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Abstract

The gambiense form of sleeping sickness is a neglected tropical disease, which is pre-
sumed to be anthroponotic. However, the parasite persists in human populations at levels
of considerable rarity and as such the existence of animal reservoirs has been posited. Clar-
ifying the impact of animal host reservoirs on the feasibility of interrupting sleeping sickness
transmission through interventions is a matter of urgency. We developed a mathematical
model allowing for heterogeneous exposure of humans to tsetse, with animal populations
that differed in their ability to transmit infections, to investigate the effectiveness of two
established techniques, screening and treatment of at-risk populations, and vector control.
Importantly, under both assumptions, an integrated approach of human screening and vec-
tor control was supported in high transmission areas. However, increasing the intensity of
vector control was more likely to eliminate transmission, while increasing the intensity of
human screening reduced the time to elimination. Non-human animal hosts played impor-
tant, but different roles in HAT transmission, depending on whether or not they contributed
as reservoirs. If they did not serve as reservoirs, sensitivity analyses suggested their attrac-
tiveness may instead function as a sink for tsetse bites. These outcomes highlight the
importance of understanding the ecological and environmental context of sleeping sickness
in optimizing integrated interventions, particularly for moderate and low transmission inten-
sity settings.

Author Summary

Sleeping sickness, a disease that strikes predominantly poor populations in sub-Saharan
Africa, has been targeted for elimination as a public health problem. Despite decades of
control operations the disease remains enigmatic and is capable of persisting in popula-
tions at low levels of prevalence. Two mechanisms are investigated here that could allow
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persistence at such levels. Heterogeneous exposure of humans to tsetse is modelled as a
subset of humans commuting to areas of high vectorial capacity. Additionally, non-
human animals may act as reservoir species. We developed, parameterized, and investi-
gated a model of sleeping sickness transmission to gain insight into the impact of these
assumptions on the prospects of elimination using screening and treatment of humans
and vector control. Supplemental use of vector control increased the probability of elimi-
nation and decreased the duration until elimination was achieved. This was more pro-
nounced when animals did contribute to transmission, or when coverage and compliance
of humans with screening operations was lower, for instance due to an inability to reach
the humans at greatest risk of exposure. These results can provide insights to public health
officials as to when to consider supplementing human treatment with additional measures,
and thereby improve the prospects of elimination of this disease.

Introduction

Human African trypanosomiasis (HAT), commonly called sleeping sickness, is a vector-borne
and neglected tropical disease caused by two subspecies in the genus Trypanosoma, Trypano-
soma brucei gambiense and T. b. rhodesiense. The main disease burden occurs in West and
Central Africa due to T. b. gambiense. It causes a chronic disease which, with occassional excep-
tion, progresses over the course of months or years to a fatal meningo-encephalitis [1]. The
gambiense form of HAT is typically thought of as an anthroponosis and transmission is pre-
dominantly by riverine tsetse, including species such as Glossina palpalis and G. fuscipes, which
show a tendency to feed on human blood in locales where human-vector contact is high, such
as water collection points [2].

HAT has been a disease of sporadically recurring epidemics with inter-epidemic periods of
several decades, likely caused by historical contingency, poorly understood biotic factors, the
breakdown of health services, or some combination of these [3,4], while at the same time being
characterized by ancient, stable and geographically limited foci of transmission that may peri-
odically lay dormant [5,6]. Recently, fewer than 10,000 cases per year are being reported [7].
On average, incidence and prevalence are therefore relatively low, but due to HAT’s highly
focal nature, at a smaller scale, areas or villages may be heavily afflicted [2,8], and the existence
of hidden pockets of high endemicity has been reported [9]. A recent study of the HAT situa-
tion in Uganda illustrated that while the disability-adjusted life years lost due to HAT ata
national level was low compared to other infectious diseases, in highly affected districts the
burden was comparable to the national average burden of diseases such as HIV and malaria
[10].

Environmental or climatic changes appear to be shifting these foci in some areas [11],
though the biotic and abiotic conditions that lead to an area being amenable to transmission
are not well understood. Presence of vectors is necessary but not sufficient, because HAT is typ-
ically found only in restricted zones within the wider distribution of tsetse [3], suggesting that
possibly high vector densities or particularly high human biting rates may be required. Aspects
of human behavior may also contribute to transmission: for instance. Civil unrest (leading to a
breakdown or inaccessibility of health care) and human cross-border movements are recog-
nized as important factors leading to increases in, or maintenance of transmission [2,4].

To achieve elimination of HAT as a public health problem, it has been recognized that the
available control measures of active case finding by mobile units (“screen and treat”), passive
case detection through existing health facilities, and one or more methods of tsetse control,
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should be applied in a combination and at intensities most suited for particular epidemiological
settings [12]. Mathematical models can prove particularly insightful for designing such poten-
tially integrated control approaches [13,14,15,16], especially for rare diseases such as HAT
where the interactions between multiple interventions can be difficult to tease apart in field
trials.

Models of HAT transmission, typically based on the Ross-Macdonald style models of
malaria [14,17,18], have struggled to capture the low prevalences associated with HAT without
the addition of an animal reservoir or the immigration of infective tsetse from a connected area
[17,19,20].

As a result of these modeling outcomes, and observations of the presence of T.b. gambiense
infection in a range of vertebrates in certain foci [21,22], the existence of animal reservoirs has
been posited. However, it is not clear whether the strains of T.b. gambiense circulating in non-
human animals are the same as those found in humans—in one field study in Céte d’Ivoire
humans and pigs were found to carry different genotypes of T.b. gambiense [23], and whether
infection in animals contributes to transmission cycles or represents spillover from human
communities. A recent modelling study supported the former view, but could not rule out that
heterogeneity in exposure could likewise have led to similar infection patterns [20].

Bites by pathogen-carrying insects on humans are distributed in a non-uniform way [24].
The impact of a variety of forms of heterogeneity on vector-borne disease transmission has
most notably been explored for malaria [25,26,27,28,29,30,31]. Factors responsible for hetero-
geneity in exposure that have been considered included differences in attractiveness of humans
(as a result of sweat composition, body size and age, or even malaria infection status [32]), as
well as spatial heterogeneity, for instance in the density of vectors due to distance from breed-
ing sites, or behavioral patterns of humans that may bring them into closer or more prolonged
contact with vector habitats. Heterogeneity of biting exposure and movement of humans,
despite its putative involvement in HAT epidemiology, have rarely been incorporated in mod-
els. A notable exception was a two-patch model specifically investigating the role of villages
and surrounding plantations and the consequences for an optimal allocation of vector control
measures between these areas of activity [16].

There are indications that heterogeneous biting exposure may play a role in the transmis-
sion of human and animal trypanosomiases. For instance, herds of cattle living in the same
village could have an exposure to tsetse (G. m. submorsitans) varying 5-10 fold from a homoge-
nous estimate, due to the differences in tsetse densities within the spatial distribution of the cat-
tle [33]. Specific areas within a focus of high transmission that present an even higher risk of
exposure have been identified for HAT as well: for example, in the Bipindi focus in Cameroon,
marshy hollows and areas near the river posed the greatest risk, in association with human
behaviors such as washing or bathing, or agricultural activities [34]. In more urban areas of
Kinshasa, where 66-67% bites of tsetse were reported to be on humans, likely due to the
absence of alternative fauna, environmental risk factors such as raised areas with a mix of forest
and river habitat, and the presence of pig sties were indicated for high transmission. A link to
behavior that would bring people in contact with these habitats was implicated by the finding
that 74% of cases reported were among farmers and fishermen [35].

Human movement patterns in concert with environment conditions are also thought to
play a role: for instance, at a larger scale, the emergence of non-traditional (e.g., urban) foci
may be linked to migrations associated with the expansion of coffee or cocoa plantations
[35,36]. In a focus of Céte d’Ivoire, the confluence of human movement patterns, with a high
degree of commuting from urban to rural parts but little mixing between rural areas, and envi-
ronmental suitability for tsetse and the presence of certain ecotones favorable to human-tsetse
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contact in a specific part of the surrounding rural areas, resulted in a highly spatial heteroge-
neous transmission pattern [36].

Furthermore, there have been suggestions of clustering of infections within households. For
instance, the strongest risk factor for T. b. rhodesiense infection in a case-control study in
Uganda was a history of sleeping sickness in a member of the family, and proximity to wetlands
was indicated as a significant spatial factor [37]. Similarly, evidence for familial clustering of T.
b. gambiense was found in the Democratic Republic of Congo. Several hypotheses could sup-
port such clustering, for instance it could be related to the shared use of defined parts of a river,
for washing or fishing, or interruption and resumption of an infective tsetse bite on a nearby
human [38].

Investigations of heterogeneity have led to critical insights: the critical level of population
coverage of an intervention required to bring R. (the controlled reproduction number) below
one, is lower when the interventions can be targeted, but greater when the high exposure
groups cannot be identified or targeted [24]. Of potential relevance for HAT, Dietz [26] has
shown that for a given value of Ry, the prevalence of infection is lower when exposure is
heterogeneous.

In this study, the goal was to account for the structural uncertainty regarding HAT epidemi-
ology by developing a model that allows for both heterogeneous exposure of humans to tsetse
and a possibility for animal hosts to contribute to transmission. The objective was to see
whether and how these different assumptions affect the usefulness of two established control
interventions against HAT: active case detection and vector control.

Results

We developed a deterministic model of the West and Central African form (T b. gambiense) of
human African trypanosomiasis transmission. The model captures heterogeneity in exposure
to tsetse bites, and can allow for the possibility of non-human animals to contribute to trans-
mission. A schematic overview of the model structure is provided (Fig 1), while the details are
given in the methods section, below. A description of all state and rate parameters is provided
in Tables 1 and 2.

Since this system of equations can lead to a wide range of equilibrium prevalences when
evaluated using a range of reasonable estimates for the rate parameters [39,40], we had to
obtain parameter sets that allowed the behavior of the model around realistic prevalence levels
to be examined. In active foci of HAT transmission, prevalences are often as low as 0.1-1% in
humans [41]. Annual incidence thresholds associated with high (>1/ 10° and <1/10%), moder-
ate (> 1/10* and <1/10%), and low (>1/10° and <1/10%) risk categories of HAT have been sug-
gested [42]. Based on the mid points of those ranges, thereby ignoring very high and very low
outliers, an assumption that incidence will be comparable to prevalence if mobile units visit
afflicted areas infrequently, and an underreporting rate of approximately 3 [12], we specified
prevalence levels of 1.65%, 0.165%, and 0.0165% as being representative of high, moderate, and
low transmission settings, respectively. A critical assumption we made is that these prevalence
levels were stable. We note that due to the paucity of available data, posterior parameter esti-
mates were unlikely to change significantly from the prior ranges. The intent, however, was not
to obtain more precise parameter estimates, but rather to act as a filter for sets of parameters
that would lead to unrealistic prevalences. We obtained parameter sets using a Bayesian frame-
work of importance resampling [43,44].

Median values of the resampled estimates for the animal reservoir and no animal reservoir
versions at high, medium and low transmission intensities are provided (Tables 2 and S1,
respectively). For both the version with and without the possibility of an animal reservoir, as
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Fig 1. Overview of the population structure and compartments of the model. A): Human populations are divided in a stationary (Ny,1) population that

remains in low exposure habitats (e.g., a village), and a smaller population (Ny,2) which commute and spend a proportion ¢ of their time in a potentially high
exposure setting (e.g., a plantation). Each of these habitats harbours tsetse (N, and N,») and non-human vertebrate animal populations (N,1 and N,p) of

varying sizes and characteristics. B): Compartmental diagram highlighting the transmissions between states of infection of the animal, tsetse, and human
populations in the high exposure area 2. A similar diagram explains transmission in area 1, although there both human populations are exposed to tsetse

bites. Solid lines depict transitions between compartments, while dashed lines represent transmission rates.

doi:10.1371/journal.pcbi.1004514.g001

Table 1. Description of state parameters whereiis 1 or 2.

Parameter
Svi
Evi
lvi
Nyi
Shi
Ihi
Ahi
Rhi
Thi
Dhi
Nhi
NThi
Sai
lai
Aai
Rai

doi:10.1371/journal.pcbi.1004514.t1001

Description

susceptible vectors in area i

incubating vectors in area i

infective vectors in area i

total vector population in area i (sum of S, I, and E,)
susceptible humans of type i

incubating humans of type i

infective humans of type i (stage | of disease)
removed humans of type i (due to stage Il of disease)
treated humans of type i

deaths in humans of type i due to sleeping sickness
total host population of type i available for bites (sum of Sy;, I, Ani)
total human population of type i

susceptible animals in area i

incubating animals in area i

asymptomatic animals in area i

recovered animals in area i
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Table 2. Rate parameter descriptions, values used and ranges for model versions based on heterogeneity, but no animal reservoir.

Parameter Description Unit Prior range Median values by transmission intensity
High Moderate Low
My Death rate of tsetse. Day [0.014-0.047] 0.030 0.037 0.024
f Inverse of duration of feeding cycle. Day [0.2-0.5] 0.309 0.34 0.31
Oh Biting preference for humans - [0-1] 0.326 0.40 0.33
Oat Biting preference for animal type 1 - [0-1] 0.704 0.59 0.85
Oa2 Biting preference for animal type 2 - [0-1] 0.396 0.63 0.009
g Proportion of time spent in second region by commuters - [0-1] 0.698 0.64 0.61
b Proportion of infective bites leading to infection in humans and - [0-1] 0.433 0.34 0.72
animals
Ch Proportion of bites on an infective human that lead to a mature - [0.0001-0.0051] 0.003 0.0031 0.0019
infection in flies
Ca1 Proportion of bites on an infective animal of type 1 that lead to a - [0.0001-0.0051] 0 0 0
mature infection in flies
Ca2 Proportion of bites on an infective animal of type 2 that lead to a - [0.0001-0.0051] 0 0 0
mature infection in flies
Ve 1/extrinsic incubation period Day' [0.025-0.0556] 0.042 0.037 0.037
n Rate at which hosts move from the incubating stage Day [0.05-0.1] 0.07 0.085 0.099
Sq Rate of progression to stage Il in humans Day' [0.0012-0.0028] 0.002 0.0023 0.0016
Sai Rate of progression to the immune class in animal hosts Day”' [0.0012-0.0028] - - -
Ms1 Disease-induced death rate / rate of leaving the recovered state Day' [0.013-0.0029] 0.002 0.0021 0.0021
for humans
Mh1 Death rate of humans due to natural causes Day [3.4-6.8e-05] 4.3981e-05 6.3663e-05 3.7562e-05
Mai Death rate of animal host i Day™ [0.000164— 0.0016/ 0.0024/ 0.0022/
0.0027] 0.0019 0.0011 0.0025
r Removal rate of infected humans due to treatment Day [0.0006— - - -
0.0044] *
r3 Rate at which treated humans return to the susceptible class Day' [0.014-0.14]" - - -
r4 Rate of loss of immunity in animal hosts Day' [0.002-0.0054] - - -
No/N4 Ratio of humans in the high exposure environment to low - [0-1] 0.032 0.0019 0.000194
exposure
V/H; Number of vectors per human in area i - [0-10] 3.5/6.3 1.13/2.57 1.42/1.78
A/H; Density of animals relative to humans in area i - [0-2] 1.35/0.54 1.31/0.91 1.25/1.81

TValues were zero (and not fit to prevalence levels) unless the interventions of screening and treatment of humans was simulated.

doi:10.1371/journal.pcbi.1004514.t002

transmission intensity decreased (i.e., from the high to moderate to low intensities), the num-
ber of parameter sets in the resampled sets did as well, presumably because the parameter
space leading to such very low prevalence levels was sparser than that leading to high levels of
prevalence. Stable levels of sleeping sickness prevalence associated with high, moderate, and
low transmission in field settings were found using both the model version without the possi-
bility of transmission from non-human animals to tsetse, and the model version allowing
for animal reservoirs. In both cases a role for heterogeneity in exposure to tsetse bites was sug-
gested, whereby the smaller the proportion of humans at high risk, the lower prevalence could
be, particularly in the absence of an animal reservoir. For instance, the estimated median ratio
of humans commuting to an area with potentially higher tsetse biting rates (N,/N;) was 0.03
(without animal reservoirs) and 0.06 (with animal reservoirs) in the high transmission settings.
To gain insight into the parameters that drive HAT prevalence at the levels encountered in
the field, we performed a global sensitivity analysis. We created 500 parameter sets by drawing
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Latin hypercube samples for each parameter from uniform ranges between the largest and
smallest of the median values estimated for the high, moderate and low transmission settings
for the model versions with (S1 Table) and without animal-tsetse transmission (Table 2). We
simulated the equations until the asymptotically stable equilibrium point was reached and the
prevalence of infection in humans was recorded for each iteration. The sensitivity of prevalence
to model parameters was investigated for 500 samples by calculating the partial rank correla-
tion coefficients, which gives an indication of the degree to which an output parameter is
related to an input parameter when controlling for the effects of other parameters. The sensitiv-
ity analyses were performed using SaSAT [45].

The sensitivity of sleeping sickness prevalence to model parameters sheds light on the driv-
ers of heterogeneous exposure (Fig 2). In the case where non-human animals cannot contribute
to transmission directly, the parameters with the greatest influence on prevalence were the pro-
portion of humans commuting to this area (N,/Nj), and the tsetse biting preference for perido-
mestic animal hosts (0,;). The density of vectors to humans in the village (V/H,), the biting
preference for humans (0y,), as well as parameters related to transmission efficiency (b, c) were
also of importance.

When allowing for animal-tsetse transmission a number of the same components stand out
as drivers of prevalence, namely the efficiency of transmission to humans and animals (b), the
vector density in the village (V/H1), and the biting preference for humans (o).

Without animal - tsetse transmission With animal - tsetse transmission
N2/N1 br
p V/H1 -
altr Gh
bh A/(IS-H 3
Gh | a2
fk
V/H1 - G 1k
s
ct r
k V/H2 -
N2/N1
14 My J:\131 F
(0]
© ft- ver
IS G er
I a2l nitL
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e s
a1l
A/H2 - Hoqt
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W L Ca2*
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”51 r4 r
-1 -08 06 -04 -02 0 02 04 06 08 1 -1 -08 -06 04 -02 0 02 04 06 08 1
Partial rank correlation coefficients Partial rank correlation coefficients

Fig 2. Global sensitivity of sleeping sickness prevalence to model parameters without (left panel) and with the possibility of animal-tsetse
transmission of T.b. gambiense (right panel). Descriptions of parameters are provided in Table 2. The most important parameters without an animal
reservoir were the ratio of commuters to non-commuters (No/N+), the biting preference of tsetse for animals in the non-commuting area, 0,,, and the
proportion of infectious bites that lead to infection in hosts, b. With an animal reservoir, the most important parameters were b, the tsetse to human ratio in the
focal (1%) area, V/H,, and the biting preference for humans, a,.

doi:10.1371/journal.pcbi.1004514.9002
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To gain further insight into how the efficacy of different parameters and potential control
approaches (screen & treat and vector control) depend on variation in other parameters, we
investigate the impact on the basic reproduction number, R, by looking at zero-growth iso-
clines, i.e., the parameter space where Ry = 1 (Fig 3). As the human populations are more sepa-
rated (with increasing ) a greater removal rate is required to interrupt transmission, and
removal rates leading to Ry < 1 become smaller as vector mortality increases (left plot). When
we compare the impact of screening humans in the low risk setting (r,) and screening commut-
ing humans (1), it is clear that screening the humans commuting to high exposure areas is crit-
ical, as transmission can be sustained by this group even at very high rates of screening the
non-commuting population (r,). Depending on the density of animals in the low risk area
(which here do not contribute to transmission, but can lead to “wasted bites” among tsetse), it
can be sufficient to target only the commuting population. When animal densities are low,
resulting in higher biting rates on humans in the village (N},;), then transmission could also be
sustained among this population and all populations will need to be screened (middle plot).
When animals can contribute to transmission (c, = 0.003), treatment of infected humans will
not lead to interruption of transmission above a certain vector-human density threshold, and
tsetse control will have to be relied on (right plot).

In addition to the feasibility of interrupting transmission at various levels of efficacy, the
timelines under which prevalence decreases to near zero can also be a relevant consideration.
Simulations were performed to assess these timelines and probabilities, allowing for the range
of model parameter uncertainty, as well as a range of uncertainty in control intervention effi-
cacy, and structural model uncertainty regarding the ability of animals to contribute to sleeping
sickness transmission.

Note that when elimination is used in this context, it is strictly more accurate to speak of
elimination as a public health problem. This is because we used a deterministic model and had
to specify an arbitrary threshold below which we assume elimination is likely in reality to
occur. We used a prevalence in humans of < 1 x 10, below the lowest threshold associated
with very low risk HAT foci [42]. A stochastic model allowing for immigration and
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Fig 3. Zero-growth isoclines (R, = 1) of T.b. gambiense under perturbation of specific parameters. The parameter values used were the median
values obtained for the high transmission setting, except for those varied in the analysis. In the left plot, isoclines at different levels of vector mortality are
shown, depending on the daily removal rate of infected humans (r) and the proportion of time commuters spend in the high exposure area (£). The areas
above the isoclines represent values of R, greater than 1, and below and to the right of the isoclines values smaller than 1. In the middle plot the impact of
screening humans in the low risk setting (r,) in combination with screening commuting humans (r,) is shown for different levels of animal to human ratios (A/
H4). In the right plot isoclines are depicted along removal rates (r) and tsetse density (V/H) in both areas when animals either do not contribute to transmission
(c4 =0) or they can infect tsetse (c, = 0.003).

doi:10.1371/journal.pcbi.1004514.9003
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importation of infections, with discrete numbers of infected individuals, would be required to
investigate actual elimination. For these simulations we investigate high transmission settings
only, as these are the ones where a priori a combination of interventions may be considered
[12]. A wider range of interventions and their cost-effectiveness using this modelling approach
over all transmission settings will be reported on elsewhere (Sutherland et al, in prep).

The interventions we considered were case detection in humans (screen and treat), poten-
tially supplemented with vector control using targets or traps. The effectiveness of traps may
differ by the species of tsetse and environmental conditions, as well as issues related to spacing
and maintenance. Estimates from the literature suggest attaining a 5% daily mortality is often
attainable [46,47,48], and we used a broad range of 1-10% to capture this variability. We
assume screen and treat operates by removing 1" and 2™ stage infected people at a daily rate.
We use the formula specified by Artzrouni & Gouteux [14] who relate a percentage, d, of
humans effectively screened in a given period (a month in their model, here, a year):

d = 100(1 — ¢ ")

and the daily removal rate, r, (which appears in egs (3) through (5) and (8) through (10)) is
therefore:

d
= —In({l1l—— .

The percentage of humans screened at a yearly basis will depend on the frequency of visits
of mobile teams, as well as other factors such as the achieved level of coverage and compliance,
and sensitivity of the diagnostic test. Here, we investigate a broad range of 20 to 80% of the
population. In one analysis where we investigate the impact of having different screening rates
on humans in low and high exposure populations, instead of a single parameter r, we then
specify r, and r,, for the removal rate of N},; and Ny, respectively.

On average, these simulations suggest that if animals do not contribute to transmission,
deployment of either a screen & treat strategy or an integrated approach of screening together
with vector control is likely to result in interruption of transmission (Fig 4). However, the rate
at which prevalence declines toward zero is considerably faster when using the integrated
approach. If biting an animal can result in a tsetse becoming infected, screening and treatment
of humans by itself is less likely to lead to interruption of transmission, although prevalence in
humans will still be reduced.

To explore the potential of using an integrated approach of screening and treatment with
vector control in more detail in different transmission settings, and depending on whether ani-
mals were assumed to to be capable of transmitting infections, we ran sets of 500 simulations
whereby both approaches were varied from absent, to low, moderate, or high coverage. For
each set we determined the mean time required to reach elimination (i.e., a prevalence < 1x
107°) and the proportion of 500 simulations that led to elimination. In the high transmission
setting in the absence of animal reservoirs, to achieve the goal of elimination within 20 years
and with greater than 80% probability, either vector control at the highest level of efficacy
(resulting in a mean time to reach elimination of 19 years), or an integrated approach of screen
& treat and vector control was required. A combination of both at our lowest levels of efficacy
(20-40% coverage for screening, and a mortality rate between 1-4% for vectors) was sufficient
to reach this threshold, and either of the two interventions could be intensified in order to
achieve greater probabilities of success or to reduce time to elimination. In general, increasing
the intensity of vector control led to greater increases in the probability of eliminating, while
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Fig 4. Median (lines) and 95" percentiles (shaded areas) of simulations on the impact of interventions on prevalence over time in high
transmission settings without (left) and with (right) animal-tsetse transmission, assuming a range of efficacies for screen & treat (solid line) and
screen & treat with vector control (dashed line).

doi:10.1371/journal.pcbi.1004514.9004

increasing the intensity of human screening led to a sharper reduction in the time required to
eliminate (Fig 5).

In both the moderate and low transmission settings the time required to reach elimination
was on average shorter, and the patterns overall were similar. In these settings, while an inte-
grated approach resulted in high probabilities of achieving elimination within the shortest
period, both approaches (screen and treat and vector control) employed by themselves at the
high levels of efficacy also resulted in elimination, albeit at a somewhat lower probability and
over a longer period (Figs 6A and 7A).

If there are foci where animal reservoirs do contribute to transmission, the patterns are in
general similar to those from the model that assumes no animal reservoir, except that the prob-
ability of eliminating without vector control is reduced (Figs 5B, 6B and 7B). The conclusions
are similar in regard to an integrated approach of screen & treat and vector control likely being
necessary to eliminate with a greater than 80% probability and within 20 years, although a
strategy of vector control by itself may also be acceptable, especially in moderate or low trans-
mission zones.

Discussion

Increased understanding of the ecological, environmental and behavioral drivers of HAT trans-
mission is critical to designing effective control programs that maximize the probability of
achieving elimination. In this study we focused on the role of non-human animals and the
importance of heterogeneous exposure of humans to infected tsetse bites. A key insight is that
regardless of whether or not non-human animals contribute to the transmission cycle of T. b.
gambiense, animal populations play a crucial, but varying, role in the epidemiology of HAT.
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Fig 5. The proportion of simulations where HAT was eliminated (prevalence < 1 x 107°) and the mean time to elimination with standard deviation,
depending on the percentage of the human population screened per year (expressed as absent (0%), low (20-40%), moderate (40-60%), or high
(60-80%) coverage and indicated by the plot titles), with varying levels of vector control (expressed as additional vector mortality, indicated by the
symbols in the legend), for a high transmission setting without an animal reservoir (A) and with an animal reservoir (B).
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percentage of the human population screened per year, with varying levels of vector control (expressed as additional vector mortality, indicated
by the symbols in the legend), for a moderate transmission setting without an animal reservoir (A) and with an animal reservoir (B).
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Although the consensus currently suggests that non-human animals do not play an impor-
tant role in HAT transmission, we found that when—in perhaps a minority of foci—animal
populations are capable of harboring T.b. gambiense and infecting tsetse, then a strategy based
only on case detection and treatment of humans is less likely to lead to interruption of trans-
mission, and additional vector control interventions are likely necessary. We did not disentan-
gle the factors that allowed screen & treat to interrupt transmission when animal-tsetse
transmission could occur, but speculate that whether animal populations constitute a reservoir
will depend on a combination of their efficiency of transmission, densities of animals and tsetse
flies, and contact patterns of humans. It is perhaps worth noting that the current thought in
HAT epidemiology that animals do not contribute to transmission is based largely on experi-
ences where screening and treatment of human populations alone, without vector control, has
led to the local elimination of HAT in certain foci (e.g., [49]). However, it may be dangerous to
base such conclusions on limited natural experiments. Our simulations suggest that even if ani-
mals can contribute to transmission, whether vector control is required may depend on more
specific epidemiological or ecological factors. For instance with animal-tsetse transmission, at
the highest rate of screening without vector control, the probability of achieving elimination
varied between 0.35-0.65 for the different transmission settings (Figs 5A, 6A and 7A). Further
validation of these results is required, but what likely occurred in our model was that although
animals could contribute to transmission in these simulations, their type reproduction number
in a subset of the parameter sets may have been below 1, and maintenance may have been due
to humans. In the other subset of parameter values, it appears that infection in humans may
have been due to spillover from animals.

When we did not allow for animal-tsetse transmission in our model—a common assump-
tion in models of T. b. gambiense transmission [18,40]—the role of animal populations was
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one of dilution or zooprophylaxis: essentially leading to tsetse “wasting” bites on inefficient
hosts [50]. Similar insights were derived in a previous modelling study of T. b. rhodesiense,
where in certain areas between 50-90% of meals may be taken by G. fuscipes fuscipes on moni-
tor lizards, which are incompetent hosts [15]. This was evident from a comparison of the sensi-
tivity analyses for both model versions. Without animal-tsetse transmission, one of the most
important parameters with a negative relation to prevalence was a preference for tsetse to bite
animals instead of humans in the area surrounding the main human population. In a similar
study, although with different equations for the host choice model, Davis et al [40] found com-
parable outcomes where the most important parameters in a sensitivity analysis of R, were the
proportion of bites on humans, followed by the susceptibility of Glossina fuscipes to infection,
the tsetse to human ratio, and vector mortality.

Under this scenario where only humans can transmit infection to tsetse, our results suggest
that an integrated approach of screening humans along with vector control will be the most
efficacious and perhaps required: none of the screening coverage levels without vector control
resulted in > 80% of simulations leading to elimination in the high transmission setting,
whereas adding even the lowest level of vector control led to large increases in the probability
of eliminating and reduced the time required to do so. Additionally, increasing the intensity of
vector control was more likely to eliminate HAT transmission, while increasing the intensity of
human screening reduced the time to elimination. Whether adding vector control is cost-effec-
tive however will require model extensions that include health impacts and implementation
costs, and will be explored in a follow-up study on control and elimination strategies (Suther-
land et al, in prep).

We found that if a strategy for interrupting transmission only employs human case detec-
tion, it is necessary and sometimes sufficient that those humans who are at the highest risk, i.e.,
exposed to higher levels of tsetse bites, can be reached effectively. The opposite, an inability to
target high exposure groups, which would hamper the ability to interrupt transmission [24]
which may occur, for example, if people working in areas of high tsetse densities, like planta-
tions, are less likely to attend mobile screening events due to opportunity costs [51,52]. Our
outcomes thus suggest that in order to better identify risk factors leading to heterogeneity in
HAT transmission and determine their implications for control strategies, understanding the
regulation of tsetse population dynamics and biting behavior in relation to humans and non-
human animals, as well as the suite of human activities that lead people to visit high risk areas,
should be a priority. Similarly, measuring the efficiency with which animals can infect tsetse
under natural field conditions would greatly reduce the structural uncertainty in our under-
standing of HAT transmission. The latter may also have important implications for optimizing
elimination strategies by transmission setting: at the high levels, regardless of the presence of
an animal reservoir, our results support an integrated approach. At the moderate and low lev-
els, the conclusions are less straightforward: if an animal reservoir does not exist, either human
treatment or vector control by themselves may be sufficient and still allow for elimination to be
reached with reasonable probabilities and within a reasonable timeframe, whereas if an animal
reservoir does exist, vector control by itself may be sufficient, but relying on human treatment
alone likely will not be.

There are several important assumptions implicit in this modelling study that could affect
our outcomes. The median level of heterogeneity in our parameterizations is high compared
to the common assumption that 20% of the people account for 80% of transmission [24]. How-
ever, prevalence data is often recorded at larger spatial scales (such as provinces or districts)
than the scales at which transmission occurs (such as villages and hamlets). One such example
of heterogeneity comes from a description of epidemiological data in the Bipindi focus (of high
transmission), where 95% of cases were located in only 2 out of 15 villages [20] within the
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focus. In addition to this spatial heterogeneity, the behavioral and environmental factors
described in the introduction would further increase the heterogeneity in exposure. It is possi-
ble that other factors, for instance the occurrence of long-term asymptomatic or chronic carri-
ers [1,53], may also have important effects on HAT transmission. Recently evidence for very
long term asymptomatic carriage in stage I has been reported [54]. However, it remains unclear
how common such occurrences are. In our model we assume a constant rate of progression
from stage I to stage II. This leads to an exponential distribution of time spent within the stage,
with a tail of a few people who would be expected to remain infectious for a very long time
[53]. In the absence of better data on the frequency with which these chronic carriers occur, we
thus assume that the extent to which they occur in our model based on an exponential distribu-
tion is reasonable. Additionally, the impact of heterogeneity, as well as the animal host species
and other factors may vary between foci. Model fitting to data (as it becomes available) that
encompasses human movement and activities as well as heterogeneity in tsetse density and bit-
ing behavior would be required to reduce parameter uncertainty beyond that which we were
able to do here, and corroborate the importance and extent of heterogeneity in HAT
transmission.

We also assumed that prevalence of HAT was at a stable equilibrium in the absence of con-
trol interventions, which is at odds with historical data on a number of epidemic resurgences of
the disease. The reasons for which are unclear, although they have been linked to ecological
and societal disruptions caused by colonization [55]. Furthermore, our current model for
screen & treat and vector control may ignore essential spikes and lapses in coverage by translat-
ing into continuous rates, what are in reality pulses associated with the roll-out of mobile
teams or the set-up of tsetse traps. We have also made the assumption that passive detection of
cases through the regular health only occurs after they have progressed beyond stage I, i.e., that
passive detection has no effect on transmission. If this view proves to be too pessimistic, a base-
line value for the removal rate of humans due to case detection, 7, greater than zero should be
used. As longitudinal data of both prevalence in humans, animals, tsetse, and the performance
of both the active and passive systems in specific foci becomes available, model fitting should
take these considerations into account.

Additionally, we simulated vector control by increasing the daily mortality rate of tsetse, but
not decreasing their abundance, likely underestimating the impact of tsetse control. A more
detailed model could include tsetse population dynamics [56] and the impact of seasonality (in
tsetse population dynamics, human behavior, and control interventions) and could be
extended to include temperature-dependent tsetse life history traits [57].

Although we included a metapopulation structure at a small scale (e.g., village and planta-
tion), we did not allow for connectivity between different foci and resulting migration of either
infected humans, animals, or tsetse [58]. Considering a larger spatial scale and movement pat-
terns would allow for reinvasion following local interruption of transmission and likely make
elimination more difficult to achieve than the results presented here. We assumed that areas at
all ranges of transmission intensities allow for transmission in the absence of immigration of
infected hosts, but if in reality there are instead sources (active foci with high transmission)
and sinks (areas with (very) low intensity that cannot sustain transmission), then this
would have obvious implications for elimination strategies. A large scale metapopulation
modeling study would be a useful follow-up to our current work. It should be noted however
that including such additional sources of complexity will come at a cost of model tractability,
i.e., understanding the model drivers becomes more difficult and idiosyncratic results harder to
explain. Likewise, data fitting and validation against different data sets may become more diffi-
cult; and before adding more complexity, it may be prudent to perform such validation exer-
cises with the current model. One area where additional fitting and validation may shed light is
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the very low to low transmission intensity settings. As indicated, in the version without animal
reservoirs, our fitting procedure led to repeated sampling of very few parameter sets for this
transmission setting. This may be an indication of a model struggling to capture these patterns,
and could indicate the existence of a reservoir of some type (whether this is an animal reservoir,
or migration of infected cases from nearby higher prevalence zones). Until further data fitting
and validation can be undertaken, the results for the low prevalence setting should thus be
interpreted with care.

In conclusion, these results show the potential importance of heterogeneous exposure of
humans to tsetse bites, and interactions between abundance and attractiveness of non-human
animals to tsetse, as important drivers of HAT epidemiology, even when animals do not
constitute hosts for T. b. gambiense. An increased understanding of these ecological dimen-
sions of sleeping sickness is not only expected to lead to a better understanding of risk factors
for transmission, but also to tailoring foci-specific integrated and cost-effective control
approaches.

Methods
Model

Our deterministic model of human African trypanosomiasis (T. b. gambiense) transmission is
defined by a system of ordinary differential equations for compartments of two tsetse, animal
and human populations, indicated by subscript i, where i below is 1 or 2. The state variables
and rate parameters of the model are described in Tables 1 and 2, respectively. We denote each
compartment with upright upper case Latin letters and the total number of individuals in each
compartment by italicized upper case Latin letters.

For humans, we have susceptible (Sy,;), incubating (I};), and two compartments related to
the distinct stages of sleeping sickness, the 1°* or asymptomatic stage (Ap;), and the 2™ stage
where trypanosomes have reached the cerebro-spinal fluid (Ry,;). Finally, we consider a treated
compartment (Ty,;), predominantly to enable downstream application of the model to health
impact and cost-effectiveness studies. The total human population is given by:

NThi(t) = Shi(t) +Ihz‘(t) +Ahi(t) +Rhi(t) +Thi(t)'

We incorporate the assumption made by Artzrouni & Gouteux [18] that humans in
advanced stages of the disease (Ry,;) or those receiving treatment (T},;) are not available to tsetse
bites, and therefore the population sizes used to calculate biting preferences exclude these two
compartments,

Nhi(t) :Shi(t) +Ihi(t) +Ahf(t)~

To better understand the role of animals as reservoir hosts, we develop two separate mod-
els. In the first model, we assume that trypanosomes cannot infect animals and model two
animal populations as constant parameters, N,;. In the second model, we divide the animal
populations into susceptible (S,;), incubating (I,;), infectious (A,;), and recovered (Ry;) clas-
ses. We adopt the assumption that animals can recover from infection and are then tempo-
rarily immune, R,;, before returning to the susceptible state [17]. The total animal
populations are,

Nui(t) :Sui(t) +Iai(t) +Aai(t) +Rui(t)'

In both models, we assume that all animals are subject to bites by tsetse files. For tsetse, we
have susceptible (S,;), incubating or latent (E,;) and infective (I,;) compartments, so that the
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total vector population is given by:

N,(1) = S,() +E () +1,(0).

vi

The equations describing the changes of numbers in human compartments (Fig 1) are given
by:

d‘j:] — B+ T — S, — W 5. (1), )

% = %ﬁm%(f) = (y + Ly, (2)

d2:1 =l — (u, +s +1)A,, (3)

% = 514y — (1 + iy + )Ry, (4)

d;” = 1A, + Ry — (W, + w, +7,)7T,, (5)

% = P+ 1Tio — S — bf( ghz"]illhj(t) + Hh#Z(t)) S, (1), (6)
% = bf Ghzjlij(t)+ Gh‘QNIZ(t))SM(t) — (s + M 7)
dﬁ:Q =nl, — (W, +5, +1)A,,, (8)

% =54, — (4, + 4y + 1Ry, (9)

d;;?Z = 1A, + Ry — (u, + 1, +13) 7T (10)

The population size is assumed to be stable, by allowing the birth terms, By, to consist of the
deaths in all compartments. The rate at which hosts are bitten depends on the frequency at
which tsetse take blood meals, and the relative preference for human and non-human animals.
The probability of biting a human for Ny, is:

0. — 7, (N + (1 = &)N,,)
i 0, (N, + (1 = &N,,) +0,N,
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which can also be specified for the two human populations exposed to the vector population:

0, , = 0, N
1=
0,(Nyy + (1 = &)N,,) + 0, N,
1- &N,
0h2,1 _ o, ( SN,

O-h(Nhl + (1 - )th + aulNal
and for non-human animals:

N

Jal al

6., =
10, (Ny + (1= EN,,) +0,N,

where o; represents the relative preference for human and non-human host types. The proba-
bility of biting a human for Ny, is:

74ENs
0,2 =
7Ny + 05N,
and of biting a non-human animal:
0 _ O-uZ N, a2

w2 0,EN,y + 05N,

The dynamics of infections in animals are given by,

dsai bf eux vz( )
dt - :Bai + r4Rai - N—msai(t) - luaisaﬂ
dI bf 9“1 Vl( )
—= =8 (t) — . I,
dt Nat ﬂl( ) (uﬂl + '/I) ai?
dA

@ —pl — (u, DA,
dt n at (Mal +Sa1) at

df:t‘” = s,A, — (1, + r,)R,, whereiis either 1 or 2. As for humans, the population sizes of

ai?

animals are assumed to be stable, by allowing the birth terms, B;, to consist of the deaths in all
compartments.
The forces of infection on vectors are:

€aOuAy tco,(A, + (1= EA,)

K
S,
N0, +0,(Ny + (1 =¢E)N,,)

A
A, =0, Asvl + o0

N o RS+ eafOu 328 =

alN

A A, €O Ay t+ca,lA
Av2 = Cf()h.Q N_hZSVZ + Calf()a.Q I\]_zs"2 = f 2]\] 20' 2+ o 6hN - "
o a2 a2” a2 h h2

In the models where animals cannot get infected, A,; = A4, = 0, or equivalently, ¢,; = ¢,, =
0, in the equations above and tsetse flies can only get infected from humans although they can
also bite animals. The ordinary differential equations describing changes in the vector
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compartments (with i indicating population 1 or 2) are:

dSvi
7 = ﬁvx(t) - luvsvi(t) _Aw(t)
dEvi
— =A (t) — E
dt 1/1( ) (#V + Ve) vi
dlvi

_— =y E . — I .
dt e v ﬂ'l/ Vi
For ease of fitting and analysis we allow for the simplification that the birth terms B,; consist
of the death terms of all compartments, thereby ensuring stable tsetse populations. The impact
of including tsetse population dynamics, density-dependence, migration and seasonality will

be considered in a follow-up paper.

Estimates of parameter sets

We obtained parameter sets using a Bayesian framework of importance resampling [43,44].
This entailed defining uniform ranges for parameter values; generating 50000 random samples
of sets of parameter estimates drawn from the uniform priors (the same set of random samples
was used for the six different scenarios—except for ¢,; and c,, which were set to 0 for the sce-
narios without animal reservoirs); running the model for 400 years (in order to avoid resam-
pling simulation runs that move toward their equilibrium state at very slow rates) and
obtaining a measure of the goodness of fit using a binomial likelihood function:

L :ﬁ (M) —py

where N is the human population size, p the target prevalence levels associated with high,
medium or low transmission, and x is the simulated number of infected humans at j times 10
thousand days for the simulation run with parameter set, ;; and randomly sampling 500 param-
eter sets from these 50000 proportional to their likelihood,

L,
AL, = =
"ZL

which are samples from a distribution that forms an approximation of the posterior distribu-
tion. Based on these resampled parameter sets, questions of interest can be investigated such as
the impact of vector control or screen and treat on prevalence over time.

Basic reproduction number

The basic reproduction number, R, is defined as the number of secondary infections that arise
from a single infected case in a fully susceptible population. It provides insight into whether a
pathogen can invade a population, and into which parameters of the disease system to target
with control interventions [59]. We derive R, using a next-generation matrix approach [60].
To do so, we separate the Jacobian matrix of the system into T, a matrix with the terms denot-
ing infection events, and X, a matrix with the stage transitions (due to progression through the
incubation period, death, etc.). A 16x6 matrix E of zeroes with a 1 in each column at the row
corresponding to the infection events in T is also specified. The next-generation matrix K is
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then given by -E'T "'E:

0 0 0 0 k; 0]
0 0 0 0 ky ky
e |00 00 ks 0
0 0 0 0 0 kg
kg, ky, ks, 0 0 0
|0 k, O k, 0 0|

where the elements k;; represents the average number of infections (of vectors or hosts of popu-
lation i) arising over the infectious lifetime of one individual of host type j. The columns j cor-
respond to Ap;, Apo, Aa, Awo, Lips and L, respectively. The basic reproduction number, Ry, is
equal to p(K)?, the spectral radius or dominant eigenvalue of the next generation matrix,
squared to reflect the interest in transmission from host to vector to host.

Supporting Information

S1 Table. Rate parameter descriptions, values used and ranges for the model versions allow-
ing for animal reservoirs.
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