the overlaps 
between the 2-µL libraries and the higher reaction volume 
libraries were slightly lower than the other comparisons, but 
overall, the overlaps were again very similar.

We also compared the distribution of transcript counts 
among libraries by tallying the number of transcripts in the 
following bins: 1 to 9 counts (mean [SD]: 1661.7 [87.0]), 
followed by 10 to 99 counts (mean [SD]: 1623.3 [367.5]) 

and 100 to 999 counts (mean [SD]: 835.3 [170.6]). Low 
detectable transcripts were observed in >1000 counts (mean 
[SD]: 8.7 [6.8]) (ST7). The numbers of detected transcripts 
present in each bin were quite similar for each cell (SF4). 
The only clear difference in transcript count distribution 
was seen in the 10- to 99-count bin, for which the stage 1 
cells contained a markedly higher number of transcripts 
than the stage 2 cells (SF4). Thus, we saw cell type–associ-
ated, but not reaction volume–associated, differences in 
transcript count distribution.

Differential Expression Analysis

To explore our ability to identify differences in the gene 
expression profiles of single cells, we used DESeq10 to 
identify transcripts that were differentially expressed 
between each pair of cells and then applied CLICK analy-
sis11 to identify groups of coexpressed transcripts (Fig. 5). 
As shown in the heatmap (Fig. 5A) and average expression 
graphs (Fig. 5B), groups 1 to 4 consist of transcripts that are 
specifically expressed in each of the four single cells, while 
groups 5 to 8 contain transcripts that are expressed in differ-
ent combinations of two of four cells. We note that there are 
no systematic differences in gene expression patterns 
according to reaction volume (ST3).

Discussion

For many research and clinical applications, it is desirable 
to perform NGS on large numbers of samples. In particular, 
taking full advantage of single-cell transcriptome analysis 
would require analysis of hundreds, if not thousands, of 
cells per experiment to detect and characterize rare subpop-
ulations of cells. With the decreasing cost of sequencing, 
library preparation is becoming an increasingly significant 
factor in the total cost of the final experiment. In general, 
the protocols provided by manufacturers of commercially 
available library preparation kits produce more material 
than is needed for the subsequent sequencing procedure, 

Table 1. Average Pearson Correlation Values for DESeq Normalized Data from Technical Replicates within and between Reaction 
Volumes, with and without Down-Sampling by Randomly Selecting 1.5 Million Uniquely Mapped Reads (UMRs) from Each Library.

2 µL 4 µL 8 µL 2 vs 4 µL 2 vs 8 µL 4 vs 8 µL

 Cell Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

Cell A 0.973 0.016 0.981 0.012 0.982 0.011 0.969 0.002 0.969 0.002 0.975 0.001
All data Cell B 0.980 0.012 0.985 0.009 0.985 0.009 0.976 0.001 0.976 0.001 0.980 0.001
 Cell C 0.939 0.036 0.947 0.032 0.951 0.030 0.922 0.002 0.924 0.003 0.931 0.004
 Cell D 0.943 0.042 0.971 0.018 0.973 0.016 0.941 0.025 0.942 0.026 0.962 0.002
 Cell A 0.959 0.025 0.951 0.029 0.956 0.026 0.939 0.004 0.943 0.003 0.939 0.004
1.5 UMR Cell B 0.958 0.025 0.953 0.028 0.957 0.026 0.941 0.003 0.943 0.003 0.940 0.003
 Cell C 0.943 0.034 0.943 0.034 0.936 0.038 0.923 0.004 0.918 0.006 0.918 0.006
 Cell D 0.940 0.040 0.944 0.034 0.944 0.034 0.923 0.013 0.922 0.014 0.926 0.004
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resulting in significant reagent waste. This is largely due to 
the fact that manual pipetting and commonly used liquid 
handling systems do not reliably dispense low volumes. 
Therefore, sophisticated liquid handling systems specifi-
cally designed to accurately dispense sub-microliter vol-
umes of reagents would both increase throughput and 
decrease costs, thus enabling experiments involving larger 
numbers of samples than are currently feasible. Here, we 
report the sequential application of two such systems to 

single-cell transcriptome analysis. First, we used the Fluidigm 
C1 Single-Cell Auto Prep System, which uses specifically 
designed microfluidic chips to capture single cells in indi-
vidual microchambers and carry out the reverse transcrip-
tion and second-strand cDNA synthesis reactions in 
volumes of 4.5 to 135 nL using the Clontech SMARTer 
Universal Low Input RNA Kit. We then used the mosquito 
HTS liquid handler (TTP Labtech) to complete the NGS 
library preparation process using the Nextera XT Library 

Figure 2. Coefficients of variation (CVs) for each reaction volume for each cell. (A) Table of mean CVs calculated from DESeq 
normalized data. For each cell, t tests were performed to compare the CVs between each pair of reaction volumes. Significant 
differences (p < 0.05) are indicated by an asterisk. (B) Scatterplots of CV versus mean transcript counts. (C) Box-and-whisker plots of 
CV versus mean transcript counts, dividing the data into six windows: 0 to 100 counts, 101 to 200 counts, 201 to 300 counts, 301 to 
400 counts, 401 to 500 counts, and >500 counts.
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Preparation Kit (Illumina). The mosquito HTS uses positive 
displacement to accurately dispense 25-nL to 1.2-µL vol-
umes, enabling us to scale down the Nextera XT reaction 
volumes to 2 µL, using as little as 20 pg of input cDNA 
(compared with a reaction volume of 10 µL and cDNA 
input amount of 125–375 pg recommended by Fluidigm). 
This translates to a reduction in input cDNA of 5-fold and a 
cost savings of over 4-fold compared with the protocol rec-
ommended by the manufacturer and results in a library 
preparation cost of less than $1.50 per single cell. There are 
several publications in which tagmentation technology has 
been shown to produce high-quality genomic or cDNA 
libraries from very low-input material.13–18 Some of those 
technology descriptions start with as little as 20 pg of pro-
karyotic or mouse genomic DNA.15 Novel technologies for 
mammalian single-cell RNA-seq using the Fluidigm C1 
Single-Cell Auto Prep System combined with tagmentation 
library preparation use as little as 250 pg of input amplified 
DNA and reaction volumes of 12.5 µL.2 In all these descrip-
tions, the reaction volume exceeds by far the largest volume 
described in this article and implies manually generated 
libraries. Lamble et al.19 reported generation of sequencing 

libraries from 12.5 ng genomic DNA using the Nextera XT 
Kit in a reaction volume of 6.25 µL. The resulting libraries 
had an average insert size of 250 to 300 bp, similar to our 
libraries (SF2), with excellent accuracy and genomic cover-
age. However, since this previous study included only 
genomic DNA sequencing of bacterial species, it did not 
address many issues pertinent to mammalian transcriptome 
sequencing, including library complexity and reproducibil-
ity. Descriptions by Shapland et al.20 demonstrate Nextera 
libraries in 500 nL for synthesized genes using an Echo 
acoustic dispensing system, but our work is the first study to 
report the combination of extremely low input (20 pg 
cDNA) with low reaction volume (2 µL) for mammalian 
single-cell transcriptome sequencing using multidispensing 
liquid handler systems.

This study was designed to determine not only whether 
scaling down reaction volumes would affect the reproduc-
ibility of transcriptome sequencing results but also whether 
there would be effects on library complexity or the ability to 
distinguish between different cell types and different indi-
vidual cells (Fig. 5). We used the Fluidigm C1 system to 
generate cDNA from four single cells representing two 

Figure 3. Clustering analysis. 
(A) Principal component analysis 
(PCA) for libraries. The data for 
the first and second principal 
components (PCs) are shown 
on the left, and the second and 
third PCs are shown on the right. 
(B) Hierarchical clustering of all 
libraries. Euclidian distance with 
complete linkage was used to 
construct the dendogram. Data 
were normalized using DESeq. 
Red denotes 2-µL reactions, green 
denotes 4-µL reactions, and blue 
denotes 8-µL reactions.
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stages of in vitro pancreatic differentiation of human embry-
onic stem cells, with two cells from the definitive endoderm 
stage (stage 1) and two cells from the posterior foregut stage 

(stage 2). The amount of cDNA generated from each single 
cell was sufficient to perform quadruplicate experiments at 
three reaction volumes: 2 µL, 4 µL, and 8 µL. Correlation 

Figure 4. Venn diagrams. (A) 
Venn diagrams displaying the 
overlap in detected transcripts 
(>10 counts) for the four replicate 
libraries for each reaction volume 
in each cell. The percentage of 
transcripts in the common region 
of intersection (i.e., R1 ∩ R2 ∩  
R3 ∩ R4) compared to all 
transcripts (i.e., R1 U R2 U R3 U 
R4) is shown below each Venn 
diagram. (B) Venn diagrams 
displaying the overlap in detected 
transcripts among the different 
reaction volumes, using the union 
(top) or intersect (bottom) of 
detectable genes in the four 
replicates. The percentage of 
transcripts in the common region 
of intersection (i.e., 2 µL ∩ 4 µL ∩ 
8 µL) compared with all transcripts 
(i.e., 2 µL U 4 µL U 8 µL) is shown 
below each Venn diagram.
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analysis showed extremely high reproducibility among 
libraries generated from the same cDNA sample, both among 
libraries produced in a reaction volume of 2 µL and between 
libraries produced in reaction volumes of 2 µL, 4 µL, and 8 
µL. We noted that there was slightly higher variability among 
replicate libraries at all reaction volumes for the stage 2 cells 
and postulate that this might be due to a more diverse popula-
tion of RNAs present at this later stage of differentiation, 
which would make the data more sensitive to library com-
plexity. We therefore evaluated library saturation by looking 
at the percentage of duplicated reads, as well as library com-
plexity by inspecting the representation of RNAs at different 

levels of expression and the overlap in the number of measur-
able transcripts among replicate libraries. The results of these 
analyses showed no reaction volume–associated differences 
in transcript count distribution but did reveal a higher number 
of transcripts in the 10- to 99-count in the stage 1 cells com-
pared with the stage 2 cells (SF4).

The inclusion of two cells from each of two stages of 
differentiation in this study allowed us to assess the techni-
cal variability of the transcriptome sequencing process per-
formed in different reaction volumes in the context of the 
biological variability between single cells both within and 
between cell populations. From unsupervised clustering 

Figure 5. Global single-cell gene expression analysis by RNA-seq. (A) Heatmap displaying differentially expressed genes (4821 genes, 
adjusted p < 0.00001, absolute log2 fold-change >4, maximum count >20) between cells A, B, C, and D, clustered using CLICK. (B) 
Graphs displaying the mean expression values for the transcripts in each CLICK cluster in each library. All replicate libraries for each 
cell were included in these analyses.
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and principal component analyses, it is clear that the techni-
cal variability was far lower than the variability between the 
single cells, even single cells from the same stage of dif-
ferentiation, resulting in clear separation among all four 
cells, and the ability to clearly identify groups of coex-
pressed genes that displayed cell-specific expression.

Although not the focus of this article, we have applied this 
miniaturized process to generation of single-cell libraries on a 
high-throughput level, generating 384 single-cell libraries in 
one experiment, including automation of all the upstream and 
downstream processes. Upstream processes include transfer of 
the cDNA from the C1 Fluidigm chip to a 384-well plate and 
quantification and normalization of each cDNA sample, while 
downstream processes include bead purification, quantifica-
tion, and normalization of each library. We note that a second 
bead purification of the pooled libraries further reduces the 
amount of adaptor dimers (SF5).

Taken together, our results indicate that the application 
of a nanoliter-scale liquid handling system enables auto-
mated library preparation for single-cell transcriptome 
sequencing at markedly lower reaction volume without 
compromising reproducibility, quality, or complexity of the 
resulting libraries. This technical advance will significantly 
decrease both the cost and labor required for these studies, 
making analysis of hundreds to thousands of single cells 
feasible. The ability to carry out large-scale studies will 
allow for detailed studies aimed at detecting transcriptional 
differences between cell populations collected at multiple 
time points or exposed to different experimental conditions, 
as well as identifying rare subpopulations of cells.
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