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Abstract: The aim of this work was to assess the impact of an excipient in a pharmaceutical formulation
containing candesartan cilexetil over the decomposition of the active pharmaceutical ingredient
and to comparatively investigate the kinetics of degradation during thermolysis in an oxidative
atmosphere under controlled thermal stress. To achieve this, the samples were chosen as follows:
pure candesartan cilexetil and a commercial tablet of 32 mg strength. As a first investigational
tool, Universal attenuated total reflection Fourier transform infrared (UATR-FTIR) spectroscopy was
chosen in order to confirm the purity and identity of the samples, as well as to check if any interactions
took place in the tablet between candesartan cilexetil and excipients under ambient conditions.
Later on, samples were investigated by thermal analysis, and the elucidation of the decomposition
mechanism was achieved solely after performing an in-depth kinetic study, namely the use of the
modified non-parametric kinetics (NPK) method, since other kinetic methods (American Society for
Testing and Materials—ASTM E698, Friedman and Flynn–Wall–Ozawa) led to inadvertencies. The
NPK method suggested that candesartan cilexetil and the tablet were degraded by the contribution of
two steps, the main being represented by chemical degradation and the secondary being a physical
transformation. The excipients chosen in the formulation seemed to have a stabilizing effect on the
decomposition of the candesartan cilexetil that was incorporated into the tablet, relative to pure active
pharmaceutical ingredient (API), since the apparent activation energy for the decomposition of the
tablet was 192.5 kJ/mol, in comparison to 154.5 kJ/mol for the pure API.

Keywords: candesartan cilexetil; pharmaceutical formulation; decomposition; thermal analysis;
kinetic study; isoconversional methods; Friedman method; Flynn–Wall–Ozawa method; NPK method

1. Introduction

Candesartan is a selective, potent, and competitive antagonist of AT1 receptor (Angiotensin II
receptor type 1) that is part of angiotensin II (Ang II) receptor blocker’s (ARBs) family of drugs [1,2].
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Together with losartan (the first synthesized substance of the class), olmesartan, valsartan and irbesartan,
they are commonly known as biphenyl-tetrazole ARBs.

ARBs are small molecular weight pharmaceutical substances that modulate the rennin–angiotensin
system and that have a high specificity for the AT1 receptor of angiotensin II. Via their mechanism of
action (inhibitory pattern and dissociation rates form the receptor), they can be classified into
surmountable (losartan, eprostan) or insurmountable ARBs (candesartan, irbesartan, valsartan,
olmesartan, telmisartan and azilsartan) [2]. Candesartan is an oral, long-active, lipophilic compound
that is available as a pro-drug; candesartan cilexetil (abbreviated CC; Figure 1) is used in formulations
in order to increase their bioavailability. During gastrointestinal absorption (15% bioavailability), it is
rapidly and completely transformed into the active metabolite of candesartan through a process of
ester hydrolysis. It binds in a high percentage to plasmatic proteins (95%) and crosses the blood–brain
barrier poorly. It can cross also the placental barrier. In its active form, candesartan is almost entirely
excreted in feces (67%) and urine (33%) [3,4].
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Acting in a dose-dependent manner, candesartan can be used in several pathologies such as
essential arterial hypertension [5], ventricular hypertrophy [6], heart failure [7], diabetic nephropathy, [8]
retinopathy [9], myocardial infarction [10], endothelial dysfunction [6,11], prehypertension [12], the
prevention of atrial fibrillation [13], migraine prophylaxis [14], and stroke [15]. Recently, it has been
shown to ameliorate brain inflammation associated with Alzheimer’s disease [16] and to induce
neuroprotective effects in patients suffering from Parkinson’s disease [17]. Moreover, it has been shown
to reduce inflammation and mucin production in patients with allergic asthma [18] and to induce
benefits in a gestational hypertension mouse model [19].

CC is available in doses of 4, 8, 16 and 32 mg, and it is administered in a function of the pathology
(usually 4 mg for the treatment of heart failure and 16 mg for the treatment of hypertension) once
daily in monotherapy or in combination with other classes of drugs [1,3,4]. The most common side
effects reported include hypotension, hyperkalemia, impaired renal function, and allergic reactions,
although other adverse effects, such as dizziness, fatigue, headache, diarrhea, impotence, upper
respiratory infections, rhabdomyolysis, and angioedema [20], have been reported. CC is considered to
be teratogenic, and its use should be avoided in pregnant women because it might interfere with the
rennin–angiotensin–aldosterone system and decrease fetal renal function (oligohydramnios condition).
Moreover, it is not known whether it is excreted into human milk, so CC administration should be
avoided in lactating women [1,20].

The thermal behavior of active pharmaceutical ingredients (APIs) as pure components in
binary mixtures with excipients and in pharmaceutical formulations is of great importance in drug
science [21–26]. Even if in the case of pharmaceuticals, the term “stability” is usually correlated with
the loss of the active pharmaceutical ingredient from formulation, and “solid-state stability” can
also designate the response of an API or a pharmaceutical formulation to thermal stress. However,
in both cases, the decomposition of the API due to chemical processes or even physical transitions
(phase transitions such as polymorphism and crystallization) in the presence of excipients dictates
the shelf-life of the formulation [27,28]. Additionally, an adequate selection of excipients can lead to
formulations with longer shelf-lives, as the presence of the excipients may have a stabilizing effect on
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the decomposition of APIs in formulation, relative to the same API as pure compound [29–34]. The
literature is rather poor in presenting the physico-chemical characterization of candesartan and the
prodrug CC. In 2014, Moisei et al. reported a compatibility study between several antihypertensive
APIs and showed that CC is compatible with croscarmellose sodium, magnesium stearate and colloidal
silica [35]. Amer et al. [36] realized a comparative evaluation of candesartan and CC by means
of physicochemical properties and in vitro dissolution studies in order to replace the ester prodrug
candesartan cilexetil (CC) by its active metabolite candesartan, and the results were promising. Tita et al.
reported on the thermal behavior of candesartan, active substance and in pharmaceutical compounds
in a dynamic nitrogen atmosphere in non-isothermal conditions, but they did so without mentioning
any data regarding the strength of investigated pharmaceutical formulations and without clearly
indicating if candesartan or candesartan cilexetil were studied as pure APIs; the paper mentions the
cilexetil prodrug, but, though the chemical structure of the drug corresponds to candesartan, it does
not correspond to the cilexetil derivative [37].

A successful development of novel cationic self-nanoemulsifying drug delivery systems of CC
with improved biopharmaceutical profiles was realized by Sharma et al. and reported in 2015 [38],
while Yuce et al. realized a full factorial experimental design of the immediate release of 32 mg CC
tablets in 2016 [39] that also mentioned that CC possesses a low chemical stability; however, the latter
did so without carrying out a kinetic study regarding the drug’s stability. Regarding the kinetic studies
that have been carried out on CC, only the paper reported by Cui et al. [40] mentioned the kinetics
of solvent-mediated polymorphic transitions by using Raman spectroscopy, and no study has been
published regarding the solid state stability and kinetics of degradation for CC—both pure compound
and pharmaceutical formulation.

Following the lack of data regarding the solid-state characterization of CC as a pure API, data
regarding CC that is has been incorporated into a solid pharmaceutical formulation along with
excipients, and evaluations of the kinetics of decomposition under thermal stress, we aimed to make a
comparative investigation of a pure prodrug API and a commonly-used generic solid formulation
containing 32 mg of the same API per tablet. The samples were initially investigated by Universal
attenuated total reflection Fourier transform infrared spectroscopy (UATR-FTIR spectroscopy) in
order to confirm the purity and identities of the API and also to obtain information regarding the
compatibility of the API with the excipients that were used in the solid formulation in ambient
conditions; these results were later completed with a search of interactions between the components
during thermal stress. The comparative thermal behavior of CC vs. a tablet containing CC as API
(CCTAB) was preliminary investigated by using the thermoanalytical data that were recorded for both
samples in identical experimental conditions and later by an in-depth kinetic study consisting of the
use of a classic kinetic method (American Society for Testing and Materials—ASTM E698 method)
and that was completed with the isoconversional methods of Friedman (Fr) and Flynn–Wall–Ozawa
(FWO). The decomposition mechanism was evaluated in the last part of the study by employing
the modified non-parametric kinetics (NPK) method and focused mainly on the evaluation of the
stabilizing/destabilizing excipient effect over the decomposition of CC in CCTAB relative to pure CC.

2. Materials and Methods

2.1. Samples and Preparation

Pure candesartan cilexetil Chemical Reference Substances (CRS), abbreviated CC, Batch 1.1,
Id 003QK7), according to European Pharmacopoeia Reference Standard, was commercial product
of European Directorate for the Quality of Medicines and Healthcare EDQM, Council of Europe
(Strasbourg, France) and was used without further purification.

The pharmaceutical formulation (abbreviated CCTAB) was a tablet with a strength of 32 mg
CC, which is the highest concentration available. This concentration was chosen in order to get
resolute instrumental data. The tablet (of mass 260 mg) was crushed in an agate mortar with a pestle,
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homogenized for ten minutes, and then sieved. As excipients, the producers declared for CCTAB was
the use of hydroxypropyl cellulose, calcium carboxymethyl cellulose, red iron oxide (E172), lactose
monohydrate, starch from corn, macrogol 8000, and magnesium stearate.

2.2. Spectroscopic Description of Samples

FTIR spectra were recorded on Perkin Elmer SPECTRUM 100 device (Perkin-Elmer Applied
Biosystems, Foster City, CA, USA) without an a priori preparation of the sample. The data were
collected in a 4000–650 cm−1 domain on a UATR device in order to eliminate the effect of pelleting due
to use of KBr and pressure. Spectra were built up after a number of 32 co-added scans. The spectral
range 2300–1900 cm−1 represents the noise signal of the crystal and has no spectroscopic significance.

2.3. Thermal Stability Investigations

Thermal analysis investigations were carried out on a Perkin-Elmer DIAMOND apparatus
(Perkin-Elmer Applied Biosystems, Foster City, CA, USA) for simultaneously obtaining the TG
(thermogravimetric/mass curve), DTG (derivative thermogravimetric/mass derivative) and HF (heat
flow curve) in dynamic air atmosphere (100 mL·min−1) while using open aluminum crucibles. The
analyses were carried out under non-isothermal conditions at four heating rates β, namely 5, 7, 10
and 12 ◦C·min−1 from ambient temperature up to 400/500 ◦C. To determine the thermal effects, the
Differential thermal analysis (DTA) data (in µV) were converted in HF (Heat Flow) data (in mW). The
HF data (mW) were converted in normalized HF data by dividing the signal by mass of sample, thus
obtaining the Differential scanning calorimetry (DSC) data (in mW·mg−1).

In order to assure the reproducibility of the thermal investigations, each analysis was carried out
in duplicate, and the results were practically identical.

2.4. Kinetic Investigations

The kinetic study (ASTM E698, Friedman and Flynn–Wall–Ozawa methods) was carried out
on the main decomposition step that took place between 190 and 310 ◦C while using the AKTS
Thermokinetics Software Version 5.2 (AKTS AG TechnoArk, Siders, Switzerland). The mathematical
background and importance of using isoconversional kinetic methods have been extensively reported
in the literature [41–46]. The decomposing mechanism of CC and solid pharmaceutical formulation
CCTAB was evaluated by using the modified NPK method by a protocol that has been previously
reported by our research group [47–52].

3. Results and Discussions

In order to confirm the identity and purity of CC, as well the presence of the API in the analyzed
pharmaceutical formulation, FTIR spectra were drawn up by using the UATR technique. Some
advantages of using the UATR technique are:

The samples can be analyzed without any preparation, as the technique is non-destructive and
economical, since it requires small quantities of samples.

The required time for analysis is very short, since the salt pelleting that is used in classic FTIR
technique is no longer required.

The technique does not require the preparation of a blank background, as in the case of
pelleting technique.

The applied pressures on the surface of the ATR crystal are significantly lower than the ones used
during pelleting, so polymorphic transitions and morphological modification of the analytes are not
expected to occur.

3.1. Spectroscopic Description of Samples

The UATR-FTIR spectra recorded for CC and CCTAB are presented in Figure 2.
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for analyzed samples: (a) CC and (b) tablet (CCTAB).

The UATR-FTIR spectra recorded for CC revealed the presence of the following bands: aromatic
and aliphatic CH stretching in the spectral range of 3070–2850 cm−1, with peaks at 3067, 3032, 2998,
2942 and 2863 cm−1; the stretching of the carbonyl C=O group from the asymmetric organic carbonate
–OC(=O)O– moiety showed an intense band at 1751 cm−1; an ester carbonyl group appeared as an
intense band at 1713 cm−1, this being characteristic for the polymorphic Form I of CC [53]. The bending
of NH appeared at 1613 cm−1, and aromatic C–N stretching was visible at 1348 cm−1. The bands that
appeared at 1240 and 1074 cm−1 were the consequences of the acyl–alkoxy tautomeric equilibrium
from the R1–C(=O)O–R2 moiety. The C–O ether stretch was represented by the band at 1032 cm−1. The
tetrazolyl moiety showed characteristic absorption bands in the 1640–1335 and 1200–900 cm−1 spectral
regions. Due to extended conjugation of the tetrazolyl moiety with a biphenyl one, the vibrations of
the C=C, C=N and N=N bonds were complex, so the individual assignment of bands to each bond
could not be made. The absorption bands that appeared in the range of 1640–1335 cm−1 were due to
the stretching, while the ones occurring in the 1200–900 cm−1 range were due to skeletal vibrations of
the cycle, as well as by the combination bands. The data were assigned according to literature [54] and
were in good agreement with previously reported studies [36,55–57].

The spectrum of CCTAB is more complex than that of pure API, since it contains more overlapping
bands due to existence of excipients in the formulation. In the 3569–2989 cm−1 range, a broad band was
visible due to the presence of OH groups in the structure of some excipients (hydroxypropyl cellulose,
calcium carboxymethyl cellulose, lactose monohydrate, starch, and macrogol 8000), as well due to
the water from lactose monohydrate. The characteristic bonds of CC were also present in the spectra
of the tablet at the same wavenumbers or insignificantly shifted towards ± 3 cm−1, revealing that no
interactions occurred under ambient conditions between the API and selected excipients.

3.2. Thermal Stability Investigations

In order to analyze the stability of CC as a pure compound and in the presence of excipients,
TG/DTG/HF curves were initially recorded in an oxidative atmosphere (dynamic air), and the obtained
data are presented in Figure 3.
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curves recorded in an oxidative synthetic air atmosphere at β = 5 ◦C·min−1 for analyzed samples:
(a) CC and (b) CCTAB.

The thermoanalytical profile of CC revealed that it was thermally stable up to 164 ◦C, when mass
loss occurred with decomposition along with melting, once again confirming the existence of the
polymorphic Form I of CC, as previously suggested by the UATR-FTIR spectroscopy data [53]. The
main mass loss process took place in the 164–310 ◦C range, with a considerable mass loss; ∆m = 35.66%.
In this range, the HF curve revealed that melting occurred along with the decomposition, and the main
process took place between 164 and 175 ◦C, with an HFpeak at 171 ◦C. Between 310 and 510 ◦C, the
mass loss was 32.71% and was evidenced by several consecutive processes, as revealed by both the
DTG and HF curves by peaks at 376, 420, 438 and 503 ◦C (DTG) and 424, 438 and 507 ◦C (HF). All the
processes associated with mass loss were represented by thermo-oxidations, since the HF profile was
ascending and the peaks corresponded to exoergic events (Figure 3a).

The tablet (CCTAB) presented a more complex pathway of decomposition (Figure 3b), since it
contained, along with CC, a considerable amount of excipients. The tablet initially lost the water found
in formulation in the temperature range of 35–51 ◦C (∆m = 1.49%, endoergic event between 35 and
51 ◦C, HFpeak at 42 ◦C). After dehydration, the anhydrous composition of the tablet showed a narrow
stability interval solely between 51 and 73 ◦C when the first decomposition occurred up to 164 ◦C due
to the presence of excipients: ∆m = 3.77% and DTG peaks at 103 and 136 ◦C. In this range, the HF curve
revealed several endoergic processes due to the melting of the excipients (peaks at 60 and 105 ◦C) and
of the API (peak at 164 ◦C). The main decomposition process took place between 164 and 369 ◦C, with
a corresponding mass loss ∆m = 65.73%, as evidenced by the two successive processes revealed by the
DTG curve with maximums at 233 and 291 ◦C. In this range, the HF curve revealed an endothermic
process (187–219 ◦C, HFmax at 208 ◦C). Later on, the last stage of decomposition (369–510 ◦C) led to a
residual mass of 4.06%, and, with the advance of the thermal treatment, the exoergic process became
more intense due to oxidative thermolysis (HFmax at 451◦C and DTGmax at 486 ◦C).

3.3. Kinetic Investigations

The screening of compatibility between the components in a multi-component system is really
difficult to achieve by classic thermal analysis because the overlapping of thermal events due to
an excipient can hide the events associated with the degradation of an API. Based on this fact, a
comparative kinetic study of thermal degradation of the pure API vs. the same API incorporated in
an existing pharmaceutical formulation (or in multicomponent system with excipients) could lead to
important information regarding the stability of the API, as well as its compatibility/incompatibility
with the system components [58].
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Since the thermal stability of an API is different from the one of a solid pharmaceutical formulation,
an in-depth kinetic study can reveal if the excipients determine the increase or the decrease of stability
of CC after its incorporation in a tablet. In a previous paper, we investigated the solid-state stability of
perindopril erbumine as a pure API and of perindopril erbumine in a pharmaceutical formulation, and
we showed that the used excipients (anhydrous colloidal silica, microcrystalline cellulose, lactose, and
magnesium stearate) should be used in newly-developed generic solid pharmaceutical formulations
because they contributed to an increased thermal stability of perindopril erbumine [58].

The kinetic analysis was realized based on the DTG data that were obtained for the thermolysis in
an oxidative atmosphere of CC and CCTAB at four heating rates, namely β = 5, 7, 10 and 12 ◦C·min−1.

As a first kinetic method, the ASTM E698 kinetic method was used. The ASTM E698 model is
based on the Ozawa method, requires at least three experiments at different heating rates, and assumes
that the extent of the reaction is a constant value independent of the heating rate when a DTG curve
reaches its extreme value (DTGpeak). The mathematical model of the ASTM E698 method is presented
in Equation (1):

ln β = const− 1.052·Ea·R−1
·T−1

max (1)

where β is the heating rate (◦C/min or equivalent K/min), Ea is the apparent activation energy (kJ/mol),
R is the gas constant, and Tmax is the absolute temperature (K) where extent of the reaction reaches its
extreme value (corresponding to the DTGpeak from thermoanalytical DTG curve at each β).

A plot of the natural logarithm of the heating rate vs. the peak temperature provides the
information that is necessary to calculate the apparent activation energy (Ea), as shown in Figure 4a,b.
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The linear dependencies obtained from the ASTM E698 kinetic method suggest a good correlation
of the data, since the R2 values were 0.988 for CC and 0.999 for CCTAB. Additionally, the estimated
values of Ea (150.5 kJ/mol for CC and 122.3 kJ/mol for CCTAB) suggested good thermal stability for CC
as a pure API, as well as in pharmaceutical formulation. However, a small destabilizing effect of the
excipients was observed, since the value obtained for formulation was approximately 28.2 kJ/mol and
thus inferior to that of pure CC.

Since International Confederation for Thermal Analysis and Calorimetry (ICTAC) protocols
recommend the use of both differential and integral isoconversional methods to gain an in-depth
view of decomposition kinetics—two isoconversional methods, a differential one (Friedman), and
an integral one (Flynn–Wall–Ozawa) were employed in this study. The advantages and limitations
of isoconversional methods have been reported in the literature [59–61]. By far, the most important
advantage of using isoconversional methods is the fact that they assure the estimation of the apparent Ea

with the advance of the reaction (expressed as conversion degree α) without assuming an approximation
for the conversion function f(α). Additionally, by the analysis of variation of individual Ea values that
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are obtained for each α, an indication for modification of degradation mechanism with the modification
of thermal treatment is offered: iI each individual Ea value that is determined for each α falls in
the range of Ea ± 0.1Ea, the decomposition mechanism is not influenced by the modification of the
thermal treatment of the sample and is independent of α. If this premise is not true, the decomposition
mechanism changes during the thermal treatment of the sample and is dependent of α.

The reaction progress vs. temperature is presented in Figure 5a,b for the active substance and
the pharmaceutical formulation. The variation of reaction rate vs. temperature for CC and CCTAB is
presented in Figure 6a,b.
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The analysis of variation of reaction rate vs. temperature may suggest different decomposition
mechanisms for pure CC and CCTAB; in the last case, this difference may have been due to the presence
of excipients. The mathematical development of isoconversional methods, as well their deduction,
were reported earlier [58,62]. The Friedman method (Fr) was used in the linearized form [63], as shown
in Equation (2).

ln (β·dα/dT) = ln [A·f(α)] − Ea·R−1
·T−1 (2)

where T is the absolute temperature (K) and A is the pre-exponential factor, as suggested by the
Arrhenius equation.

For known α at the selected heating rates, the plot ln (β·dα/dT) vs. (1/T) was linear. The values
of the apparent activation energy (Ea) for the two samples were obtained (Table 1) by evaluating the
slopes of these straight lines (see Figure 7a,b).
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Table 1. Apparent activation energies values apparent activation energy (Ea) vs. conversion degree (α)
obtained by the isoconversional methods and the Ea value.

Conversion Degree α
Ea (kJ/mol) vs. α for

CC CCTAB

Fr FWO Fr FWO

0.05 152.9 168.5 197.0 307.3
0.10 153.1 163.3 215.0 278.5
0.15 152.1 160.3 215.7 263.6
0.20 151.0 158.5 179.2 248.4
0.25 151.3 157.1 133.1 227.6
0.30 149.0 156.0 120.6 208.1
0.35 149.2 155.1 112.7 192.1
0.40 153.6 154.7 125.1 181.0
0.45 155.8 154.9 126.3 173.6
0.50 156.8 155.2 134.5 168.0
0.55 157.3 155.5 140.6 164.6
0.60 158.0 155.9 137.9 161.8
0.65 158.5 156.3 144.8 159.6
0.70 158.9 156.7 159.6 158.8
0.75 158.6 157.0 176.1 160.2
0.80 158.5 157.4 166.4 161.7
0.85 157.8 157.7 161.1 161.7
0.90 158.8 157.9 149.2 160.3
0.95 162.8 158.6 201.3 163.7

¯
Ea (kJ/mol)

155.5 ±
0.9

157.7 ±
0.7

157.7 ±
7.2

194.8 ±
10.5
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The integral isoconversional method of Flynn–Wall–Ozawa (FWO) [64–67] was used in the
linearized form presented in Equation (3):

ln β = ln [A·Ea·R−1
·g−1(α)] − 5.331 − 1.052·Ea·R−1

·T−1 (3)

where g(α) is the integral conversion function.
The plotting of lnβ vs. T−1 allowed for the estimation of apparent activation energy values (Ea) for

each conversion degree. The obtained results are presented in Figure 8a,b and Table 1.
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In the case of CC, both isoconversional methods indicate that the decomposition mechanism of
the substance during thermolysis was unique and independent of the conversion degree and heating
rate, since the values of individual Ea values were around the mean value (155.5 kJ/mol) and inside
the ± 15 kJ/mol interval (corresponding to confidence interval range Ea ± 0.1Ea), namely between
149.0 kJ/mol (at α = 30%) and 162.8 kJ/mol (at α = 95%), according to the Friedman method. The same
trend was observed in the case of the integral method of FWO, where the variation was between
154.7 kJ/mol (at α = 40%) and 168.5 kJ/mol (at α = 5%), falling in the confidence interval around the
mean value of 157.7 kJ/mol (Table 1). Additionally, the results are in good agreement with the ASTM
E698 method, as previously discussed.

In the case of CCTAB, the results indicated by the differential and integral method were not
in good agreement, since the variation between the mean values was higher than 37 kJ/mol, clearly
suggesting a complex pathway of decomposition. The particular values Ea vs. α according to the
Fr method did present a randomized trend with increases and decreases as the reaction advanced,
so the maximum value was almost double the minimum (215.7 kJ/mol at α = 15% vs. 112.7 kJ/mol
at α = 35%). In this case, the mean Ea value of 157.7 kJ/mol was only calculated for a comparison to
the result suggested by the FWO method and not to characterize the decomposition mechanism of
the sample during thermal treatment, because, in this case, a modification of the mechanism during
thermolysis occurred. The data suggested for the FWO method also clearly indicated the dependency
of the mechanism of decomposition with the thermal treatment of the sample. The variation of the
apparent Ea fell between 158.8 kJ/mol (α = 70%) and 307.3 kJ/mol at the beginning of the decomposition
process (α = 5%). Most of the values Ea vs. α were outside the confidence interval, and the mean
value was in discrepancy with the results that were preliminarily obtained by the ASTM E698 method.
The results obtained by the FWO method for CCTAB, namely the decrease of Ea with the advance of
reaction, can be explained by the variation of the parameters of activation during the heating process
due to the complexity of the heterogeneous process and/or due to the influence of mass transfer and
heat transfer over the reaction rate [68]. Vyazovkin et al. associated the trend and aspect of the Ea vs.
α curve with the mechanism of complex heterogenous processes, leading to important qualitative
information over the thermolysis—so, for a variation like decreasing of Ea vs. α (Figure 9), a process
with reversible step is suspected [69–73].

Additionally, the considerable dissimilarities suggested by the Fr and FWO methods in the kinetic
analysis of decomposition of CCTAB can be explained by the integral processing of the data in the
case of integral method of FWO, in comparison to Friedman method, where the data processing is
differential [58,62].
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Since the results of kinetic studies (classic ASTM E698 method and isoconversional ones) were
in disagreement, a fourth method was employed in the study, namely the modified NPK method.
Initially, the NPK method was developed in 1998 through the studies of J. Sempere, R. Nomen and R.
Serra [74–76] and carried on in a kinetic study on DSC data in isothermal conditions without using an
a priori model for the k(T), nor for f(α), and only accepting the axiom that the reaction rate (r) can be
expressed as a product of two separable functions—one dependent solely on temperature and one
dependent solely on conversion, as shown in Equation (4):

r =
dα
dt

= k(T)·f(α) (4)

where k(T) is the rate constant and f(α) is the differential conversion function.
Regarding the direct consequence for assuming the validity of this axiom (that is unanimously

accepted in chemical kinetics), it worth mentioning two, namely the fact that the reaction rate can be
represented as a 3D surface (Π), and that the reaction rate can be expressed as a product of matrices.

Regarding the aforementioned first consequence by carrying the thermoanalytical experiments
at several heating rates (in this case four), the results was a family of curves, by which interpolation
generated the fitted 3D surface of the reaction rate (Π), as seen in Figure 10.
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Based on the validity of the axiom of kinetics presented in Equation (4), the modified NPK method
was applied to the same data set as the previously employed kinetic methods. As a consequence,
the reaction rates for the measurements at four different β values can be written as a matrix with
n × m elements whose rows correspond to the constant value of the conversion degree, and the
columns correspond to the different but constant values of temperature. By using the singular value
decomposition algorithm (SVD) [77], the corresponding matrix was decomposed into two vectors,
leading to the separation of the two theoretically assumed functions, namely the temperature-dependent
one (as k(T)) and the conversion-dependent one (as f(α)).

For the mathematical modelling of the two functions, any dependency can be theoretically used.
However, for kinetics, the temperature dependence k(T) is usually represented by an Arrhenius model,
while for the conversion function f(α), the model proposed by Šesták and Berggren is usually used [78],
as seen in Equation (5):

f(α) = αm
·(1− α)n (5)

where m and n are specific parameters for the investigated transformation process, with m corresponding
to physical transformations (like phase transitions, crystallization, and diffusion) and n corresponding
to a chemical transformation (decomposition, dehydrations, condensation, oxidation, etc.).

The Šesták–Berggren model is a generalization of the conversion functions that were previously
proposed and validated in literature, assuring the generality and universality of the modified NPK
method and providing an advantage that can separate the physical and chemical events that occur
during the transformation of a certain compound under thermal stress.

If a mass loss process evidenced by a TG curve consist in at least two simultaneous independent
steps, then the apparent global rate of transformation (rglobal) is the sum of individual rates (r1, r2, r3

. . . rz), as long as the degradation process consists in z individual steps Equation (6):

rglobal =
∑z

i=1
ri (6)

and as a consequence, Equation (4) can be rewritten as Equation (7):

rglobal =
∑z

i=1
ki(T)·fi(α) (7)

This type of data processing is leading to z sets of kinetic parameters (Ea, A, m, n) and each process
have a partial contribution to the global kinetic process, expressed as explained variance, λ.

Based on the mathematical model of the modified NPK method, the obtained results are
systematized in Table 2, and the transformation rate surfaces in 3D dimensions with the coordinates
(β·dα/dT; α; T) are presented in Figure 11.

The results obtained after employing the modified NPK method revealed that both samples, CC
and CCTAB, were degraded by the contribution of the two distinct steps. However, these degradation
was done via different mechanisms. In each case, the main step (characterized by the explained
variances of 87.0% and 75.3%, respectively) were due to chemical degradation, but they each had
different reaction orders (n = 1/3 for CC and n = 1/4 for CCTAB), suggesting different mechanisms
as the most important contribution to the degradation process (for CC, the partial Ea value due to
this step was around 141.6 kJ/mol, while it was 149.2 kJ/mol for CCTAB). The second process was
represented by a physical transformation (since n = 0 and m , 0), which can be attributed to the
solid–liquid phase transition due to the melting of the API in both cases (HFpeak at 164 ◦C). In the case
of CCTAB, the value of m changed in comparison to CC, as expected, since the HF curve revealed two
more endoergic processes in this case due to the melting of excipients (peaks at 60 and 105 ◦C), along
with the peak corresponding to the API. For both samples, the correlations obtained for the coefficient
of determination for each step were excellent, thus proving the robustness of the kinetic model.
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Table 2. The results of kinetic analysis after employing the modified NPK method.

Sample Step λ (%) A (s−1) Ea (kJ/mol) n m R2 f(α) Ea (kJ/mol)

CC
1 87.0 1.6 × 1016

± 2.1 × 104 162.8 ± 9.1 1/3 0 0.996 (1 −
x)1/3 154.5 ± 11.1

2 8.5 8.6 × 1013
± 4.4 × 109 147.2 ± 2.0 0 1/3 0.996 x1/3

CCTAB
1 75.3 9.6 × 1020

± 4.5 × 106 198.2 ± 11.5 1/4 0 0.993 (1 −
x)1/4 192.5 ± 16.6

2 24.5 4.6 × 1018
± 7.8 × 108 176.1 ± 5.1 0 5/3 0.999 x5/3
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4. Conclusions

In this paper, a comparative thermal stability analysis was carried out between candesartan
cilexetil as a pure active pharmaceutical ingredient and a commercial pharmaceutical formulation
containing 32 mg of candesartan cilexetil per tablet. Initially, the samples were characterized by
UATR-FTIR spectroscopy in order to check the identity and purity of the API and to investigate
the possibly occurring interactions between the API and the excipients from the solid formulation.
The results of the FTIR study confirmed the purity of CC and revealed that no interactions occurred
between the API and the excipients from the tablet.

As second investigational tool, thermal analysis was chosen. Thermoanalytical curves TG/DTG/HF
were drawn up at four different heating rates, and, initially, the thermal behavior of the two samples
was investigated and discussed as observed at β = 5 ◦C/min. Due to the compositional complexity of
the tablet, its thermoanalytical profile differed significantly to the one of API, though this profile did
reveal some of the characteristics of CC.

Since the kinetic study led to some inadvertencies regarding the stability of the API in the tablet
in comparison to CC, four methods were employed to analyze the decomposition behavior of both
samples, starting with classic methods (ASTM E698) and finishing with the modified NPK method,
the later one providing important information regarding thermolysis, including the mechanism
of decomposition.

In comparison to the kinetic results suggested by previously-chosen methods (ASTM E698, Fr
and FWO), the ones offered by NPK were in agreement for CC in all cases; for CCTAB, the results
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confirmed the data suggested by the FWO method, namely a stabilizing effect on the decomposition of
CC in CCTAB relative to CC due to the presence of excipients in pharmaceutical formulation. The NPK
method suggested that both samples were degraded by the contribution of two steps, the main step
being chemical degradation and the secondary step being a physical transformation. The excipients
chosen in the formulation seemed to have a stabilizing effect, since the apparent activation energy for
decomposition of the tablet was 192.5 kJ/mol, and the apparent activation energy for decomposition of
pure API was 154.5 kJ/mol.
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35. Moisei, A.; Gligor, F.; Bojiţă, M.; Chiş, A.; Totan, M.; Vonica-Gligor, L.A.; Ciurba, A. Compatibility and
stability studies of antihypertensive/excipients by thermal methods, Used in the preformulation phase.
Farmacia 2014, 62, 1239–1248.

36. Amer, A.M.; Allam, A.N.; Abdallah, O.Y. Comparative Pharmaceutical Evaluation of Candesartan and
Candesartan Cilexetil: Physicochemical Properties, In Vitro Dissolution and Ex Vivo In Vivo Studies. AAPS
PharmSciTech 2018, 19, 661–667. [CrossRef]

37. Tita, I.C.; Marian, E.; Tita, B.; Toma, C.C.; Vicas, L. Thermal Behaviour of Candesartan Active substance and
in pharmaceutical compounds. Rev. Chim. 2017, 68, 1895–1902.

38. Sharma, G.; Beg, S.; Thanki, K.; Katare, O.P.; Jain, S.; Kohli, K.; Singh, B. Systematic development of novel
cationic self-nanoemulsifying drug delivery systems of candesartan cilexetil with enhanced biopharmaceutical
performance. RSC Adv. 2015, 5, 71500–71513. [CrossRef]

39. Yuce, M.; Guven, O.; Karahan, S.; Saracbasi, O.; Capan, Y. Preformulation of Immediate Release Candesartan
Cilexetil Tablets Using Full Factorial Experimental Design. Lat. Am. J. Pharm. 2016, 35, 921–930.

40. Cui, P.; Yin, Q.; Guo, Y.; Gong, J. Polymorphic crystallization and transformation of candesartan cilexetil. Ind.
Eng. Chem. Res. 2012, 51, 12910–12916. [CrossRef]

41. Ledeti, I.; Murariu, M.; Vlase, G.; Vlase, T.; Doca, N.; Ledeti, A.; Suta, L.-M.; Olariu, T. Investigation of
thermal-induced decomposition of iodoform. J. Therm. Anal. Calorim. 2017, 127, 565–570. [CrossRef]

42. Nozela, W.C.; Nozela, C.F.V.; Silva, F.R.; Dias, D.S.; Almeida, S.; Ribeiro, C.A.; Crespi, M.S. Kinetic study of
the energetic reuse from torrefied sewage sludge and urban pruning blends. J. Therm. Anal. Calorim. 2018,
134, 1285–1291. [CrossRef]

43. El-Sadek, M.H.; Ahmed, H.M.; El-Barawy, K.; Morsi, M.B.; El-Didamony, H.; Bjorkman, B. Non-isothermal
carbothermic reduction kinetics of mechanically activated ilmenite containing self-reducing mixtures. J.
Therm. Anal. Calorim. 2018, 131, 2457–2465. [CrossRef]

44. Mothe, C.G.; de Miranda, I.C. Decomposition through pyrolysis process of coconut fiber and rice husk and
determination of kinetic parameters according isoconversional methods. J. Therm. Anal. Calorim. 2018, 131,
601–609. [CrossRef]

45. Antar, K.; Jemal, M. A thermogravimetric study into the effects of additives and water vapor on the reduction
of gypsum and Tunisian phosphogypsum with graphite or coke in a nitrogen atmosphere. J. Therm. Anal.
Calorim. 2018, 132, 113–125. [CrossRef]

46. Erceg, M.; Kresic, I.; Vrandecic, N.S.; Jakic, M. Different approaches to the kinetic analysis of thermal
degradation of poly(ethylene oxide). J. Therm. Anal. Calorim. 2018, 131, 325–334. [CrossRef]
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