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Abstract
Since lung nodules on computed tomography images can have different shapes, contours, textures or locations and may be
attached to neighboring blood vessels or pleural surfaces, accurate segmentation is still challenging. In this study, we propose an
accurate segmentation method based on an improved U-Net convolutional network for different types of lung nodules on computed
tomography images.
The first phase is to segment lung parenchyma and correct the lung contour by applying a-hull algorithm. The second phase is to

extract image pairs of patches containing lung nodules in the center and the corresponding ground truth and build an improved
U-Net network with introduction of batch normalization.
A large number of experiments manifest that segmentation performance of Dice loss has superior results than mean square error

and Binary_crossentropy loss. The a-hull algorithm and batch normalization can improve the segmentation performance effectively.
Our best result for Dice similar coefficient (0.8623) is also more competitive than other state-of-the-art segmentation algorithms.
In order to segment different types of lung nodules accurately, we propose an improved U-Net network, which can improve the

segmentation accuracy effectively. Moreover, this work also has practical value in helping radiologists segment lung nodules and
diagnose lung cancer.

Abbreviations: BN= batch normalization, CAD= computer-aided detection, CCA= connected component analysis, CF-CNN =
central focused convolutional neural networks, CT = computed tomography, DDRN = deep deconvolutional residual network, DSC
= Dice similar coefficient, JI = Jaccard index, LIDC/IDRI = Lung Image Database Consortium and Image Database Resource
Initiative, MSE = mean square error.
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1. Introduction

Pulmonary hypertension,[1] COVID-19[2] and lung cancer are all
severe lung diseases. Cancer is a major health problem
worldwide.[3] With the highest morbidity and mortality rate,
lung cancer continues to be the most commonly diagnosed
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cancer. It is the leading cause of cancer-related deaths amongmen
and the second leading cause of cancer-related deaths among
women in China.[4] Therefore, early detection, diagnosis and
treatment of lung cancer is essential to improve the five-year
survival rate.[5] Lung nodule is the early manifestation of lung
cancer, so accurate detection and segmentation of lung nodule is
crucial to diagnosis and treatment of lung cancer. In recent years,
different medical imaging modalities such as computed tomog-
raphy (CT), magnetic resonance imaging, and positron emission
tomography have played an important role in disease diagnosis.
Due to the advantages of highest sensitivity, rapid acquisition,
and low application cost,[6] CT imaging analysis is a versatile tool
in lung nodule detection and diagnosis system.
Since the appearance of a lung nodule is a small, rounded or

irregular opacity, it is a time-consuming and laborious task for
radiologists to detect and segment all the suspicious diseased
regions manually from CT imaging slices. Based on this,
computer-aided detection (CAD) systems have been developed
to help radiologists diagnose lung cancer at an early stage by
detecting and segmenting lung nodules.[7] At present, accurate
lung nodule segmentation is still a prerequisite step in CAD
system. Lung nodules can have different shapes, contours,
textures, and locations. Besides, some of themmay be attached to
surrounding tissues, such as blood vessels or pleural surfaces.
From this point of view, they can be divided into 4 categories
named well-circumscribed, juxta-vascular, juxta-pleural, and
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pleural tail nodules.[8] Until now, accurate segmentation for
different types of lung nodules is still a complex and challenging
problem.
Lung nodule segmentation mainly solves the problem of

identifying the contour of nodule and separating nodule from
lung region. Up to now, there aremany approaches to accomplish
this task. In general, these approaches can be classified into
traditional segmentation methods and machine learning algo-
rithms. As for the former, thresholding, region growing,
connected component analysis (CCA), morphological filter,
clustering algorithm, active contour model, and graph-cuts have
been widely used.[9–15] For example, Setio et al[16] detected juxta-
pleural pulmonary nodules by using thresholding, region
growing, CCA and morphological filter. Farhangi et al[7] applied
sparse linear combination of training shapes based level set to
detect nodules of all types. Cha et al[15] proposed graph-cuts
method incorporating shape prior and motion to detect well-
circumscribed, vascularized, and juxta-pleural pulmonary nod-
ules. In the machine learning algorithms, researchers have
proposed a variety of networks for the task of lung nodule
segmentation. For example, Wang et al[17] developed central
focused convolutional neural networks (CF-CNN) for lung
nodule segmentation. Pang et al[18] proposed a novel unified and
end-to-end adversarial learning framework CTumorGAN for
automatic tumors segmentation from CT scans. Deep deconvolu-
tional residual network was proposed by Singadkar et al[19] for
the lung nodule segmentation from the CT images. Even though
the above approaches were used to segment lung nodules, some
of them could not segment different types of lung nodules and
some did not describe the types of lung nodules. Besides, for
juxta-pleural and pleural tail nodules that usually have a similar
density to neighboring pleural surfaces, some approaches used
morphological or rolling-ball method to correct lung contours so
that these nodules could be included into the lung regions.
However, these 2 contour correction methods are difficult to
obtain optimal parameters for different types of lung nodules
automatically and often have under-repair or over-repair
problems.[20]

As a special kind of convolutional neural network, U-Net was
first introduced by Ronneberger et al in 2015[21] for biomedical
image segmentation. This network can be trained end-to-end
Figure 1. Flowchart of
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with very few images and yield more precise segmentations. Since
then, many researches based on U-Net have appeared. Shaziya
et al[22] implemented U-Net ConvNet on lungs dataset to perform
lungs segmentation. Tong et al[23] introduced residual network
and batch normalization (BN) to improve the U-NET network
for lung nodule segmentation. Cao et al[24] designed a U-Net
segmentation network based on ResDense structure to perform
initial detection of lung nodules. Zhang et al[25] proposed an
architecture that combined the inception module with the densely
connected convolutions based on U-Net architecture for blood
vessel and lung segmentation. Although U-Net networks with
different architectures were applied in literature, some were
proposed to segment lung regions or blood vessels. Besides, some
segmented lung nodules for classification task and did not
provide segmentation performance. Furthermore, introduction of
BN was used only in a few previous U-Net networks.
In this study, we propose an accurate lung nodule segmentation

method that is based on an improved U-Net convolutional
network. The main contributions of this study are in the
following aspects: our method can segment different types of lung
nodules accurately, including well-circumscribed, juxta-vascular,
juxta-pleural and pleural tail nodules; in order to segment juxta-
pleural and pleural tail nodules, we apply a-hull algorithm to
correct lung contours so that these nodules can be included into
the lung regions. The a-hull algorithm can adaptively obtain
optimal a values for different types of lung nodules and so it can
avoid under-repair and over-repair problems effectively; and BN
is introduced into the U-Net network to improve the segmenta-
tion performance.
2. Methods

2.1. System architecture

The flowchart of system architecture is illustrated in Figure 1.
First, we segment the lung parenchyma, and then the contour of
lung parenchyma has been corrected. After that, image pairs of
patches containing lung nodules in the center and the
corresponding ground truth are extracted to train the U-Net
network into which BN is introduced for improving the
segmentation performance.
system architecture.
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2.2. Lung parenchyma segmentation

On CT slices containing lung nodules, we first convert the pixel
values into Hounsfield unit and use threshold -480 Hounsfield
unit to get binary images, then morphological opening and hole-
filling operations are applied to obtain thorax mask. Afterwards,
Otsu thresholding method[26] is adopted on thorax region,
morphological opening operation is carried out to remove blood
vessels and CCA is used to label connected regions. The region
with the area between 1500 and 50,000 pixels is selected as the
lung parenchyma. By applying hole-filling operation once again,
left and right lung masks are obtained.
2.3. Contour correction based on a-hull algorithm

Among the 4 lung nodule categories, juxta-pleural and pleural tail
nodules are at the border of lung parenchyma and connected with
pleural surface. In the lung parenchyma segmentation phase, these
nodulesmay not be included into the lung regions. For this reason,
the contour of lung parenchyma should be corrected. Some
researchers have been devoted to solving this problem. Wang
et al[27] presented a border correction scheme based on concave–
convex estimation to correct boundary. Gong et al[28] applied
chain code algorithm to repair lung volume. Shaukat et al[29] used
rolling ball algorithm to repair lung volume.
In this paper, we use the a-hull algorithm[30] to correct the lung

contour. This algorithmaims to capture the“crude shape”of point
sets.[31] The a values change from 10 units to 60 units with an
interval of 5 units. The optimal a values for left and right lung are
selected by comparing lung areas andHausdorff distance between
lung contours before and after applying the a-hull algorithm,
respectively. Because for different types of lung nodules, the a-hull
algorithm can obtain optimal a values adaptively, it can avoid
under-repair and over-repair problems effectively.
Figure 2. The improved U-Net architecture with
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2.4. Improved U-Net network

In order to segment different types of lung nodules, we propose
an improved U-Net convolutional network. It is based on the
architecture of U-Net for lung segmentation in literature 22. By
introducing BN, the improved network is depicted in Figure 2.
BN was first proposed by Ioffe and Szegedy in 2015.[32] It can
adjust the distribution of activation values to an appropriate
breadth for each layer and speed up the learning process. In
addition, the model is less dependent on the initial value and
overfitting can be suppressed.
As the input to the U-Net network, an image patch of 32�32

pixels with lung nodule in the center and the corresponding
ground truth with the same pixels are extracted. In the image
patch, we use an intensity window range of [�1150, 350] to
convert the 16-bit image into 8-bit image, and then normalize it to
a range of 0 to 1. Adam optimizer was used to update the
parameters of the model. The learning rate, batch size, and
training epochs are 0.001, 32, and 10, respectively. For discussing
the segmentation performance of different loss functions, mean
square error (MSE), Binary_crossentropy loss, and Dice loss are
applied in the model. These loss functions are defined as follows:

MSE ¼
Pn

i¼1 ðyGT
i � ysegi Þ2
n

ð1Þ

Binary crossentropy ¼ �
Pn

i¼1½yGT
i log ysegi þ ð1� yGT

i Þlogð1� ysegi Þ�
n

ð2Þ

Dice ¼ 1� 2 � AGT ∩Aseg

�
�

�
�þ smooth

AGT þj jAseg

�
�

�
�þ smooth

ð3Þ
introduction of BN. BN = batch normalization.
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yGT is the target value, yseg is the predicted value,AGT is the size
of theground truth,Aseg is the sizeof the segmentation resultbyusing
the method, j.j is the size operator, ∩is the intersection operator,
smooth is a nonzero parameter which can avoid the denominator in
Eq. (3) to be zero. In the experiment, smooth is set to 1.0.
3. Results

In this paper, experiments are executed by using Python 3.5.4
(Guido van Rossum, Google) and MATLAB R2015a (Math-
Works) on a computer with 2.5GHz CPU, 6GB RAM, and
NVIDIA GeForce GT 640M GPU.
3.1. Image dataset

The image dataset in this work has been obtained from the Lung
Image Database Consortium and Image Database Resource
Initiative (LIDC/IDRI) database (https://wiki.cancerimagingarch
ive.net/display/Public/LIDC-IDRI),[33] which is the largest open
resource of lung nodules in the world. This database is a web-
accessible international resource for development, training and
evaluation of CAD methods for lung cancer detection and
diagnosis. Users can download relevant data for free for research
purposes. Our study is based on this open source database, so
ethical approval is not necessary. This LIDC/IDRI database
includes 1018 exams. Each exam is composed of hundreds of
thoracic images in DICOM format and corresponding diagnostic
annotations in XML format that includes analyses made by up to
four experienced radiologists. Concerning diagnostic annota-
tions, there are 3 categories: ≥3mm nodules, <3mm nodules,
and ≥3mm non-nodules. In the first category, different
radiologists have marked X and Y coordinates of each nodule’s
contour points independently. In the other 2 categories, only X
and Y coordinates of each nodule’s center points have been
marked. In order to better evaluate the segmentation perfor-
mance, we select the first type of nodules.
In the scope of this study, we include 358 lung CT slices and

each image is 512�512 pixels. In-plane pixel size varies from
0.5859 to 0.8984mm/pixel and the average pixel size is 0.7609
mm/pixel. Nodule diameter ranges from 4mm to 27mm.
3.2. Definition of ground truth

For better evaluating the segmentation performance of this
method, we define the ground truth as GT3 and the specific
definition process is as follows:
(1)
 The XML file is parsed to obtain the X and Y coordinates of
each nodule’s contour points marked by different radiol-
ogists. Only the nodules with 4 radiologists’ annotations are
selected.
(2)
 The inner pixels of lung nodule contour are filled with 1 and
outer pixels are filled with 0, then we can obtain four nodule
regions.
(3)
 Pixel values in the 4 regions are added and the regions with
pixel values greater than 2 are selected as GT3.
3.3. Evaluation metrics

Given its accuracy and simplicity, Jaccard index (JI) is a measure
of spatial overlap and used for comparing the agreement analysis.
JI is defined by:
4

JI ¼ AGT ∩Aseg

�
�

�
�

AGT∪Aseg

�
�

�
� ð4Þ

∪ is the union operator.
Moreover, Dice similar coefficient (DSC), Precision, Recall,

and F1-score are also used as evaluation metrics and defined as
follows:

DSC ¼ 2
AGT ∩Aseg

�
�

�
�

AGT þj jAseg

�
�

�
� ð5Þ

Precision ¼ TP
TPþ FP

ð6Þ

Recall ¼ TP
TPþ FN

ð7Þ

F1� score ¼ 2 � Recall � Precision
Recallþ Precision

ð8Þ

TP denotes true positives, FN denotes false negatives and FP
denotes false positives. These 3 indexes are calculated from the
overlapping area of GT3 and segmentation result.
3.4. Data augmentation

There are different kinds of data augmentation methods such as
rotation, flipping, shift, zoom and cropping to expand training
data. In this work, rotation and flipping are applied to the patch
of 32�32 pixels. The patch is rotated counterclockwise with
rotation angle 45°, 90°, 135°, 180°, 225°, 270°, 315°, respectively
and flipped horizontally and vertically. Figure 3 illustrates the
different images of data augmentation. After rotation and
flipping, we obtain 3580 image pairs including image patches and
the corresponding ground truth. As the inputs of U-Net network,
these image pairs are split into training dataset and test dataset
with ratio of 4:1 randomly.

3.5. Agreement analysis between radiologists

To analyze the segmentation agreement, mean JI between 4
radiologists (lung nodule segmentation of each radiologist is
compared to the other 3 and the mean JI can be obtained by
averaging the inter-radiologist JI) is used as the reference in this
study. Table 1 gives the mean JI between different radiologists for
different types of lung nodules. It can be found that the overall JI
is 0.7581±0.0874, demonstrating that there is a significant
variability even between experienced radiologists. The highest JI
is 0.7778 for well-circumscribed nodules, the worst JI is 0.7399
for juxta-pleural and pleural tail nodules and the standard
deviation is approximately 8%. This indicates a great disparity
between radiologists for different types of nodules.
3.6. Overall performance

It illustrates performance comparison among different loss
functions in Table 2. From the experimental results, it can be
seen that Dice loss has better results than MSE and Binary_
crossentropy. It is more than 6% higher in DSC than MSE
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Figure 3. Different images of data augmentation: (A) is the image patches; (B) is the corresponding ground truth.
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(0.8623 vs 0.7986) and Binary_crossentropy (0.8623 vs 0.8007).
As for JI, Dice loss has the best result 0.7637, which is higher than
other 2 loss functions (0.7541, 0.7548).
In this paper, we apply a-hull algorithm to correct the lung

contour and introduce BN to improve the U-Net network. To
validate the effectiveness of these 2 components, ablation
experiments are designed. In Table 3, the first row (except the
header) verifies the validity of applying a-hull algorithm, the
second row verifies the validity of introducing BN and the third
row is the results of our proposed method with both a-hull
algorithm and BN.
Table 1

Mean JI between four radiologists.

Nodules Overall Well-circumscribed

Number 358 160
Mean 0.7581 0.7778
SD 0.0874 0.0809

JI= Jaccard index, SD= standard deviation.

Table 2

Segmentation performance comparison among different loss functio

Loss functions JI DSC

MSE 0.7541 0.7986
Binary_crossentropy 0.7548 0.8007
Dice 0.7637 0.8623

DSC=Dice similar coefficient, JI= Jaccard index, MSE=mean square error.
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4. Discussion

Lung nodules can have a variety of shapes and different degrees of
connection to surrounding tissues, so it is challenging to
determine exactly the contour of nodules. For juxta-vascular,
juxta-pleural and pleural tail nodules, because intensities in these
cases are very similar to this in vascular and pleural space,
segmentation is particularly difficult. As visible in Table 1, there is
disparity in JI for different types of nodules, illustrating the
level of segmentation complexity especially for the last three
categories.
Juxta-pleural & pleural tail Juxta-vascular

75 123
0.7399 0.7437
0.0865 0.0914

ns.

Precision Recall F1-score

0.8816 0.8427 0.8618
0.8684 0.8575 0.8629
0.8491 0.8882 0.8682

http://www.md-journal.com


Table 3

Segmentation performance comparison with and without a-hull algorithm and BN.

Methods JI DSC Precision Recall F1-score

With a-hull 0.7340 0.8413 0.8718 0.8316 0.8512
With BN 0.7377 0.8447 0.7892 0.9256 0.8520
Our proposed method (with a-hull and BN) 0.7637 0.8623 0.8491 0.8882 0.8682

BN=batch normalization, DSC=Dice similar coefficient, JI= Jaccard index.
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At present, multiple loss functions for training a network
model are used for biomedical image segmentation tasks,
including MSE, Binary_crossentropy loss and Dice loss. In this
study, we have compared the performance of different loss
functions for lung nodule segmentation. As it can be seen in
Table 2, Dice loss can achieve superior performance under most
evaluation metrics than other functions. Furthermore, comparing
the JI corresponding to different loss functions with JI between
different radiologists, a significant finding we can observe is that
results of MSE and Binary_crossentropy loss (0.7541, 0.7548)
are lower than the latter (0.7581), but JI corresponding to Dice
loss (0.7637) is higher than that. This verifies the effectiveness of
applying Dice loss to train our proposed U-Net network.
To verify the validity of a-hull algorithm and BN, we design

ablation experiments. Comparing the first row and third row in
Table 3, it can be found that the proposed method by applying
a-hull algorithm to correct lung contour and introducing BN to
improve U-Net network is an average of nearly 3.1% higher than
the method only with a-hull. Besides, comparing the last 2 rows
of the table, our proposed method (with a-hull and BN) is also
acceptable. Although the result in Recall is lower than method
with BN, the JI is improved by 2.6% and DSC is improved by
1.76%. Overall, by applying a-hull algorithm and BN in our
method, the segmentation performance has been improved
effectively.
Segmentation performance comparison of our proposed

method with several state-of-the-art algorithms is summarized
in Table 4.Wang et al[17] proposed a data-drivenmodel CF-CNN
to segment lung nodules and showed strong performance for
segmenting juxta-pleural nodules. This method extracted 3D
patch 3�35�35 and 2D multi-scale patch 2�35�35 as the
inputs to the CNNmodel. It was evaluated on LIDC dataset with
average DSC of 0.8215.Mukherjee et al[34] used graph cut with a
deep learned prior to segment lung nodules. The segmentation
performance was evaluated on a separate validation dataset
consisting of 93 solid-nodules and 35 part-solid nodules from
LIDC database and the input image size was 80�80 for the deep
neural network. This algorithm achieved an average DSC of 0.69
for solid nodules and 0.65 for the part-solid nodules. Tong
Table 4

Segmentation comparison of our proposed method with other
state-of-the-art algorithms (overstriking represents the best
segmentation performance in DSC).

Method DSC

Wang et al[17] 0.8215
Mukherjee et al[34] 0.69/0.65
Tong et al[23] 0.7360
Pang et al[18] 0.7108
Our proposed method (dice loss) 0.8623

DSC=Dice similar coefficient.
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et al[23] presented an improved U-Net network for lung nodule
segmentation. The input image size of network is 64�64 and the
final evaluation result was 0.736 for DSC. Pang et al[18] proposed
a novel framework consisting of a generator network and a
discriminator network for automatic segmentation of any kinds
of tumors. This algorithm used the nonsmall cell lung cancer-
radiomics data from TCIA(https://wiki.cancerimagingarchive.
net/display/Public/NSCLC-Radiomics). The input image size of
the CTumorGAN network is 256�256 and the final DSC is
0.7108. As for our proposed method, a significant result in
Table 4 is that the DSC is 0.8623, which achieves superior
performance than other algorithms for the task of lung nodule
segmentation.

5. Conclusion

Lung nodule segmentation is an indispensable step for diagnosis
and treatment of lung cancer. Because of different shapes,
contours, textures and attachment of nodules, accurate segmen-
tation is still a complex task in CAD systems. In this study, we
propose an improved U-Net network with introduction of BN to
segment different types of lung nodules accurately on CT images.
Otsu thresholding is applied to segment lung parenchyma. After
that, a-hull algorithm is used to correct lung contours so that
juxta-pleural and pleural tail nodules can be included into the
lung regions. The a-hull algorithm can obtain optimal a values
adaptively for different types of lung nodules and so it can avoid
under-repair and over-repair problems effectively. In order to
train the improved U-Net network, patches of nodules and
corresponding ground truth are extracted from CT slice images.
We validate the method by using 358 lung nodules from the
LIDC/IDRI database including well-circumscribed, juxta-vascu-
lar, juxta-pleural, and pleural tail nodules. After data augmenta-
tion, 3580 image pairs are obtained as the inputs of the U-Net
network. Compared with MSE and Binary_crossentropy loss,
Dice loss is more suitable for segmentation tasks. Contour
correction by applying a-hull algorithm and introduction of BN
into the U-Net network have played a good role in improving the
segmentation performance. Our best result for DSC is 0.8623,
which is also more competitive than other state-of-the-art
segmentation algorithms. Our study can have practical value
in helping radiologists accurately segment lung nodules and
diagnose lung cancer.
However, this study also has some limitations and we plan to

further improve it from several aspects in the future. Firstly,
because lung contours are not convex for diaphragm, the a-hull
algorithm in this study cannot correct juxta-pleural and pleural
tail nodules attached to diaphragm accurately, so our next work
will concentrate on improvement of contour correction algo-
rithm. Secondly, because the nodule diameter ranges from 4mm
to 27mm, we set the patch size as 32�32 pixels. As for nodules
with smaller diameter or larger diameter, this patch size will not
be appropriate. Therefore, selecting proper patch size for nodules

https://wiki.cancerimagingarchive.net/display/Public/NSCLC-Radiomics
https://wiki.cancerimagingarchive.net/display/Public/NSCLC-Radiomics


Zhang et al. Medicine (2021) 100:40 www.md-journal.com
with different diameters is also our next work. Last but not the
least, we will further increase the dataset and extend the two-
dimensional network to the three-dimensional network so that
more three-dimensional image information can be mined to
improve the segmentation performance.
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