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Abstract
Secondary lymphoid organs (SLOs), including tonsils (TS), lymph nodes (LN), and Peyer’s Patches, exhibit complementary immune 
functions. However, little is known about the spatial organization of immune cells and extracellular matrix (ECM) in the SLOs. 
Traditional imaging is limited to a few markers, confining our understanding of the differences between the SLOs. Herein, imaging 
mass cytometry addressed this gap by simultaneously profiling 25-plex proteins in SLO tissues at subcellular resolution. The antibody 
panel targeted immune, stromal, chemokine, epigenetic, and functional markers. For robust cell identification, a computational 
workflow SpatialVizPheno was developed to spatially phenotype 999,970 cells using two approaches, including manual gating and 
semi-supervised gating, iterative clustering, and annotation. LN exhibited the highest density of B cells while the intestinal tissues 
contained the highest proportion of regulatory and follicular helper T cells. SpatialVizPheno identified the most prevalent interaction 
between follicular dendritic cells and stromal cells (SCs), plasmablasts/plasma cells, and the SCs across the lymphoid tissues. 
Collagen-enriched regions were associated with the spatial orientation of B cell follicles in both TS and LN tissues, but not in 
intestinal lymphoid tissues. Such spatial differences of immunophenotypes and ECM in different SLO tissues can be used to quantify 
the relationship between cellular organization and ultimate immune responses.

Significance Statement

Despite the significance of the secondary lymphoid organs (SLOs) and their diverse immune regulatory systems, the single-cell differ
ences between the SLOs remain understudied. Further, the positional interactions among diverse cellular phenotypes in the different 
SLOs remain poorly understood. Herein, imaging mass cytometry with a panel of 25-plex markers revealed the differences in immune 
cell phenotype density, tissue neighborhoods, follicular organization, and stromal networks in tonsil, lymph node, and intestinal 
Peyer’s Patches tissues.

Competing Interest: The authors declare no competing interests. 
Received: October 24, 2023. Accepted: July 9, 2024 
© The Author(s) 2024. Published by Oxford University Press on behalf of National Academy of Sciences. This is an Open Access article 
distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by- 
nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly 
cited. For commercial re-use, please contact reprints@oup.com for reprints and translation rights for reprints. All other permissions 
can be obtained through our RightsLink service via the Permissions link on the article page on our site—for further information please 
contact journals.permissions@oup.com.

Introduction
The secondary lymphoid organs (SLOs) are characterized by their 
rich immune microenvironments as they contain functionally 
specialized phenotypes of B and T lymphocytes and form the in
nate and adaptive immune response. They are distributed across 
the body and they function to expose their lymphocytes to differ
ent antigens and develop antigen-specific immune responses (1). 
The SLOs include the lymph nodes (LN), spleen (SP), tonsil (TS), 
and intestinal Peyer’s patches (PP). Each of these organs exposes 
their lymphocytes to antigens at corresponding sites including 
the lymphatic fluid, the blood, the mouth or nose, and the 

digestive system respectively. B cells are a critical component of 

the secondary lymphoid tissues as they are responsible for the 

antibody-dependent functions of antigen presentation, regulation 

of T cell differentiation and survival, and secreting regulatory and 

proinflammatory cytokines (1, 2). Further, different SLOs also ex

hibit unique immune and stromal cell (SC) organization. For ex

ample, intestinal PP were shown to have distinct stromal 

infrastructures through the populations of fibroblastic reticular 

cells than LV, and hence they have unique immune cell interac

tions (3). In addition, TS SC composition was also found to be dis

tinct from that of the LN as marked by the absence of marginal 
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reticular cells as part of the fibroblastic reticular cells network 
used for antigen sampling. This difference in the capture of the 
antigen materials also results in different immune regulatory tra
jectories (4). Within the SLOs, germinal centers (GCs) are the spe
cialized microstructures for the B cell activation, wherein B cells 
proliferate and diversify their immunoglobulins in the dark zone 
(DZ) through somatic hypermutation, followed by affinity-based 
selection in the light zone (LZ) through their interactions with fol
licular dendritic cells (FDCs) and follicular T helper cells (5–8). 
However, recent work further suggests that events leading to GC 
responses and their structural organization are different in TS, 
LN, and PPs with an impact on clonal selection and GC kinetics 
(9). Given the differences in B cell maturation processes within 
the SLOs, it is essential to study the spatial organization of differ
ent phenotypes of B cells within these tissues and their proximity 
to other innate, adaptive immune cells and SCs, along with the 
ECM that defines a tissue microarchitecture (Fig. 1A and B). This 
information can expand our understanding of the immune micro
environment in the lymphoid tissues and can help infer cellular 
interactions and regulatory function. In turn, it can also help in 
understanding disease-relevant pathways and in designing more 
treatments.

Multiplexed tissue imaging is critical to capture the diverse 
immune phenotypes and decipher spatial distribution in SLOs 
(10). Fluorescence-based platforms including cyclic immuno
fluorescence (CycIF), multiplexed immunohistochemistry, and 
codetection by indexing (CODEX) can yield multiplex images of 
tissues through iterative cycles of antibody labeling, imaging, 
and antibody removal/bleaching (11). Experimentally, these 
techniques are labor-intensive and can take up to 8–12 h per 
cycle. They also require changes in temperatures of the tissue 
samples between the antibody labeling and removal which can 
change the tissue architecture between cycles or cause tissue 
loss (12, 13). Further, they often suffer from signal residuals be
tween cycles that need to be corrected computationally in the 
data preprocessing. Formalin-fixed paraffin-embedded tissue 
samples often exhibit variant levels of autofluorescence which 
can further complicate downstream data processing and make 
it prone to artifacts (13). Cytometry by the time of flight 
(CyTOF) techniques, including imaging mass cytometry (IMC), 
pushes this limit by offering a high-throughput platform that 
combines the principles of flow cytometry and mass spectrom
etry to profile thousands of single cells using up to 40 markers. 
The masses of these metal tags can be used for the readout in
stead of relying on fluorescence tags, resulting in a highly sensi
tive measurement with minimal spillover and background noise. 
All the markers are detected in one round instead of relying on 
iterative cycles of labeling and marker removal. Further, the 
metal tags are rare to find in biological samples yielding more 
quantitatively accurate measurements (14, 15). Therefore, IMC 
was the best fit for this high-parameter spatial study due to 
the highly sensitive signal, the minimal spillover between mass 
channels, and the low batch effect. IMC was previously used to 
profile the spatial distribution of the marginal zone B cells and 
the classical memory B cell population in lymphoid tissues 
(16). The classical memory B cells were found to be localized 
close to the peripherals of the lymphoid tissue for potential 
pathogen exposures while the marginal zone B cells were posi
tioned between the GCs and the epithelium around them (16). 
It was notable that B cell populations were present in spatially 
distinct microanatomical niches from one another (16). IMC 
was also previously utilized to compare the immune microenvir
onment in TS tissues from healthy donors and diseased donors 

with chronic tonsillitis (17). A significant correlation was identi
fied between CD68+ monocytes and the expression of granzyme 
B in diseased TS tissues (17). Further, CD3+CD4+ T cells were 
more predominant than CD3+CD8+ T cells in the diseased TSs, 
highlighting the central rule of the helper T cells in mediating 
the GC response in the case of infections (17). High-parameter 
imaging technologies investigated the spatial context of a few 
immune subsets; however, the number of annotated B cell and 
T cell phenotypes was limited, and understanding of the ECM or
ganization in lymphoid tissues is still lacking.

Herein, we performed a comparative spatially resolved single- 
cell immunophenotyping analysis in multiple lymphoid tissue 
types using the IMC spatial proteomics approach and a compan
ion computational tool: SpatialVizPheno. To dissect the GC organ
ization, several immune (CD3, CD4, CD8, CD20, CD38, BCL6, 
ICOS, CD11b, CD11c, CD21, PD-1, CD27, CD138, CD86, CD83), stro
mal (Vimentin, Collagen I), chemokines (CXCR4, CXCR5), epigen
etic (EZH2, H3K27me3), and functional markers (FoxP3, Ki67, 
C-Myc) markers were profiled in SLOs (Fig. 1A). This marker panel 
was used to understand the spatial difference of immune cells 
phenotypes and the stromal network in the SLOs. The annotated 
phenotypes included diverse B cells across their differentiation 
into the light zone (LZ B) and the dark zone (DZ B) phenotype 
found in GCs, where B cell maturation takes place in response to 
infection or vaccination (Fig. 1B). Further, several phenotypes of 
T cells were also annotated including helper T cells (Th), follicular 
helper T cells (Tfh), exhausted T cells (Tex), regulatory T cells 
(Treg), and cytotoxic T cells (Tc). It also segmented FDCs, SCs, 
and plasmablasts/plasma cells (PBs/PCs). To define the spatial or
ganization of adjacent cells, the positional interactions and the 
crosstalk between cellular phenotypes were defined using neigh
borhood analysis in distinct lymphoid tissues. The spatial and or
ganization of the ECM proteins (collagen and vimentin) were then 
associated with a spatially unique orientation of follicle polariza
tion and ECM-rich image features in TS, LN, and intestinal PPs 
tissues.

Results
SpatialVizPheno enables spatially resolved, 
single-cell, multiplexed protein profiling of B and 
T cell phenotypes in lymphoid tissues using the 
IMC dataset
Herein, we designed an antibody panel of 25 markers (Table S1) 
spanning immune surface markers, cytokine markers, epigenetic 
regulators, and extracellular matrix (ECM) proteins. We limited 
ourselves to a panel of 25 that worked reliably and reproducibly 
across all three SLOs, although with other tissues it may be pos
sible to go with a higher number of markers. The multiplexed anti
body panel was designed using commercially available antibodies 
preconjugated to appropriate metal tags (n = 17) and custom- 
conjugated antibodies to unique metal tags (n = 8) following estab
lished protocols (18). We used this panel to profile three different 
SLO including TS, LN tissues, and intestinal PP (Figs. 1C and S1–S6 
and Table S2).

Concurrently, we also developed SpatialVizPheno which is a 
highly modular computational workflow to spatially visualize 
phenotypes in the immune-rich microenvironments in the sec
ondary lymphoid tissues using the high-parameter dataset gener
ated using IMC. SpatialVizPheno spatially annotated the 
phenotypically similar immune phenotypes using two methods. 
Firstly, SpatialVizPheno leveraged the widely used FlowJo software 
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to manually gate phenotypes on imaging datasets using sequen
tial and Boolean gating methods. Secondly, SpatialVizPheno also 
used an iterative process of unsupervised clustering and manual 
annotation to separate or merge clusters resulting in clusters 
with matched biological phenotypes. SpatialVizPheno then used 
both methods simultaneously to compare the neighborhood 

among the cellular phenotypes in the different tissue types. It 
also analyzed the phenotypes infiltrating within or around stro
mal regions to shed more light on the importance of the stromal 
network in secondary lymphoid tissue immune functions. It also 
analyzed the effect of the stromal network on follicles’ organiza
tions and immune infiltration.

Fig. 1. Imaging mass cytometry enables deciphering of immune microenvironment in lymphoid tissues. A) Several human lymphoid tissues were used to 
understand the organization of B cell follicles and germinal centers including TS, LN, and intestinal PP. IMC can provide spatial information on the unique 
cellular phenotypes in distinct tissue regions including dark zone, light zone, and mantle zone. Created with BioRender.com. B) The cell gating approach 
consisted of classifying all cells in the datasets into either B cells, T cells, or others. Under the B cells tree, cells were further divided into the germinal 
center or nongerminal center B cells. The germinal center B cells were further split into light-zone B cells or dark-zone B cells. T cells were divided into 
cytotoxic or helper T cells. Cytotoxic T cells were further split into exhausted T cells or follicular T cells. Similarly, helper T cells were split into 
T-regulatory cells or follicular T cells. Finally, cells under the other category were split into stromal cells, follicular dendritic cells, myeloid-linage cells, or 
plasmablasts/plasma cells. Created with BioRender.com. C) A panel of 25 markers was used to decipher the follicle composition in three different 
lymphoid tissue types including TSs, LN, and intestinal PP.
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Manual cell gating distinguishes canonical cell 
types in the lymphoid tissues with the tradeoff of 
the total number of gated cells
The first step to understanding the spatial difference of the im
mune cell phenotypes in the SLOs is to annotate the high- 
parameter data generated using IMC and classify the cellular pop
ulations that make up the tissues. Herein, SpatialVizPheno incorpo
rated the manual gating approach relying on the hierarchical and 
Boolean single-cell gating on FlowJo software (Figs. 2A and S7). A 
sequential gating approach was followed using the rationale in 
Fig. 1B. This approach starts by gating the entire cell population 
based on the expression of CD3 and CD20. The CD3−CD20+ popu
lation was further sub-divided into GC B cells based on the expres
sion of CD27+CD38+. GC B cells were then divided into LZ B cells 
based on the expression of CXCR5+, and DZ B cells based on the ex
pression of CXCR5−Ki67+. Further, the CD3+CD20− population was 
divided into Th cells based on the expression of CD4 and Tc based 
on the expression of CD8. Th cells were further sub-divided into 
Tfh based on the expression of CD27+CXCR5+PD-1+, and Treg 
based on the expression of FoxP3+. Tc cells were sub-divided 
into Tex based on the expression of PD-1+ and follicular cytotoxic 
T (Tfc) cells based on the expression of CXCR5+. Finally, the 
CD3−CD20− population was divided into FDCs based on the ex
pression of C11b+CD21+, myeloid-derived cells based on the ex
pression of CD11b+CD11c+, SC based on the expression of 
collagen and/or vimentin, and PBs/PCs based on the expression 
of CD27+CD138+. The manual cell gating separated the tissue re
gions and the cellular phenotypes in the different types of lymph
oid tissues resulting in 16 clusters and a total of 899,921 annotated 
cells (Figs. 2B and D and S8–S11).

Overall, this approach failed to capture the majority of DZ B 
cells in the follicles of the lymphoid tissues (Fig. 2B and D). This 
could be due to high cell density in this region which resulted in 
imperfect cell gating and later affected the phenotypic identifica
tion steps. The separation between the cellular phenotypes was 
distinct with minimal shared cells among the different pheno
types due to the nature of the sequential as well as Boolean gating 
applied to the dataset (Fig. 2C, E, and F). The lymphoid tissues 
showed a heterogeneous composition of the cellular phenotypes 
with a few interesting patterns (Fig. 2G). LN tissues showed a 
markedly higher density of B cells and Tc cells. Further, the intes
tinal PP showed a notably higher density of Treg, Tfh, Tex cells, 
and stromal regions with collagen and/or vimentin expression 
(Fig. 2G).

Using FlowJo to analyze high-content imaging data was intro
duced to quantify complex cellular populations on a large scale 
and across different experiments. It also offers a platform for a 
streamlined visualization of the cellular phenotypes on the tissue 
images for additional validation (19, 20). This workflow started 
with pixel classification using the software iLastik (21) to manual
ly label pixels as “nuclear” or “background,” and train a random- 
forest classifier for semantic segmentation. iLastik generated 
probability masks for each label which were later used for 
single-cell segmentation. The raw IMC data along with the prob
ability masks generated from iLastik were then fed into the 
CellProfiler software to segment single cells and generate single- 
cell masks (22). The single-cell masks were then used to extract 
single-cell protein expression data. Following the pipeline used 
in specter (19), IMC data were converted to.fcs (flow cytometry 
standard) file format using the x and y positions as additional pa
rameters. These files were then used for manual gating on FlowJo 
(Fig. 2A).

Semi-supervised cell gating distinguishes 
transitional cell types in the lymphoid tissues 
with the tradeoff of background noise detection
The tissue composition of the lymphoid tissue is complex due to 
the phenotypically similar immune cells and dense tissues. 
Thereby, SpatialVizPheno incorporated another approach to clas
sify the cellular phenotypes and to identify the tissue regions. 
The automated semi-supervised approach was developed 
through iterative clustering using rounds of the Leiden clustering 
approach and cluster annotation based on preidentified marker 
expression (Fig. S7A). This process was repeated until the cellular 
phenotypes of interest can be detected on the lymphoid tissues 
which took three rounds for this dataset (Fig. 3A). This approach 
resulted in 18 clusters and showed superior tissue region separ
ation compared to the manual gating and annotated more cells 
adding up to 999,970 cells (Figs. 3B and D and S12–S15). Several tis
sue regions were detected including follicular regions (LZ, DZ, T B 
cell boundary) as well as stromal regions including the crypted re
gions (Fig. 3B and D). The cell count of the classified phenotypes 
using the semi-supervised approach was higher than that of the 
manual gating approach which led to better spatial separation 
among the cellular phenotypes (Fig. 3C, E, and F). Similar to the 
manual gating results, the lymphoid tissue composition was het
erogeneous with a few trends per tissue type. The intestinal PP 
showed a higher density of Tfh and SCs and the LN showed a high
er density of T cells (Fig. 3G). Interestingly, we identified three add
itional clusters that were not assigned specific phenotypes. These 
clusters include CXCR5+ B cells, Ki67+ cells, and an unknown clus
ter. The CXCR5+ B cells were abundant in TS and LN tissues 
whereas Ki67+ cells were prevalent in the intestinal tissues. 
However, the unknown cluster was expressed in all tissue types.

These clusters were generated through automated iterative 
clustering and annotation to yield the best cluster separation 
and phenotype identification. The clusters generated using this 
approach were also compared with the clusters generated from 
the manual gating and ranked based on their single-cell pheno
type overlap using cross-tabulation scoring. This process was 
done for the three rounds where the first round resulted in 24 clus
ters (Fig. 4A). The first round showed poor overlap with the man
ual gating clusters with the majority of the overlap being lower 
than 0.2 or 20% (Fig. 4B). It also resulted in poor separation be
tween the LZ and the DZ and within the individual phenotypes 
in the LZ and the DZ (e.g. FDCs and Tfh) (Fig. 4C). A subset of clus
ters was further split into sub-clusters or merged into the same 
clusters which resulted in 20 clusters for the second round 
(Fig. 4D). This round showed improved overlap with the manual 
gating clusters with the highest overlap (Fig. 4E). It also showed 
enhanced tissue region identification on all lymphoid tissues; 
however, the LZ B cells, DZ B cells, and FDCs were not uniquely 
separated in the tissues (Fig. 4F). Thereby, another clustering 
round was performed resulting in 18 clusters (Fig. 4G) with the 
best overlap with the manual gating clusters (Fig. 4H) and tissue 
regions separation and cellular phenotype identification (Fig. 4I).

Tissue neighborhood analysis reveals unique 
interactions among cellular phenotypes in the 
lymphoid tissues
SLOs have been studied before in the context of health and dis
ease; however, the spatial distribution and the neighborhood 
among immune phenotypes are not yet well studied. This can 
shed light on the similarities and differences among the different 
tissue types and help us develop a deeper understanding of 
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adaptive immunity. Thereby, SpatialVizPheno incorporated an add
itional analytical step in the workflow to quantify the spatial cor
relations between the identified phenotypes within TS, LN, and 
intestinal PPs. This was accomplished by quantifying the count 
of the cells that belong to a specific phenotype within a radius of 
20-µm from each cell centroid and calculating their significance 
using a permutation-based approach (Fig. S16). This was per
formed for phenotypes identified from both the manual gating 

approach and the semi-supervised approach to understand their 
similarities and differences.

For TS tissues, the manual gating showed that PBs/PCs were 
found to be neighboring DZ B and FDCs. Additionally, SCs were 
found to be spatially correlated with FDCs (Figs. 5A and C, S17, 
and S18). On the other hand, the semi-supervised gating approach 
revealed more interesting neighboring interactions such that it 
showed a high correlation between the FDCs and Tfh, as well as 

Fig. 2. Manual cell gating results in specific cell type separation with the tradeoff of the total number of gated cells. A) The workflow of the manual gating 
consisted of pixel classification using iLastik software with two labels including the nucleus and the background. The generated probability masks along 
with the lymphoid tissue IMC raw data were then added to CellProfiler software for cell segmentation. The single-cell data were then added to FlowJo 
software for cellular phenotype gating. Created with BioRender.com. B, D) Representative tissue images showing the distribution of the gated cellular 
phenotypes on tonsil, lymph node, and intestinal PP tissues. The scale bar is 500 µm. C, E) t-SNE plot showing the distribution of the gated phenotypes on 
the tonsil, LN, and intestinal PP tissues in panels b and d respectively. F) t-SNE plot showing the distribution of the gated phenotypes from all the six 
human tissue samples included in the study. G) Bar plot showing the composition of the human tissues from the gated phenotypes.
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SCs cells. PBs/PCs and SCs as well as Tc and Th were also found to 
be spatially correlated (Figs. 5B and C, S19, and S20).

For the LN tissues, the manual gating showed close spatial 
neighboring between Tc cells with Th cells which are similar to 
TS tissues. Moreover, there was high spatial interaction between 
FDCs and SCs as well as PBs/PCs with SCs, matching with the find
ings from the TS tissues (Figs. 5A and C, S17, and S18). Similar to 

manual gating, semi-supervised gating showed high spatial 
neighborhood interaction between Tc and Th as well as between 
FDCs and SCs. It also showed high interaction between DZ B cells 
and SCs as well as between Tfh and LZ B cells (Figs. 5B and C, S19, 
and S20).

For the intestinal tissues, the manual gating showed high 
neighborhood interaction between Tc and Th, between PBs/PCs 

Fig. 3. Semi-supervised cell gating results in specific cell type separation with the tradeoff of background noise detection. A) The workflow of the 
automated semi-supervised gating began with cell segmentation, followed by iterative cycles of Leiden unsupervised clustering and manual annotation 
based on pre-established marker expression. This iterative process continued until the desired cellular phenotypes were detectable within the lymphoid 
tissues. In this dataset, it required three rounds of iteration to achieve this goal. Created with BioRender.com. B, D) Representative tissue images showing 
the distribution of the gated cellular phenotypes on tonsil, lymph node, and intestinal PP tissues. The scale bar is 500 µm. C, E) t-SNE plot showing the 
distribution of the gated phenotypes on the tonsil, LN, and intestinal PP tissues in (B) and (D), respectively. F) t-SNE plot showing the distribution of the 
gated phenotypes from all the six human tissue samples included in the study. G) Bar plot showing the composition of the human tissues from the gated 
phenotypes.
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and SCs similar to the TS and LN tissues. Interestingly, there was 
also a high interaction between PBs/PCs and Tfc, FDCs and Treg, 
as well as Tfc and SCs which are all unique to the intestinal tissues 
(Figs. 5A and C, S17, and S18). On the other side, the semi- 
supervised gating showed high interaction with FDCs and Tfh, 
Tc, and Treg cells which matches with the manual gating results 
(Figs. 5B and C, S19, and S20). Overall, the most predominant 
neighborhood interaction across tissue types and donors was be
tween PBs/PCs and SCs. Intestinal tissue showed the most variant 

distribution of spatial neighborhoods among the immune pheno
types signifying their diverse immune microenvironment.

Collagen organization changes the follicles’ 
organization and polarity
Given the importance of the stromal network in the SLOs, we 
sought to investigate the correlation of the stromal network 
with the organization of follicles and the polarization of GCs. 

Fig. 4. The iterative clustering and annotation identify tissue regions and unique cellular phenotypes on the lymphoid tissues. A, D, G) Heatmap showing 
the marker expression profile of the results from the first, second, and third clustering and annotation rounds respectively using the unsupervised Leiden 
clustering. B, E, H) Bar plot showing the overlap between clusters generated from the manual gating and the clusters generated from the first, second, and 
third clustering and annotation rounds respectively. C, F, I) Representative tissue images showing the distribution of the clusters onTS, LN, and intestinal 
PP tissue images with the clusters generated from the first, second, and third clustering and annotation rounds, respectively. TS, tonsils; LN, lymph 
nodes; INT, intestinal Peyer’s patch samples.
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This can shed light on the effect of the stromal structure on the or
ganization as well as the function of GCs in response to infections 
and vaccinations. SpatialVizPheno analyzed the organization of the 
different phenotypes of immune cells around stromal regions by 
annotating collagen-expression regions as an individual zone 
and referred to as zone 1. Further, eight sequential additional 
areas were annotated away zone 1 such that each zone is 50-µm 
away from the former zone (Fig. 6A). Immune cell phenotypes in 
all nine zones were analyzed to understand their spatial proximity 

to stromal regions (Fig. 6A). This analysis was performed on the 
annotated B cell phenotypes (Fig. 6B) as well as T cell phenotypes 
(Fig. 6C) on all lymphoid tissues included in the study.

PBs/PCs show increased infiltration away from collagen- 
expressing regions in intestinal PP and in the LN tissues. 
However, the distribution of this population is variable in TS tis
sues (Fig. 6B and D). Memory B cells show variable infiltration in 
the stromal vicinity of TS tissues; however, their infiltration in
creases across the zones away from collagen regions in LN tissues. 

Fig. 5. Tissue neighborhood interaction analysis reveals the unique connections between cellular phenotypes using the manual gating and unsupervised 
clustering approaches. A) Heatmap showing the interaction between the resulting cellular phenotypes using the manual gating approach. The positional 
interaction is scaled between −0.05 and 1. B) Heatmap showing the interaction between the resulting cellular phenotypes using the automated 
semi-supervised approach. The positional interaction is scaled between −0.05 and 1. C) Visual representations of the spatial neighborhood interactions 
using IMC raw images and phenotypic clusters generated using both the manual and the automated semi-supervised gating.
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Intestinal tissues have the opposite distribution of this population 
(Fig. 6B and E). Treg cells were found to have a similar trend in TS 
and LN tissues where they show increased infiltration until zone 4 
and then the permeation of this population subsides. Intestinal 
PPs, on the other side, show variable distribution of Treg (Fig. 6C 
and F). Tfh cells show a consistent trend across all lymphoid tis
sues such that the infiltration increases further away from stro
mal/collagen-expressing regions. However, this trend was more 
predominant in TS and LN tissues (Fig. 6C and G). Overall, our 
study highlighted the heterogeneity among lymphoid tissue types 
for the single-cell distribution concerning the stromal network.

To further understand the organization of the SLO, 
SpatialVizPheno also analyzed the polarization of the follicles in 
secondary lymphoid tissues. Herein, two methods were used to 
understand the correlation between the stromal network and fol
licles’ morphology and organization. The follicles from the TS, LN, 
and intestinal tissues were annotated using a subset of pheno
types that are known to be prevalent in the follicles. Then, the fol
licles’ segmentation was automated in all the lymphoid tissues, 
adding up to 95 follicles. Further, collagen-expressing regions 
were divided into square patches with the size of 10 µm × 10 µm. 
A circle with a radius of 500 µm was added to the center of each 

Fig. 6. Immune cell phenotypes show distinct distribution around stromal regions in secondary lymphoid tissues. A) The workflow of this analysis 
included annotating collagen-expressing regions and dividing the regions around the collagen into nine zones and each zone was 50-µm away from the 
previous zone. The T cells and the B cell phenotypes within the nine zones were then analyzed across the different secondary lymphoid tissues. Created 
with BioRender.com. B) IMC images showing the T cell markers in the dataset along with representative tissue images showing the annotated B cell 
phenotypes in the dataset. C) IMC images showing the B cells markers in the dataset along with representative tissue images showing the annotated T cell 
phenotypes in the dataset. D–G) Bar plot showing the count of D) plasmablasts/plasma cells, E) memory B cells, F) regulatory T cells, and G) follicular 
helper T cells along the nine annotated zones in the vicinity of collagen-expressing regions.
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follicle and collagen search was performed within the circle 
through angular sampling. Collagen-expressing patches were 
averaged and the direction with the highest collagen expression 
was used as the major axis. This technique was referred to as 
collagen-based orientation. On the other hand, another technique 
was used to define the major and the minor axes of the follicle 
which relied on the morphology of the single follicles. The longest 
radius of the follicle/ellipse was used as the major axis and re
ferred to as shape-based orientation (Fig. 7A).

The collagen-based and shape-based orientations were signifi
cantly different for TS and LN tissues (Figs. 7B–E, S21, and S22). 
Conversely, the collagen-based orientation showed high similar
ity to that of the shape-based orientation for the intestinal tissues 
(Figs. 7B–E and S23). To quantify the difference between the two 
methods, we analyzed the angle difference between the major 
axes using both the collagen-based and the shape-based orienta
tion (Fig. 7F–H). For TS tissues, 13 out of 44 follicles had an angle 
difference between 0.65π < x ≤ 1π, 16 follicles had an angle differ
ence between 0.35π < x ≤ 0.65π, and 15 follicles had an angle differ
ence between 0 < x ≤ 0.35π (Fig. 7F and H). For LN tissues, 15 out of 
27 follicles had an angle difference between 0.65π < x ≤ 1π, 5 fol
licles had an angle difference between 0.35π < x ≤ 0.65π, and 7 fol
licles had an angle difference between 0 < x ≤ 0.35π (Fig. 7G). For 
intestinal tissues, 5 out of 24 follicles had an angle difference be
tween 0.65π < x ≤ 1π, 6 follicles had an angle difference between 
0.35π < x ≤ 0.65π, and 13 follicles had an angle difference between 
0 < x ≤ 0.35π (Fig. 7H). TS and LN tissues exhibited collagen I-rich 
regions due to the collagen conduit system and the crypt epithe
lium, respectively. This rich stromal network changed the organ
ization of follicles in both TSs and LN, but not in the intestinal 
tissues.

To further understand the effect of the stromal network, 
SpatialVizPheno also analyzed the gradient of the markers’ expres
sions, and the frequencies of immune phenotypes across the ma
jor and the minor axes generated from both the collagen-based 
orientation and the shape-based orientation (Fig. 8A). For TS tis
sues, CXCR5 was found to have a decreasing expression across 
the major axis in the collagen-based orientation, but not in the 
shape-based orientation (Fig. 8B). This pattern was also visualized 
in the phenotypes for the LZ B cells that have a decreasing fre
quency across the major axis in the collagen-based orientation 
(Fig. 8E). The expression of Ki67 along the major axis showed a sig
nificantly greater increase in the collagen-based orientation com
pared to the shape-based orientation (Fig. 8B). Similarly, this trend 
was visualized for the DZ B cells in the collagen-based orientation 
to a higher extent than in the shape-based orientation (Fig. 8E).

For LN tissues, Ki67 had a decreasing gradient across the major 
axis in the collagen-based orientation but had an increasing gradi
ent across the major axis in the shape-based orientation (Fig. 8C). 
The same trend was visualized for DZ B cells as well (Fig. 8F). For 
intestinal tissues, there was no observed difference in marker ex
pression gradient or the immune phenotypes between the 
collagen-based orientation and the shape-based orientation 
(Fig. 8D–G). Therefore, the orientation of collagen expression is 
predictive of the LZ and the DZ polarization for the follicles in 
TSs and LN tissues, but not for intestinal tissues.

Discussion
Herein, the immune microenvironment in SLOs including TS (n =  
2), LN (n = 2), and intestinal PP (n = 2) was studied with the high- 
parameter IMC technology using an antibody panel of 25 markers 
that spans B cell, T cell, SC, and key regulatory markers (e.g. 

chemokines, proliferation, and epigenetic). To dissect the single 
cells and high-parameter IMC dataset, a highly modular computa
tional workflow, SpatialVizPheno, was developed. Altogether, we 
have shown the rich immune cellular phenotypes among the tis
sues and highlighted the difference among the different SLOs in 
terms of the spatial neighborhoods, the stromal network, and 
the follicular organization (Fig. 1).

To account for the complex tissue composition, SpatialVizPheno 
incorporated two methods to identify phenotypically similar im
mune cells. The first approach is the manual gating approach 
that involves converting IMC data to a.fcs file format that is com
patible with the widely used FlowJo software to allow for the cell 
phenotype gating in a fashion similar to flow cytometry data (19) 
(Fig. 2A). This approach resulted in the phenotypic identification 
for 16 cellular phenotypes on the SLOs tissues (Fig. 2B and D). 
Due to the nature of the sequential cell gating applied on 
FlowJo, there were minimal shared cells among the identified phe
notypes which resulted in better segmentation of phenotypes 
even for nonprevalent populations (e.g. plasmablasts/plasma 
cells) (Fig. 2C, E, and F).

The second approach is the automated semi-supervised gating 
that involves iterations of unsupervised clustering followed by 
cluster annotations based on preidentified marker expressions 
for the unique phenotypes. This process was repeated (n = 3) until 
each of the clusters corresponded to a unique cellular phenotype 
(Fig. 3A). Some clusters were found to contain several phenotypes 
that needed to be split while other clusters showed individual 
marker expressions that needed to be merged (Fig. 4A, D, and G). 
This approach identified 18 cellular phenotypes that highlighted 
the difference between the SLOs (Fig. 3B and D). LN showed the 
highest density of B cells, and the intestinal PP showed the highest 
density of Tfh cells (Fig. 3G). Prior studies showed that the intes
tinal PP had an increased Tfh differentiation driven by the gut 
microbiota. This makes the immune microenvironment in the in
testinal PP resemble the early stages of the GC response leading to 
the generation of diverse low-affinity B cell clones and antibodies 
to fight the microbial antigens (23).

To further understand the interactions among the cellular phe
notypes, the spatial neighborhood was quantified as the probabil
ity of cell phenotypes interacting within a distance of 20 µm. This 
was performed for all the phenotypes generated using the manual 
gating, and the semi-supervised gating (Fig. 5A and B). In TS tis
sues, DZ B cells were found to be neighboring PBs/PCs using the 
manual gating approach (Figs. 5A and C, S17, and S18). Prior re
search showed that PBs as well as PCs are formed around the 
boundary between DZ B cells and the surrounding stroma. This 
is derived by Tfh cells secretion of IL-21 that derives the produc
tion of PBs, the migration of PCs, and fibroreticular cells secretion 
of TNFSF13 (APRIL) which further supports the proliferation of PCs 
(24, 25). While both PBs and PCs can localize at the GC T cell zone 
(GC T) near the DZ boundary, it was not possible to make this dis
tinction due to various reasons. First, PBs and PCs exhibit similar 
protein expression profiles, making it difficult to distinguish be
tween them with the antibody panel included in this study. For ex
ample, CD138 is a commonly used marker to identify PCs, but it 
could also be expressed at variant levels on PBs. CD27 and Ki67 
are other markers that can be expressed by both PCs and PBs at 
different levels (26). Additionally, our dataset could be capturing 
the transition of phenotypes from PBs to PCs which is evident by 
the neighborhood interaction results. Further, FDCs were posi
tioned close to SCs and PBs/PCs in TS tissues using the manual 
gating approach (Figs. 5A and C, S17, and S18). FDCs are a unique 
population of dendritic cells because they are not from bone 
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marrow hematopoietic stem cell origin but rather from a mesen
chymal origin. Thereby, they are considered to be SCs and part of 
their function is to maintain the microarchitecture of the follicles. 
This could explain its correlation with the stromal network (27). 

Moreover, FDCs’ affinity selection during the GC response was 
shown to determine the fate of B cells and the production of plas
ma cells. They also secrete critical cytokines required for B cell ac
tivation and survival including B cell activating factor (BAFF) 

Fig. 7. Stromal cell network changes the morphology and the orientation of follicles in secondary lymphoid tissues. A) The workflow of this analysis 
included automated segmentation of the follicles and dividing the collagen-expressing regions into square patches with the size of 10 µm × 10 µm. Then, 
a circle with a radius of 500 µm was added to the center of the segmented follicle and the circle was divided into 40 sections where collagen+ patches were 
searched in each section for the angular sampling. The collagen expression of the patches in the sections was averaged for the angular binning. The 
direction with the highest collagen expression was used as the major axis for the collagen-based orientation. On the other hand, the shape-based 
orientation relied on the morphology of the follicles where the longest side of the follicle/ellipse was used as the major axis. Created with BioRender.com. 
B, D) Representative images show the collagen-based follicle orientation for the tonsil, lymph node, and intestinal tissues. Collagen expression is in 
yellow, the major axis in blue, and the minor axis in red. C, E) Representative images show the shape-based follicle orientation for the tonsil, lymph node, 
and intestinal tissues. Collagen expression, the major axis, and the minor axis are shown. F–H) Histogram showing the distribution of angle difference 
between the major axes generated using the collagen-based and shape-based orientation for the segmented follicles in F) the TS, G) the LN, and H) the 
intestine tissue samples. The angle differences in the range 0.65π < x ≤ 1π, 0.35π < x ≤ 0.65π, and 0 < x ≤ 0.35π are presented.
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which is directly linked to plasma cells’ survival which can ex
plain the neighboring between FDCs and PBs/PCs (28). Further, 
there was a high correlation between the FDCs and Tfh cells as 
well as between Tc and Th in TS tissues using the semi-supervised 
gating (Figs. 5B and C, S19, and S20). At the LZ, centrocytes were 
shown to receive the B cell receptor (BCR) stimulation by FDCs 
and repeated stimulation by Tfh to maintain the GC response 
which could explain the neighboring between FDCs and Tfh (25). 
Further, it has been shown that the presence of CD8+ T cells (Tc) 

is colocalized with Tfh cells in the GCs to limit their rapid expan
sion and to keep the GC response in check which justifies the 
neighboring between Tc and Th (29).

LN tissues exhibited several shared neighborhood interactions 
with the TS tissues. However, the semi-supervised gating also 
showed a high interaction between DZ B cells and SCs as well as 
between Tfh and LZ B cells (Figs. 5B and C, S19, and S20). The rap
idly dividing DZ B cells are known to express CXCR4 which attracts 
them to the ligand CXCL12 expressed by the stromal network. 

Fig. 8. Stromal cell network changes the organization of immune cell phenotypes in secondary lymphoid tissues. A) The workflow of this analysis 
included analyzing the gradient of marker expression, and the frequencies of immune phenotypes across the major and the minor axes generated from 
both the collagen-based orientation and the shape-based orientation. Created with BioRender.com. B–D) Heatmap showing the frequencies of marker 
expression gradient across the major and minor axes in the follicles using the collagen-based orientation and the shape-based orientation in (B) TS, (C) 
LN, and (D) intestinal tissues. E–G) Heatmap showing the frequencies of immune cell phenotypes across the major and minor axes in the follicles using 
the collagen-based orientation and the shape-based orientation in (E) TS, (F) LN, and (G) intestinal tissues.
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This interaction is critical to localizing the centroblasts within the 
DZ and maintaining the GC response (5). Further, Tfh cells are lo
calized near LZ B cells to maintain their activation along with 
FDCs (25). Overall, it can be noted that the immune cells distribu
tion within TS and LN tissues is very similar suggesting the same 
sequence of events during the GC response.

Intestinal tissues showed several unique neighborhood inter
actions including PBs/PCs and Tfc, FDCs and Treg, as well as Tfc 
and SCs using the manual gating approach (Figs. 5A and C, S17, 
and S18). Further, the semi-supervised gating showed several 
unique interactions including FDCs and Tfh, Tc, and Treg cells 
which matches with the manual gating results (Figs. 5B and C, 
S19, and S20). In contrast to TSs and LN that produce 
antigen-specific GC response, intestinal tissues are under chronic 
inflammation to induce an ongoing response to food antigens. 
This continuous immune response needs to be tightly regulated 
to prevent systemic autoimmunity. This is controlled by Treg cells 
and Tc cells which could explain the higher prevalence of these 
cell types and their neighboring with other cells. Even though 
the exact neighboring interactions cannot be explained, the high
er density of suppressive T cell phenotypes can explain this obser
vation (30).

The most observed neighborhood interaction in all tissue types 
was between FDCs and SCs and between PBs/PCs and SCs. In re
sponse to antigen, the stromal network along with FDCs is known 
to expand and polarize the GC into the LZ and the DZ. This ensures 
the interactions between immune cells in the GC and the main
tenance of the immune response (5). Further, plasma cells were 
shown to rely on colocalization with SCs for both migration and 
survival. For example, the reticular SCs form a plasma cells niche 
through their expression of CXCL12 which acts to both maintain 
plasma cells’ survival and to derive plasma cells migration to 
the bone marrow (31). Further, intestinal tissue showed the 
most unique distribution of spatial neighborhoods among the im
mune phenotypes signifying their diverse immune microenviron
ment. LN tissues showed the highest spatial neighborhood 
correlations with several phenotypes of T cells which could poten
tially be due to the higher T cell population (Fig. 5A and B) (5).

Inspired by the spatial neighborhood results, we further sought 
to understand the distribution of SCs in the SLO and their neigh
boring phenotypes. The stromal network in the secondary lymph
oid structures acts as a scaffold for the organization of immune 
cells. It is responsible for transporting antigens, facilitating cellu
lar migrations or adhesion, and maintaining chemokines gra
dients (32). Collagen-expressing regions were segmented from 
all tissues in the study and annotated as zone 1. The neighboring 
regions were segmented into eight sequential areas away from 
zone 1 where each zone is 50 µm away from the preceding one 
(Fig. 6A). The cellular phenotypes existing within the nine zones 
were later quantified (Fig. 6D–G). Plasmablasts/plasma cells were 
found to have a similar pattern to memory B cells in TS and LN tis
sues (Fig. 6D and E). This spatial neighborhood can be attributed to 
memory B cells differentiating into the plasmablasts/plasma cells 
upon antigen re-exposure (33). Further, plasmablasts/plasma cells 
were found to increase in infiltration away from collagen-expressing 
regions (Fig. 6D). Collagen is predominantly expressed in the sub
mucosal layer of the intestinal PPs and PBs/PCs were previously 
shown to be populated in the subepithelial domes which is distal 
to the submucosa. This could explain the increased infiltration of 
PBs/PCs away from collagen-expressing regions (9, 10).

Memory B cells showed a variable distribution across the zone 
in TS tissues. On the other side, LN tissues have a consistent in
crease of memory B infiltration across the zones, and the opposite 

is observed for intestinal tissues (Fig. 6E). Memory B cells gener
ated in TS tissues primarily remain localized within the lymphoid 
tissues, whereas memory B cells generate in LN tissues migrate to 
peripheral tissues throughout the body. TS tissues are part of the 
mucosal-associated lymphoid tissues (MALT) which act as the pri
mary site for the immune response against pathogens. MALT has 
chemokines and cell adhesion molecules which can help in re
taining the memory B cells. On the other hand, LN tissues act as 
an immune hub and it lacks homing receptors for the memory B 
cells, leading to the migration of memory B cells to other periph
eral tissues (34, 35). Regulatory T cells showed an increased infil
tration away from collagen-expression regions in TS and LN 
tissues, whereas they showed a consistent infiltration across all 
zones in the intestinal PP (Fig. 6F). This could be attributed to 
the importance of Treg cells in maintaining homeostasis under 
the chronic inflammation in the gut induced by the ingested anti
gens (36). Follicular helper T cells showed a similar pattern to 
memory B cells in LN tissues signifying the importance of Tfh in 
the maintenance and the generation of memory B cells in these 
tissues (Fig. 6E and G) (37).

The follicles’ morphologies were later quantified concerning 
the collagen expression through the identification of the major 
and the minor axes of the follicles. Two approaches were tested 
including using collagen expression as the identifying factor for 
the major axis or using the shape of the follicles/ellipses 
(Fig. 7A). TS and LN tissues showed different follicle orientations 
between the collagen-based orientation, and the shape-based 
orientation. This could be due to the crypt epithelium in the TS tis
sues and the collagen conduit system in the LN tissues (Fig. 7B–E). 
This rich stromal network changed the organization of follicles in 
both TS and LN, but not in the intestinal tissues (Fig. 7F–H). To fur
ther confirm this, the marker expression gradient as well as the 
cellular phenotypes were quantified in both the major and the mi
nor axes using the collagen-based orientation and the shape- 
based orientation (Fig. 8A). Collagen expression was found to be 
a predictor of the LZ and the DZ polarization for the follicles in 
TS and LN tissues, but not for intestinal tissues (Fig. 8E–G).

The distribution pattern of the collagen-expressing network 
around the follicles can help in inferring the role of these fibers 
in lymphocyte trafficking and antigen transport. In TS and LN tis
sues, the collagen fibers were oriented parallel to the T cell zone of 
the GCs where Tfh cells interact with B cells for activation. The ac
tivated B cells might have migrated toward the DZ where they pro
liferate rapidly which could explain why DZ B cells and Ki67 are 
closer to collagen-expressing fibers in both TS (5). After undergo
ing somatic hypermutation, B cells migrate toward the LZ to test 
their interaction with FDCs and their uptake of the antigen which 
could explain why LZ B cells, CXCR5, and CD21 expression is fur
ther from collagen-expressing regions in TS tissues (5). The oppos
ite is true for the LN tissues such that Ki67 and DZ B cells are 
expressed away from collagen-expressing regions whereas 
CXCR5 and LZ B cells are closer to the stromal network. Even 
though we cannot explain this trend, it is notable to observe the 
differences in immune cells’ distribution around the stromal 
structure in the lymphoid tissues. On the other hand, antigen 
presentation is different in the intestinal PPs because they have 
a continuous GC response opposite to the stimulation-driven GC 
response in TS and LN tissues. Antigens are transported from 
the gut lumen through a specialized class of epithelial cells which 
is the follicle-associated epithelium (9). Activated B cells then mi
grate toward the preformed GCs. This can explain the lack of a no
ticeable pattern for marker expressions or cell phenotypes with 
collagen-expressing regions in the intestinal PPs.
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Although this is a powerful workflow to investigate the differ
ences between SLOs (Fig. S24), there are limitations. For example, 
a few of the markers included in the IMC panels resulted in a weak 
signal which could be due to the intrinsic nature of the IMC tech
nology that lacks signal amplification. Thereby, we tested supple
menting the IMC dataset with a multiplexed immunofluorescence 
(IF) experiment with additional markers. We also tested a data 
augmentation pipeline to merge the IMC dataset with the IF data
set (Fig. S25A). Some of the markers used within the IF panel (e.g. 
VCAM1, GLUT1, IgD, and CD138) resulted in an enhanced separ
ation between GC zones (LZ and DZ) (Fig. S25B and C). Future dir
ection for this panel will include developing a pipeline to perform 
a pixel-level matching between the two different technologies 
(IMC and IF) such that datasets generated from either technology 
can be incorporated into the same dataset. Here, we show a 
proof-of-concept for this approach to further supplement 
faulty or missing data from large-scale imaging multiplexed 
experiments.

Another limitation of the study is that all of the tissues were ac
quired from third-party vendors as healthy donors without justi
fying the reason for the surgical removal of the tissues. Further, 
the difference between the tissues could be due to a recent infec
tion, vaccination, or any immunological stress the donors had 
faced before donating the tissues. The tissues were from different 
sexes and variant ages, and we did not have access to the ethnic 
background. Therefore, all these factors can affect the GC re
sponse in the SLOs. This study shed light on the differences be
tween SLOs, but future studies can incorporate more tissues 
from a specific age group, disease model, or ethnicity to answer 
more targeted questions related to adaptive immunity in humans.

Materials and methods
Secondary lymphoid tissues
All of the tissues used in this study are formalin-fixed, 
paraffin-embedded, and with a thickness of 5 µm. They were all 
acquired from third-party vendors including TissueArray.com
(previously: Biomax) and PrecisionMed. Tissue samples were col
lected with informed consent from patients, adhering to stringent 
ethical and medical standards. Before distribution to researchers, 
all tissue samples were de-identified. The human TS tissue sec
tion and the LN tissue sections were both from TissueArray.com
under the IDs HuFPT161 and HuFPT210, respectively. TS sample 
1 had tissue ID SU1 and TS sample 2 had tissue ID SM2. LN sample 
1 had tissue ID lly06N022A9 and LN sample 2 had tissue ID 
lly50N001A4. The human normal small bowel tissue sections 
were acquired from PrecisionMed. Human intestine sample 1 
had tissue ID S09-10377 and human intestine sample 2 had tissue 
ID S09-11278.

SpatialVizPheno workflow introduction
SpatialVizPheno workflow starts by performing pixel classifica
tion using commercially available software, iLastik. This software 
was used to manually label and annotate cellular regions vs. back
ground on several regions of interest on the tissue images. This 
step trained the software to generate probability masks that delin
eate nucleated regions on the tissue images, enhancing the 
capability to perform single-cell segmentation and subsequent 
data analysis. These probability masks generated using iLastik 
along with the raw intercalator (191Ir/193Ir) IMC images were 
then loaded into another commercially available software, 
CellProfiler where single-cell segmentation was performed and 

cell masks were generated. Then, the single-channel raw IMC im
ages along with the cell masks were fed into a custom Python code 
and converted to a single.fcs file format following a previously 
published method (19). These files were then with the widely 
used software in the field of flow cytometry, FlowJo where single- 
cell phenotypes were gated for the manual gating approach. The 
gated cells were exported from FlowJo in the form of .csv files 
that also included their x and y locations on the tissues. 
This information was later used for downstream processing. 
Simultaneously, another approach was explored to identify 
cellular phenotypes. This involved iterative cycles of clustering, 
manual annotations of clusters, and re-clustering using custom 
Python codes. These iterations were performed automatically us
ing preidentified marker expressions for each phenotype until 
each of the clusters was associated with a unique phenotype 
and this approach was referred to as semi-supervised clustering. 
Using phenotypes/clusters generated from both techniques, tis
sue neighborhoods were evaluated in all SLOs included in the 
study. The effect of the SLOs’ stromal network organization was 
then explored solely based on the phenotypes generated from 
the semi-supervised gating, given their superior performance in 
tissue region identification. The data can be found at https:// 
zenodo.org/record/8303732, and all accompanying data analysis 
pipelines can be found at https://github.com/coskunlab/ 
SpatialVizPheno.

Pixel classification and single-cell segmentation
iLastik (v 1.4.0) was used to predict the pixels corresponding to the 
nuclei and the background using the Intercalator (191Ir/193Ir) im
ages. Two labels were created corresponding to nuclei and back
ground, and the software was manually trained to detect the 
two labels by annotating a few regions for each label. The software 
then generated probability maps for each label. These probability 
maps along with the raw images were then added to the 
CellProfiler (v 4.2.1) software for the single-cell segmentation. 
This step is critical because it generates the single-cell masks 
that were later used for all the downstream analysis. The work
flow starts with identifying the primary objecting or the nuclei us
ing the “IdentifyPrimaryObjects” module and setting the diameter 
limits to 10–16 pixels. Then, the cellular membranes were identi
fied using the “IdentifySecondaryObjects” module by expanding 
the primary objects by two pixels. Then, both the primary and 
the secondary objects were used to generate the single-cell masks 
that were later exported as tiff images.

FlowJo gating and phenotype identification
The single-channel images along with their single-cell masks 
were converted to a single .fcs file format following a previously 
published method (19). It starts by converting the dataset into 
single-cell protein expression data using the single-cell masks. 
Then, the dataset was transformed using ArcSinh to enhance 
the signal over the background and to convert the IMC data to a 
linear space. Further, both the x and y locations were used as var
iables as well to be later added to the .fcs files. The tissues were ini
tially gated in a similar strategy as the flow cytometry data using 
the FlowJo software (v10.8.1). The entire cell population in the da
taset was first gated based on their expression of CD3 and CD20. T 
cells as CD3+CD20−, B cells as CD3−CD20+, and other phenotypes 
as CD3−CD20. T cells were then further divided into cytotoxic T 
cells based on the expression of CD8α and helper T cells based 
on the expression of CD4. Cytotoxic T cells were then further div
ided into exhausted T cells based on the expression of PD-1 and 
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follicular cytotoxic T cells as CXCR5+. On the other hand, 
helper T cells were divided into follicular helper T cells as 
CXCR5+CD27+PD-1+ and regulatory T cells as FoxP3+.

Further, B cells were divided into GC B cells as CD27+CD38+ and 
nongerminal center B cells as CD27+CD38−. The GC B cells were 
divided into LZ B cells as CXCR5+ and DZ B cells as 
CXCR5−Ki67+. The other cell population was divided into plasma 
cells as CD27+CD38+, and SCs as being either single positive by vi
mentin and collagen or double positive. Finally, the other cell 
population was divided into myeloid lineage immune cells as 
CD11b+CD11c+ and FDCs as CD11c+CD21+.

Semi-supervised iterative gating
An iterative semi-supervised clustering method was used to de
termine cell types. First, a single-cell unsupervised clustering 
was performed using the Leiden algorithm, a graph-based com
munity detection algorithm. From each segmented cell region, 
the mean intensity of each marker expression was calculated. 
The resulting feature matrix consisted of n rows of the total num
ber of cells and p columns of marker expression. Each column of 
the feature matrix was z-score normalized, and batch correction 
between samples was performed using the Scanorama pipeline. 
The neighborhood graph in the embedding space was constructed 
and used for unsupervised community detection. First, a set of 
study-wide target phenotypes is defined by a combination of 
markers from the experiment panel. This step is performed with 
a .csv file in a table format with the expected positive marker ex
pressed in each defined cell type as outlined in Fig. S7A. The phe
notypes recapture the tree-like information provided in Fig. S7B
with each cell type derived from a parent class.

Each cluster from the Leiden clustering step is matched with 
the user-defined table using their cluster median expression to 
automatically give each cluster an annotation based on the table. 
Each annotated cluster can be assigned to a unique annotation or 
multiple annotations based on the combination of markers. To as
sign the positivity of the markers, we first perform a Gaussian 
mixture model (GMM) model to find a desirable threshold for 
each marker automatically. After finding the desirable threshold, 
we rescale the expression level between 0 and 1 with 0.5 the 
threshold found using the GMM. The annotation is performed by 
matching the user-defined markers from each phenotype with 
the Leiden cluster median expression level. To account for clus
ters without enough separation power, we allow multiple pheno
type annotations. Moreover, we also excluded all individual 
markers that are not part of the Leiden clusters, and they are 
not considered in the phenotype-defining markers. All clusters 
that correspond to one annotation are considered final whereas 
the other phenotypes are run through the same process to separ
ate their annotations that contain multiple phenotypes. Finally, 
we run the same pipeline at the single-cell level when the number 
of cells considered is low. This is due to considering Leiden clus
tering not capturing the whole distribution of each marker and 
leading to biased data. On the other hand, we do not run this dir
ectly with marker expression from each cell from the beginning to 
reduce the batch effect visualized in the manual gating pipeline.

To check for associations amongst phenotypes generated from 
both the manual gating and the semi-supervised gating, a cross- 
tabulation of phenotypes was extracted. The two factors used 
for the cross-tabulation were the phenotypes generated from 
the manual gating, and the clusters generated from the semi- 
supervised gating across all single cells. The maximum overlap 
was calculated as the maximum cross-tabulation score or 

highest count of matching cell types between the two labeling 
approaches.

Spatial distance between cell types
To quantify the spatial distance between cell types, for each cell 
we extract the minimum distance to each cell present in the cell 
type subset. That is for each cell type A1, . . . , An present in our 
data, we extract for cell i the distance d1, . . . , dn representing the 
minimum distance of cell i to each cell in the cell type 
A1, . . . , An. Then for each imaging region, we aggregate the 
mean minimum distance by incorporating each cell type there
fore creating a n by n matrix representing the average minimum 
distance of cell type i to cell type j.

Phenotype neighborhood interaction
To quantify the phenotype neighborhood interaction between 
cell types, we used a permutation-based approach to consider 
the difference in frequency of each cell type. For each cell in 
the dataset, we extracted its local neighbor’s phenotypes by 
looking at a radius of 20 µm from the cell centroid in its spatial 
domain. A cell–cell neighborhood matrix is generated by looking 
at all the cells in the imaging region. Then, we performed 
random permutation (1,000 times) while maintaining the 
frequency of cell phenotypes in the region and extracted 1,000 
randomly permutated cell–cell neighborhood matrices. Finally, 
we compared the real neighborhood matrix with the 1,000 ran
domly permutated neighborhood matrices by calculating 
zij = (nij − μij)/σij , with nij the number of neighbors of cell type j 
found in the proximity of the cell type i from the real neighbor
hood matrix, μij and σij the mean number and standard deviation 
of the number of neighbors of cell type j found in the proximity 
of the cell type i from the randomly permutated matrices. The 
corresponding P-value is calculated using the following formula: 
pij = erfc(zij/

��
2
√

) with erfc the complementary cumulative distri
bution function.

Collagen zonation analysis
We defined collagen zones to quantify the variation of cell type 
frequency as distance to the collagen-positive regions in the im
age. First, we define the collagen-positive region in the image by 
applying Gaussian blur and thresholding from the collagen image. 
From the collagen-positive region, we expand the mask incremen
tally by 200 µm (user-defined). For each zone, we extract the fre
quency of each cell type present in our dataset.

Follicles major/minor axis using shape and 
collagen
For each segmented follicle, we define the major axis in two ways: 

• Shape-based: The major axis is defined as the angle major 
axis of the ellipse that has the same second moments as the 
segmented follicle.

• Collagen-based: The collagen marker image is transformed 
into patches of size 10 µm by taking the average in each 
patch. Thresholding is applied to extract collagen-positive 
patches. For each segmented follicle, a radius circle of 
1,000 µm radius (user-defined) is searched and binned into 
40 (user-defined) sectors. For each sector, we count the num
ber of collagen-positive patches. The major axis is then de
fined as the average angle around the radius circle 
weighted by the number of collagen-positive patches in 
each sector.
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The minor axis is defined as 90° clockwise from the major axis. 
For each follicle, we calculated the minimum angle difference 
when calculating clockwise and counter-clockwise between the 
major axis defined by collagen-based and shape-based.

Single cells inside a segmented follicle are projected onto the 
major and minor axis based on their spatial location with the ori
gin defined by the centroid of the follicle. By binarizing along the 
major and minor axis, we extracted the single-cell variation and 
cell type variation across the major and minor axis for each 
follicle.
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