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Cell-type-specific epigenetic effects of early life stress on the
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Early life stress (ELS) induces long-term phenotypic adaptations that contribute to increased vulnerability to a host of
neuropsychiatric disorders. Epigenetic mechanisms, including DNA methylation, histone modifications and non-coding RNA, are a
proposed link between environmental stressors, alterations in gene expression, and phenotypes. Epigenetic modifications play a
primary role in shaping functional differences between cell types and can be modified by environmental perturbations, especially in
early development. Together with contributions from genetic variation, epigenetic mechanisms orchestrate patterns of gene
expression within specific cell types that contribute to phenotypic variation between individuals. To date, many studies have
provided insights into epigenetic changes resulting from ELS. However, most of these studies have examined heterogenous brain
tissue, despite evidence of cell-type-specific epigenetic modifications in phenotypes associated with ELS. In this review, we focus on
rodent and human studies that have examined epigenetic modifications induced by ELS in select cell types isolated from the brain
or associated with genes that have cell-type-restricted expression in neurons, microglia, astrocytes, and oligodendrocytes. Although
significant challenges remain, future studies using these approaches can enable important mechanistic insight into the role of
epigenetic variation in the effects of ELS on brain function.
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EPIGENETICS AND CELLULAR PROGRAMMING
At the beginning of life, the unicellular fertilized egg, or zygote,
gives rise to all the cells of an organism, possessing the property
of “totipotency”. As the zygote becomes an embryo, and the
embryo a fetus, there is a gradual decline in totipotency of the
newly divided cells, narrowing the range of cell types they can
become, rendering them “pluripotent”, a function of the plasticity
of epigenetic marks. As the embryo develops and cells
differentiate, pluripotency declines and epigenetic marks become
more stable, determining and maintaining gene expression
programs that underlie cell fate. In this way, cellular programming
can be defined as the epigenetic process that contributes to stem
cell differentiation into mature cell types [1, 2]. As the genetic
sequence is virtually identical in all cells within each individual, the
epigenome of each cell orchestrates the pattern of gene
expression to confer cellular identity through histone modifica-
tions, DNA methylation (DNAm), and non-coding RNA (ncRNA).
Octamers of histone proteins coil DNA to form the nucleo-

somes, which are themselves wound to form chromatin.
Modifications of histone N-terminal tails by acetylation, methyla-
tion, phosphorylation and ubiquitination play a role in determin-
ing DNA accessibility by modifying the positively charged
N-terminal tails that tightly interact with the negatively charged
DNA. For example, histone acetylation and deacetylation are
understood to render chromatin more or less accessible to
transcription factors (TFs), leading to enhanced or reduced

transcriptional activity, respectively [3]. Histone methylation has
also been associated with gene silencing or activation, depending
on the amino acid modified [4, 5].
Methylation of DNA is a class of DNA modification that largely

occurs at cytosine bases that are followed by guanine bases (CpG
sites) in the mammalian genome. Non-CpG methylation, although
less frequent, has been found in embryonic stem cells [6], neurons
[7] and mature oocytes [8]. At gene promoters, first exons, and first
introns, DNA methylation (DNAm) can suppress gene expression
by inhibiting TF binding to regulatory elements [9]. DNAm within
gene bodies and internal exons involves complex interactions
with TF binding sites and conformational chromatin structure
[10–12], the regulation of alternative splicing [13, 14], and is
positively associated with transcription, especially for ubiquitously
expressed genes [12, 15]. DNAm can also suppress gene
expression through other mechanisms including histone deace-
tylase complex recruitment, which introduces histone modifica-
tions that result in chromatin silencing [16]. Conversely, TFs
themselves can regulate DNAm by binding to specific DNA
sequences to protect de novo methylation or recruit DNA
methyltransferases to maintain, suppress, or initiate de novo
DNAm [17].
Several types of ncRNAs, including micro-RNAs (miRs) and long

non-coding RNA (lncRNAs) are sometimes considered an epige-
netic mechanism due to their prominent roles in epigenetic
regulation [18]. miRs are short sequences of nucleotides (~22) that

Received: 6 April 2022 Revised: 14 July 2022 Accepted: 19 July 2022

1Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada. 2Department of Cell and Systems Biology, University of Toronto, Toronto, ON,
Canada. 3Department of Psychology, University of Toronto, Toronto, ON, Canada. 4Department of Physiology, University of Toronto, Toronto, ON, Canada.
✉email: patrick.mcgowan@utoronto.ca

www.nature.com/tpTranslational Psychiatry

1
2
3
4
5
6
7
8
9
0
()
;,:

http://crossmark.crossref.org/dialog/?doi=10.1038/s41398-022-02076-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41398-022-02076-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41398-022-02076-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41398-022-02076-9&domain=pdf
http://orcid.org/0000-0001-5459-5976
http://orcid.org/0000-0001-5459-5976
http://orcid.org/0000-0001-5459-5976
http://orcid.org/0000-0001-5459-5976
http://orcid.org/0000-0001-5459-5976
https://doi.org/10.1038/s41398-022-02076-9
mailto:patrick.mcgowan@utoronto.ca
www.nature.com/tp


largely repress gene expression post-transcriptionally through
complementary binding to their target mRNAs, of which there can
be hundreds, prompting the degradation of the corresponding
mRNA and ultimately reducing its protein level [19]. The
regulation of other genes at the RNA level by miRs is a property
shared with other common post-transcriptional regulators of gene
expression that are not typically considered part of epigenetics.
Other ncRNAs are involved in epigenetic regulation at the nucleus,
as is the case for lncRNA [20]. lncRNAs are >100 nucleotides in
length, involved in processes including chromatin remodeling,
modulation of histone and DNA methylation and acetylation, pre
and post-transcription and translation, and have been functionally
characterized mainly in the context of cancer [21, 22]. Generally,
lncRNAs are processed and operate in the cytoplasm (see review
[20]), however, lncRNAs involved in X-chromosome inactivation
play a prominent role in the nucleus [22, 23].
The epigenetic program arises in response to fetal environ-

mental signals that include extrinsic and intrinsic signaling
molecules and growth factors (see review [24]), genomic
imprinting through DNAm and histone modifications, and the
DNA sequence itself. Genotypic differences can introduce DNAm
sites (e.g. the presence of cytosines) and affect the binding of
TFs, which in turn influences epigenetic modifications [17].
Cycles of epigenetic processes involved in genetic imprinting
and sex-chromosome dosage compensation also occur in the
zygote as discussed [25] and reviewed elsewhere [2, 26]. For

example, soon after fertilization, in the pre-implanted embryo,
or blastocyst, there is genome-wide demethylation in somatic
cells, followed by a global wave of remethylation at implantation
with locus-specific changes to methylation that continue into
late gestation [27].
In the embryo, one of the first major phases of cellular

programming is the differentiation of the embryonic stem cells
into the three germ layers: the endoderm, mesoderm, and
ectoderm, the latter of which gives rise to the neuroectoderm,
the precursor tissue of the central nervous system (CNS) [28]. The
neuroectodermal stem cells, also known as neural stem cells
(NSCs), are “multipotent” and produce distinct cell types of the
CNS (Fig. 1) [29]. During early gestation, NSCs self-renew and
symmetrically divide into two identical daughter cells to increase
the pool of multipotent cells. Early to mid-gestation, NSCs divide
asymmetrically to produce a NSC and a neuronal progenitor,
precursors for neurons. In early and mid-gestation in humans
[30–32] and rats [33], myeloid-derived macrophages in the yolk
sac, formed from the endoderm [34] invade the embryonic
nervous system to become the resident CNS macrophages, or
microglia [35, 36], which mature into the neonatal period [37]. In
late gestation to toddler age in humans [38, 39] and weanling age
in mice [40], NSCs give rise to glial progenitors, precursors for
astrocytes and oligodendrocytes [1], with myelination occurring
from birth to toddler age in humans [39] and weanling age in
rodents [41].

Fig. 1 Timeline of cellular programming in the brain and windows of susceptibility for epigenetic effects by early life stress (ELS). Early to
mid-gestation, neural stem cells produce neuronal progenitors, precursors for neurons, which migrate and form synapses from mid-gestation
to toddler/weanling age. Synaptogenesis starts mid-gestation, peaks in toddler/weanling age, and continues throughout life. In late gestation
to toddler/weanling age, neural stem cells give rise to glial progenitors, precursors for astrocytes and oligodendrocytes, which mature from
birth to toddler/weanling age. In early and mid-gestation, myeloid-derived macrophages invade the embryonic nervous system to become
microglia, which mature into the neonatal period. Microglia and glia continue to have local self-renewal and proliferative capacity into
adulthood. Overall, during these periods of cellular production and maturation, ELS factors (e.g. stress hormones, immune stimulants) can
alter cell type proportions as well as induce epigenetic reprogramming, leading to long-term changes in the brain. E= embryonic day, P= post-
natal day.
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Neurons are largely post-mitotic cells; most production and
migration takes place prenatally and continues to a limited degree
in the postnatal period [42], with a few neurogenic zones
remaining active in adulthood [43]. The formation of synapses
starts mid-gestation, peaking at toddler age in humans [44], and
weanling age in rodents [42], and continues throughout life.
Microglia continue to have local self-renewal and proliferative
capacity [35, 36], and glial progenitors continue to proliferate,
migrate and mature into adulthood [45]. Neurodevelopment also
involves substantial apoptosis and synaptic pruning. Most
neuronal cell death occurs early to late gestation, while glial cell
death, synaptic pruning and experience-dependent modification
occurs mostly at the post-natal stage [29].

Epigenetic reprogramming by early life stress
Developmental programming is the process by which cellular
programming is fine-tuned by environmental factors in fetal and
early postnatal stages, referred to as “early life”. This fine-tuning of
cellular programs involves epigenetic reprogramming, whereby
the epigenetic plan is altered in a persistent manner within a
given cell type, can occur in multiple cell types, does not change
cell type, and is typically stable across mitotic cell divisions
[46, 47]. Epigenetic reprogramming can alter transcript abundance
through long-term modifications that persist even in the absence
of the initial environmental trigger. Although epigenetic repro-
gramming can occur later in life, the early life period is more
sensitive to stress, or disruptions to homeostasis, since cell fates
are established during this time.
Early life stress (ELS) is an acute or chronic factor that takes place

at the prenatal, perinatal and/or pre-pubertal postnatal stages and
elicits or affects stress responses. The most studied forms of ELS are
inflammation-based (e.g. infection, high-fat diets, xenobiotics) and
psychosocial (e.g. emotional and physical abuse or neglect, and
sexual abuse) [48]. ELS causes elevations in inflammatory cytokines
and/or stress hormones that either impact offspring directly or
indirectly via the placenta or breastmilk as maternal factors, inducing
epigenetic modifications that impact neurodevelopmental trajec-
tories [49]. In humans, inflammation-based and psychosocial ELS
factors are most closely associated with neurodevelopmental
conditions including autism spectrum disorder and psychiatric
disorders related to anxiety, mood and psychosis (schizophrenia)
[50–58]. In parallel, evidence from animal studies show that
exposure to maternal high-fat diets, immunostimulants such as
the bacterial mimic lipopolysaccharide (LPS) and psychosocial stress
in early life lead to long-term changes in corresponding behavioral
features of these disorders [59–65]. These findings are accompanied
by evidence of long-lasting changes in microglial densities, cytokine
expression and phagocytic actions involved in synaptic pruning
[59, 66, 67], neurotransmission, neural connectivity, and neuron-glia
interactions [68–70]. In this context, accumulating evidence indicates
that lasting phenotypic changes induced by ELS involve modifica-
tions to cellular programs in the brain [57, 71].
Animal models of ELS permit investigation of in and ex vivo

changes taking place in the brain that are not easily feasible in
humans. However, the correspondence to human conditions of
ELS may only be approximate. For example, laboratory rodents are
immunologically naïve, unlike humans. Additional complications
concern the assessment of different forms of psychosocial ELS (e.g.
verbal versus physical abuse) and factors known to influence
resiliency in humans (e.g. family income or educational attainment)
[72, 73] that are difficult to model in animals. Nevertheless, given
the complexities of studying the human brain in the context of ELS,
rodent models appear necessary to discover causal pathways and
enable the development of molecular targets for therapeutics.

Epigenetic reprogramming by ELS: the current landscape
The conventional approach to studying epigenetic reprogram-
ming by ELS involves quantifying epigenetic modifications to

select genes, or whole genomes, in heterogenous brain tissue as
reviewed elsewhere [48, 49, 74–77]. One classic finding is changes
of levels of hippocampal DNAm in the promoter region of the
glucocorticoid receptor (Nr3c1; GR), a gene linked to impaired
negative feedback inhibition of the hypothalamic-pituitary-
adrenal (HPA) axis [78], in response to ELS (e.g. childhood abuse,
neglect). However, studies of heterogenous brain tissue pose
limitations on defining the mechanistic roles of such epigenetic
modifications (Fig. 2). First, differences in the epigenetic mark (and
expression levels) of a particular gene that is expressed in multiple
cell types may be difficult to interpret if the function of a given
gene varies between cell types. Second, differences in the
epigenetic modifications of a gene expressed in multiple cell
types can be masked by ‘background noise’ resulting from
constitutive epigenetic modifications related to cell type-specific
functions. Returning to the previous example, GR is expressed in
all cell types in the brain [79], thus levels of DNAm of the Nr3c1
promoter in heterogenous brain tissue are not indicative of which
cell types are driving such changes. GR can exert distinct genomic
and rapid non-genomic functions in different cell types, regulating
inflammation in glia [80, 81] and excitability in neurons [82], for
example. Furthermore, perturbations in early development can
influence cell fate determination, leading to differences in cell
type proportions within tissues between experimental groups [83].
For example, neonatal maternal separation has been found to
deplete oligodendrocyte progenitors in adult male mice [84].
Epigenetic modifications (e.g., DNAm) measured in particular
genes in heterogenous tissue could then be reflective of cell type
proportion differences rather than epigenetic reprogramming of a
particular cell type(s). To mitigate these potential confounds, some
recent studies have examined cell-type-specific epigenetic
modifications.
Here we review studies that have examined the effects of ELS

on epigenetic modifications in cell-type-enriched isolates, or in
genes from heterogenous brain tissue where expression is known
to be restricted to a single cell type in the brain (Table 1). We
considered ELS studies that are inflammation-based or psychoso-
cial that took place at the prenatal (maternal gestational),
perinatal, or neonatal stages of development in female and male
offspring aged post-natal day (PND)1 to adulthood. We considered
both human and rodent studies, although only one human study
was found within our scope. As our focus is on ELS, we did not
review effects on offspring due to pre-conceptional parental or
transgenerational stress as reviewed elsewhere in heterogeneous
brain tissue samples [85–88]. In the brain, the primary categoriza-
tion of cell types includes neurons, glia (microglia, astrocytes,
oligodendrocytes), pericytes and brain epithelial cells [89, 90],
however cells in these broad categories can be subdivided based
on cellular functions. For example, neurons can be classified as
being either glutamatergic or GABA-ergic, excitatory or inhibitory,
as well as by cortical layer of origin [91–93]. For the purposes of
this review, and consistent with available data in the literature, the
primary categorization for cell type was used.

Epigenetic modifications induced by ELS in neurons
In the adult human brain, there is approximately a 1:1 ratio of
neurons to glia, although this varies across brain regions [94, 95],
similar to rodents [96]. Epigenetic alterations to particular neurons
as a consequence of ELS can alter phenotypes associated with
neural circuits involved in the response to stress, fear memory,
and cognition [97–99]. Dysregulation or impairments of related
behaviors are associated with epigenomic alterations in the brain
in response to ELS. For example, there are differences in DNAm
modifications of genes regulating the HPA axis, monoamines, and
neuropeptides in humans with childhood trauma and in animals
exposed to ELS [77, 97, 99]. However, it remains unclear whether
neurons are ultimately the cell types driving the observed
epigenetic changes.
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To date, only a few studies have isolated neurons from rodent
models of ELS to assess epigenetic modifications. One study found
that an adverse caregiving environment from PND1–7 led to
increased brain-derived neurotrophic factor (Bdnf) exon IV DNAm
across 12 CpG sites in neurons isolated from the medial prefrontal-
cortex (PFC) of adult female but not in male rats [100], mirroring
findings found in heterogenous PFC tissue [101]. BDNF is involved
in learning and memory and is a vital factor in neurodevelopment.
Retinoic acid receptor, also critical to neurodevelopment, speci-
fically neural differentiation, was found in another study to have
increased promoter CpG island methylation in adult neural
precursor cells isolated from the dentate gyrus of adult male rats
(females unexamined) that underwent neonatal maternal separa-
tion (MS) [102]. While additional findings are needed to
characterize the impacts of ELS on neurons, these studies indicate
that neonatal psychosocial stressors may lead to aberrant gene
expression programs essential for neural development.
Some studies that have used whole brain tissue to measure ELS-

induced epigenetic changes have measured levels of miRs or
DNAm of genes that are only expressed in a single cell type. In
adult male rats born to dams with gestational psychosocial stress,
miR-133b was found to have increased levels in the hippocampus
(HPC) and decreased levels in the PFC [103]. miR-133b shows
neuron-enriched expression in the brain [104, 105] and is involved
in promoting neurite outgrowth [106]. The same ELS in another
study in adult male rats was found to increase whole brain levels
of the neuron-specific miR-323 [107], which is involved in host-
pathogen interactions with viruses [108]. Together, these findings
provide evidence that gestational ELS induces neuron-specific

epigenetic reprogramming associated with neuronal growth and
immune regulation.
Effects of postnatal stress on the neuronal epigenome have

mostly been examined through MS paradigms, whereby neonatal
rodents are typically separated from their dam for 3–4 hours/day
from PND1–10 or 16. In one study, at PND16 immediately after MS,
male mice were found to have increased hippocampal histone H4
acetylation at the promoter of activity-regulated cytoskeleton-
associated protein (Arc) [109], which is only expressed in neurons
and plays a critical role in learning and experience-induced
synaptic plasticity [110, 111]. In adulthood, in the amygdala of
female but not male mice, MS led to increased DNAm at the
promoter of the neuron-specific serotonin-1A receptor (Htr1a)
[112], which modulates emotional behavior [113]. MiR-326, which
has neuron-enriched expression in the neocortex [105, 114, 115]
and targets the dopamine D2 receptor [116] was found to be
increased in the nucleus accumbens (NAc) and reduced in the
striatum of adult male rats exposed to MS alone, and MS
combined with maternal chronic unpredictable stress [117]. Also
in adult rats (sex undeclared) with neonatal MS, there was
increased hippocampal CA1 histone H3 acetylation and decreased
methylation of CpGs in the promoter of the neuron-specific [118]
corticotropin releasing hormone (Crh) [64]. Similar to the latter
study, which also found evidence indicative of increased CRH
expression, another study in adult rats of both sexes exposed to
MS showed reduced Crh promoter CpG1 and CpG2 methylation,
but in the paraventricular nucleus (PVN) of the hypothalamus
[119]. PVN secretion of CRH kickstarts the HPA axis stress response,
while CRH binding in the HPC is primarily responsible for

Fig. 2 Limitations of examining heterogenous brain tissue for measuring epigenetic modifications. A Group differences in the epigenetic
mark of a particular gene are not indicative of which cell type(s) are responsible for driving these changes. B Group differences in the
epigenetic mark of a particular gene may be masked by differences in cell type proportions between groups.
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regulating glutamatergic transmission and memory function [120].
Altogether, these findings suggest that MS leads to long-term
alterations to emotion and learning processes via epigenetic
reprogramming of neurotransmitter receptors and
neurohormones.

Epigenetic modifications induced by ELS in microglia
Microglia comprise about 5–12% of the total glia population in the
CNS in adult humans [121] and rodents [122] depending on the
brain region. In resting states, microglia are involved in synaptic
remodeling, maintenance and monitoring of the CNS environ-
ment with cell surface receptors that bind to antigens, antibodies,
cytokines, and hormones. When potential insults are recognized,
such as infection, inflammation, and neurodegeneration, microglia
become more ‘activated’, altering their morphology to become
phagocytic and releasing inflammatory cytokines that alert
neighboring cells and influence their functioning [123]. Towards
the end of the insult, microglia release anti-inflammatory
cytokines and phagocytose cellular debris. When the insult
diminishes, microglia return to their ‘resting’ state. Potentiated
and dysregulated states of microglial inflammation are harmful to
the tissue environment and can kill healthy neurons. Aberrant
microglial activation has been associated with epigenetic dysre-
gulation in anxiety, mood and autism spectrum disorders
[124, 125] as well as neurodegenerative diseases [126, 127].
Notably, a similar phenotype indicative of exaggerated inflamma-
tion has been found in studies examining epigenetic effects of ELS
in animal models [49, 108]. However, these studies utilized
heterogenous brain tissue to form their epigenetic links. In
addition to microglia, inflammation-related genes including
cytokines are expressed by neurons, astrocytes and pericytes
[128], making it difficult to determine the extent to which
microglia drive neuroinflammatory changes in response to ELS.
Few studies have documented microglia-specific epigenetic

changes in response to ELS. In microglia isolated from the whole
brain of adolescent female mice subject to maternal allergic
asthma exposure, whole-genome-bisulfite sequencing of
differentially-methylated regions showed enrichment of gene sets
associated with cytokine signaling pathways [129]. In microglia
isolated from the medial hypothalamus of PND6 and adult rats
(sexes combined), neonatal alcohol exposure was found to
increase acetylation of histone H3K9 at the promoter regions of
the pro-inflammatory cytokines tumor necrosis factor alpha (Tnfa)
and interleukin (Il)6 in baseline conditions and 2 h post-LPS
challenge [130]. Similar to these findings that suggest there is an
increased pro-inflammatory phenotype in offspring exposed to
ELS, the anti-inflammatory cytokine Il10 showed reduced levels of
CpG island methylation in microglia isolated from the NAc of adult
male rats that underwent MS as well as handling, a change that
was absent in whole tissue from the NAc [131]. In the whole brain
of PND1 rats (sex undeclared) subject to maternal LPS exposure
48 h earlier, there was reduced miR-126 and miR-146 [132], which
regulate microglial inflammatory processes [107]. Since changes
to both pro- and anti-inflammatory cytokines have been observed
in these cell-type-specific studies, future studies can delineate
how inflammatory pathways in microglia are epigenetically
reprogrammed in response to ELS.

Epigenetic modifications induced by ELS in astrocytes and
oligodendrocytes
In the human cerebral cortex, the glial population includes
approximately 20% astrocytes and 75% oligodendrocytes [133],
densities of which have also been examined in various brain
regions in mice [134]. Astrocytes play critical roles in maintenance
of homeostasis through ion buffering, immune signaling, blood-
brain-barrier maintenance, regulation of neuronal synaptogenesis
and removal [135]. Epigenetic dysregulation of astrocytes and
reduced astrocyte cell proportions have been linked to psychiatric

disorders associated with ELS, including major depressive disorder
[136]. One study found that maternal separation led to reduced
promoter CpG methylation of glial fibrillary acidic protein (Gfap),
an intermediate filament protein expressed only in astrocytes
[137], in the frontal cortex of adolescent male rats [138]. There is
also some evidence of ELS-induced epigenetic reprogramming of
oligodendrocytes, the myelinating cells of the CNS that enable
saltatory nerve conduction and axon integrity. Isolated oligoden-
drocytes from the anterior cingulate cortex of human suicide
completers with a history of childhood abuse exhibited decreased
CpG methylation of myelination-regulating genes, specifically,
leucine-rich repeat and immunoglobulin-like domain-containing
nogo receptor- interacting protein 3 (LINGO3) and POU class 3
homeobox 1 (POU3F1), compared to controls who died of non-
suicide causes [139]. An opposite effect was observed in male rats
exposed to maternal gestational psychosocial stress, where there
were increased levels of whole-brain miR-219 [108], which shows
oligodendrocyte-enriched expression [107] and is necessary for
enabling and promoting the maturation of oligodendrocyte
precursor cells into myelinating oligodendrocytes [140, 141].

Challenges and outlook
Converging evidence supports the role of epigenetic modifica-
tions as mediators of the impact of ELS on long-term neurobio-
logical alterations. Unlike genetic factors, the epigenome is
potentially dynamic throughout life. This malleable quality of the
epigenome may enable the identification of cell-specific epige-
netic biomarkers of disease and aid in the development of
targeted therapeutic approaches for neuropsychiatric or neuro-
developmental disorders, as is the case for certain cancers [142].
Examples of these developments include epigenetic reprogram-
ming of rodent neuronal stem cells to ameliorate neurodegenera-
tion [143] and de-methylation of the fragile X mental retardation
(FMR) gene in human neurons derived from Fragile X syndrome
patients to normalize neuronal activity [144]. Possible epigenetic
treatments for neuropsychiatric conditions have also been
reviewed elsewhere [145–147].
The study of cell-type-specific epigenetic modifications requires

sophisticated technical approaches. Isolating a purified cell
population with intact DNA/RNA/protein from the brain can
necessitate large sample sizes and volumes of fresh tissue,
requiring tools such as primary cell culture, density-based
centrifugation, magnetic bead separation, flow cytometry, and
single-cell sequencing. These methods require advanced expertise
and may be difficult to access. While computational deconvolution
tools exists for obtaining cell-type-specific information from bulk
sequence reads from heterogenous tissue, they nonetheless
provide a less accurate estimation [148].
Of course, epigenetic changes found in a certain cell type do

not necessarily mean that similar changes are absent in other cell
types. While measuring epigenetic changes in one cell type may
provide information regarding mechanisms associated with its
biological function, measuring them in multiple cell types would
be needed to assess the specificity of such modifications. Absent
the heroic effort of quantifying all major cell types within a brain
region of interest, comparing epigenetic changes in a single cell
type to those of heterogenous tissue is another potential strategy.
In such a context, two types of information would be needed: 1)
information pertaining to the epigenetic modification of the
particular cell type (e.g., microglia) compared to whole tissue from
the brain region of interest, and 2) quantification of the proportion
of the cell type of interest relative to other cell types in the region
of interest. This information would indicate both relative levels of
the epigenetic modification in the cell type in the brain region of
interest and cell proportion differences that may also contribute to
the overall levels of the epigenetic modification (see Fig. 2). This
could be particularly important in interpreting the observed
epigenetic profiles, which may result from changes in the relative

M.F. Rahman and P.O. McGowan

6

Translational Psychiatry          (2022) 12:326 



levels of the epigenetic modification in the cell type of interest
(potentially indicating cellular reprogramming) and/or in the
proportion of the cell type of interest within the region of interest.
Notably, potential cell-proportion differences alonemay constitute
an epigenetically-determined phenotype [83, 84].
Based on the available literature, it is evident that cell-specific

epigenetic changes in glia are presently very limited in the context
of ELS studies, making this fertile ground for future discovery. As
well, measurement of ncRNA has been limited to miRNA in the
context of the analysis of cell-specific epigenetic changes due to
ELS. Given the prominent role of lncRNA in cell type differentiation
in the brain [149], and its association with ELS [150] and stress-
related disease [22], cell-type-specific changes in lncRNA levels in
the context of ELS is another important area for future inquiry.
Studying epigenetic modifications at a primary cell-specific

resolution, while important, does not evade interpretational
issues. As noted above, beyond the broad categorization of cell
types in the brain, definitions of specific cell types are still
contested [151]. Neurons can be further subdivided into
categories that consider molecular, morphological, connectional,
and functional properties, leading to conceptual difficulty in
defining a cell type and a lack of a consensus on their taxonomy
[152, 153]. Microglia are known to exist in a resting or an
activation state, which can be divided into M1 and M2 states of
activation that define the bounds of a spectrum of intermediate
phenotypes that can vary according to where in the brain the
microglia reside [123]. Thus, it is not guaranteed that similar
epigenetic modifications will exist within defined cell types, even
within a brain region. While single-cell sequencing can alleviate
this problem by examining cells at an individual level, this does
not seem to solve the problem entirely. To draw an example from
cancer biology, histone methylation differences can exist among
the same cell types at the center and periphery of the tumor [154].
As such, isolating particular cells involved in a ‘neural circuit’ or
biological pathway may be more informative in delineating
epigenetic changes contributing to particular phenotypes.
Analysis of the temporal dynamics of epigenetic modifications

may also provide important information. Epigenetic modifications
detected in temporal proximity to environmental factors are not
always the same as the ones detected later. For example, one
study found that in the PFC of female rats exposed to neonatal
caregiver maltreatment, there was reduced Bdnf exon IV
methylation at adolescence compared to normal care controls,
but an increase at adulthood, and no differences at infancy [101].
Therefore, the temporal dynamics of epigenetic responses to
environmental factors that lead to persistent effects on pheno-
types is another important avenue for future research.
Another challenge concerns the interpretation of observed

epigenetic modifications in relation to their role in gene
expression and behavioral phenotypes. For example, such a
relationship may not manifest as steady-state increases/reductions
in transcript and may only be detected in specific conditions, such
as after stress exposure. A study described earlier demonstrates
this possibility; neonatal alcohol exposure was found to increase
histone acetylation at Tnfa and Il6 promoters in hypothalamic
microglia in adult rats at baseline and post-LPS challenge,
however increased transcript abundance of microglial mRNA of
these genes only occurred in the post-LPS condition and not at
baseline [130]. Interpretational challenges also extend to deter-
mining whether epigenetic modifications at select loci are ‘causal’
mechanisms of behavior, which may only be possible by altering
target epigenetic modifications in vivo [155–157]. Tools used for
cell-type-specific epigenetic editing include zinc-finger proteins,
which can be fused with histone modifiers and target specific DNA
sequences, and transcriptional activator-like effectors (TALEs), DNA
binding proteins from bacteria that can be targeted to regulate
gene transcription (see review [156]). More recent tools to alter
epigenetic modifications include the CRISPR (clustered regularly

interspaced short palindromic repeat)/Cas9 system, whereby the
prokaryotic RNA-guided endonuclease can be targeted to a
specific genomic locus using designed single guide RNA, and a
catalytically dead (dCas9) is used to avoid genetic double-strand
breaks [155]. The cell-type-specific expression of epigenetic
modifiers (e.g., histone acetylation or methylation proteins) fused
to dCas9 are then inducible by Cre recombinase, which can be
transgenically or virally co-expressed [155, 156]. A recent study in
mice found that dopamine D2 receptor neuron-specific targeting
of histone acetylation/methylation at the Fosb gene within the
NAc led to a phenotype of stress susceptibility or resilience,
respectively [158]. Epigenetic editing with CRISPR/dCas9 is not
without its limitations, as it can involve off-target effects
[155, 159]. However, the use of CRISPR, fusion and DNA binding
proteins in combination with cell-specific analysis may help
delineate the epigenetic mechanisms through which ELS leads
to long-term perturbations on behavior, and improve therapeutic
approaches for a variety of neuropsychiatric and neurodevelop-
mental disorders.
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