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A B S T R A C T   

Membrane bioreactor (MBR) deteriorates due to fouling on the membrane pores, which can 
reduce the membrane performance. To reduce membrane fouling, the addition of inorganic filler 
can enhance the antifouling properties. This study investigates two different membrane prepa-
ration by thermally induced phase separation (TIPS) and dip coating methods to modify hollow 
fiber membrane with Silver Nanoparticles (AgNPs)-Zeolites used in MBR for industrial waste-
water treatment. Performance was evaluated by analyzing the flux of water and wastewater, 
rejection, water content, and antifouling properties. Characterization result represented the 
synthesized silver nanoparticles had similar diffraction peak with commercial AgNPs, then the 
micrograph of AgNPs and zeolites addition membrane showed that the inorganic material had an 
octahedral shape representing zeolite crystal and irregular shape representing AgNPs. The 
addition of zeolites and AgNPs resulted in satisfying performance, increased flux, rejection, and 
antifouling properties.   

1. Introduction 

The effluent from wastewater-treatment plants (WTPs) is being considered a viable water resource for reclamation due to water 
scarcity, environmental degradation, and resource depletion [1,2]. Among other wastewater treatment technologies, membrane 
bioreactors (MBR) have received increased attention in recent years in both municipal and industrial wastewater treatment [3,4]. A 

* Corresponding author. 
E-mail address: r.f.darmayanti@gmail.com (R.F. Darmayanti).  

Contents lists available at ScienceDirect 

Heliyon 

journal homepage: www.cell.com/heliyon 

https://doi.org/10.1016/j.heliyon.2023.e21350 
Received 10 April 2023; Received in revised form 8 October 2023; Accepted 19 October 2023   

mailto:r.f.darmayanti@gmail.com
www.sciencedirect.com/science/journal/24058440
https://www.cell.com/heliyon
https://doi.org/10.1016/j.heliyon.2023.e21350
https://doi.org/10.1016/j.heliyon.2023.e21350
https://doi.org/10.1016/j.heliyon.2023.e21350
http://creativecommons.org/licenses/by-nc-nd/4.0/


Heliyon 9 (2023) e21350

2

membrane bioreactor (MBR) is a wastewater treatment system that uses a membrane submerged inside or outside the bioreactor to 
separate activated sludge from water that has been treated in the bioreactor [5,6]. In addition, MBR technology has been widely 
applied in industry because of its advantages, which can decrease levels of chemical oxygen demand (COD), biological oxygen demand 
(BOD5), and total suspended solids (TSS) up to 95 %, resulting in excellent effluent water quality, short water treatment times, minimal 
waste, and low space [6–8]. However, MBR also has a major challenge, including fouling, which can reduce the flux rate. Moreover, 
continuous fouling will cause failure in the wastewater treatment system [9,10]. 

Fouling occurs due to the accumulation of pollutants in wastewater and the formation of biofilms by activated sludge [11–13]. In 
recent years, many studies on the modification of membrane material by mixing zeolite into the membrane to increase the flux have 
been reported. The addition of Zeolite 4A to polysulfone membranes had better flux and antifouling values (flux 8.5 L m− 2 h− 1, 
reversible fouling 83.5 %, and irreversible fouling 22.5 %) when compared to no addition (flux 2.5 L m− 2 h− 1, reversible fouling 76.4 
%, and irreversible fouling 19.8 %) [14]. In addition, the mixing of antimicrobial materials, such as silver nanoparticles, prevents the 
formation of biofilms on the membrane surface [15]. However, zeolite and silver nanoparticles decrease elasticity and increase 
stiffness, causing the membrane to be easily damaged when exposed to pressure [16]. The inorganic fillers reduced the elasticity of the 
membrane due to the difference in filler hydrophilicity with the membrane polymer’s (Polysulfone) hydrophobicity, thus producing 
weak bonding among membrane polymers [17]. 

The preparation procedures significantly affect the properties and performance of the obtained membrane. Therefore, appropriate 
membrane preparation is an essential part of overcoming the issues. The thermally induced phase separation (TIPS) fabrication 
method produced a narrow pore size distribution of insoluble polymers in general diluents at room temperature [18]. In a previous 
study, the TIPS-fabrication based membrane showed good anti-fouling and high flux due to the higher hydrophilicity of the membrane, 
as indicated by the low contact angle value of 33.8◦ [19]. The membrane prepared using the TIPS method had a high water permeation 
flux, although the concentration of the polymer solution increased. This happens because the high temperature will decrease the 
viscosity of the solution so that it accelerates the mass exchange between the solvent and nonsolvent, resulting in a non-solid pore 
structure. Polyvinylidene membrane (PVDF) made by the TIPS method and the addition of perfluorosulfonic acid (PSFA) as an additive 
increased the porosity, surface hydrophilicity, and permeation flux of pure water (507.2 ± 1.2 L m− 2 h− 1 bar− 1) for membrane im-
pressions at 90 ◦C [20]. 

The surface modification by dip coating method offers antifouling and stable mechanical properties [21,22]. The dip coating 
method coats both sides easier with excellent homogeneity than vacuum methods with similar filtration performance. Surface 
modification-based membranes are scratch-resistant and very durable in a harsh environment. This method is also applicable to a wide 
range of diameters or membrane pane sizes. It was reported that superhydrophilic silica NPs on PMAA-grafted membranes reduce 
foulant membrane interfacial forces, indicating their antifouling property [23]. On the other hand, introducing Cu NPs on the PVDF 
membrane surface exhibited high BSA rejection (80.5 %) with stable normalized flux. Moreover, it produced the highest FRR namely, 
63.3 % [24]. 

Even though the performance of membranes is influenced by their fabrication methods, which have been previously studied, a 
thorough review of the literature reveals that no publication has directly compared various membrane preparation procedures for Ag- 
modified MBR. In this research, we examined two specific preparation methods: thermally induced phase separation (TIPS) and dip- 
coating. The orientation of the Ag position in the membrane contributes to the antifouling performance. Thus, investigating the 
different Ag modifications in membranes would provide the optimal process for Ag NPs modification. Therefore, this study develops a 
membrane with a zeolite and silver nanoparticle coating through the TIPS and dip-coating methods for industrial wastewater treat-
ment applications. 

2. Material and methods 

2.1. Materials 

The used materials, including sodium aluminate (NaOH, 99 %), sodium silicate (Na2SiO3, 99 %), silver nitrate (AgNO3, 99.8 %), 
polyvinylidene fluoride (PVDF, Kynar®740, 99 %, Arkema Inc. Philadelphia), N-methyl-2-pyrrolidone (NMP, 99 %, Across Chem-
icals), polyvinyl alcohol (PVA, 99 %, Mw = 72.000 g/mol, Merck), glutaraldehyde (GA, 50 % (w/w), Merck), sulfuric acid (H2SO4, 98 
%, Merck), and N-metil-2-pirrolidon (NMP, 99.5 %, Merck) were supplied by Merck. PVDF hollow fiber membranes were purchased 
from Hangzhou Kaihong Membrane Technology Co., Ltd., China, while distilled water was obtained from the local market. 

2.2. Synthesis of Zeolite NaY 

Zeolite NaY was synthesized using the hydrothermal method. The synthesis process followed some steps: (i) seed gel preparation; 
(ii) feedstock gel preparation; and (iii) overall gel preparation [25]. For the first step, 0.3469 g of NaOH and 1.924 g of sodium 
aluminate were mixed with 23.991 g of distilled water well mixed by a magnetic stirrer. Then 17.518 g of sodium silicate was added to 
the mixture and stirred for 10 min. Then, the mixture was aged for 24 h under room temperature. Then, for the second step, 0.1 g of 
NaOH and 13.85 g of sodium aluminate were mixed with 157.518 g of distilled water until well mixed by a magnetic stirrer. Then 
107.212 g of sodium silicate were added to the mixture and stirred at 500 rpm. The feedstock gel was stored. For the last stage, 16.5 g of 
seed gel was added to the feedstock gel and stirred for 20 min at 600 rpm. Then, the overall gel was aged for 24 h at room temperature. 
After the aging process was completed, further hydrothermal processes were conducted in the autoclave [26–28] to form zeolite 
crystals at 100 ◦C for 7 h. The obtained product was filtered to separate the supernatant and washed with water until the pH was less 
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than 8. 

2.3. Synthesis of AgNPs-Zeolite NaY 

The 5 g of zeolite Na–Y was mixed into 10 ml of silver nitrate 0.1 M, then stirred to form a homogeneous solution. Then, 10 ml of 
0.05 M trisodium citrate was added and stirred for 30 min at 6–10 ◦C, 3000 rpm. 10 ml of sodium borohydride 0.05 was dripped gently, 
followed by the addition of sodium hydroxide 1.25 M. 

2.4. Membrane preparation 

2.4.1. TIPS method 
The preparation of dope solutions was modified from previous studies [22,29]. A few zeolite Na–Y or AgNPs/Zeolite Na–Y (0.1, 0.2, 

0.3, and 0.4 g) were dissolved in NMP, followed by PVDF dissolution. The mixture was stirred at 60 ◦C for 18 h to obtain a homogenous 
mixture. The mixture was sonicated using the Ultrasonicator Faithful (Hebei China, Series FSF-020S, 40 kHz) then stored at room 
temperature to remove air bubbles. The mixture was heated to 90 ◦C followed by casting on a roller tube. The obtained cast sample was 
then immersed in water at room temperature. 

2.4.2. Dip coating 
The hollow membrane was coated by dip coating by modifying a previously reported procedure [21]. The hollow fiber membrane 

was coated with a polyvinyl alcohol solution. The coating solution was prepared by stirring 1.5 wt% PVA and 0.5 wt% GA in water for 
4 h at 400 rpm. In addition, added Zeolite Na–Y or AgNPs/Zeolite Na–Y fillers into the solution and stirred until homogenized for 4 h at 
400 rpm. Subsequently, the dope solution was sonicated for 30 min to remove the bubbles. The surface of the hollow fiber membrane 
was coated by soaking it in polyvinyl alcohol solution for 5 h and the membrane was dried at room temperature overnight. 

2.5. Characterization 

Rigaku Miniflex II instrument from Japan observed X-ray diffractograms (XRD) of prepared samples using CuK radiation at =
0.154, 40 kV, and 30 mA to confirm the crystal structure formation of the zeolite, AgNPs, and their composite. Employing scanning 
electron microscopy (SEM, Vega3 Tesc, Czech), the morphology of the membrane was analyzed. For the water quality assessment, the 
analysis methods of chemical oxygen demand (COD), biological oxygen demand (BOD), chemical oxygen demand (COD), and total 
suspended solids (TSS) corresponded to the Indonesian national standards, namely SNI 6989.73:2019, SNI 6989.72:2009, and SNI 
6989.3:2019, respectively. The membrane thickness was measured using Vernier calipers. 

Fig. 1. Ultrafiltration reactor configuration.  
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2.6. Ultrafiltration process 

The ultrafiltration test was carried out with a cross flow reactor system (Fig. 1) to evaluate the permeability, flux, rejection, water 
content, dan antifouling performance. The flux and rejection were calculated by following equations (1) and (2), respectively. 

Flux=
V

A × t
(1)  

Rejection=
Initial water quality − Filtered water quality

Initial water quality
× 100% (2)  

where V represents volume of permeate, A is membrane area that used, and t is operation time for filtration process. The water quality 
was indicated as COD, BOD, TSS, and TDS. Therefore, four rejection criteria will be obtained, corresponding to each water quality. The 
antifouling performance was measured by FRR (flux recovery ratio), reversible fouling resistance (Rrev), irreversible fouling resistance 
(Rirev), and total fouling resistance (Rtot) using Equations (3)–(6), respectively. 

FRR=
Permeation after washing

Permeation before washing
× 100% (3)  

Rrev =
Permeation after washing − Flux before washing

Permeation before washing
× 100% (4)  

Rirev =
Permeation after washing − Permeation before washing

Permeation before washing
× 100% (5)  

Rtot =

(

1 −
Flux before washing

Permeation before washing

)

× 100% (6)  

2.7. Membrane performance evaluation 

The inoculated activated sludge was obtained from an industrial wastewater treatment plant in Gresik, Indonesia. The inoculated 
activated sludge has characteristics including MLSS 2750–2950 mg/L and DO 2–2.7 mg/L. The membrane performance evaluation was 
conducted at 0.5–0.7 bar. The wastewater from industrial production processes and corporate household activities, which are the main 
pollutants, was fed into the reactors. The wastewater quality was as follows: COD 2040 mg/L, TSS 415 mg/L, TDS 2050 mg/L, pH 7.11 
± 0.5, BOD 632 mg/L and temperature 28 ◦C. 

The separation efficiency was evaluated by chemical oxygen demand (COD), biological oxygen demand (BOD5), total dissolved 
solid (TDS), and total suspended solid (TSS) of the filtrate according to Indonesian National Standards such as COD, BOD5, and TSS 
based on SNI 6989.73:2019, SNI 6989.72:2009, and SNI 6989.3:2019, respectively. The statistical technique employed to assess the 
significance of various membrane preparations was analysis of variance (ANOVA), conducted using Minitab 16 software (Minitab Inc., 
Institut Teknologi Sepuluh Nopember, Indonesia) [26,30]. 

3. Results and discussion 

3.1. Materials characterization 

3.1.1. X-ray diffraction analysis 
The materials were characterized by XRD to determine their structure [31,32]. The synthesized zeolite Na–Y and silver nano-

particles have the same characteristic peak as JCPDS No. 39–1380 and JCPDS No. 04–0783, respectively. The synthesized zeolite Na–Y 
diffractogram shows a typical diffraction peak at 2θ of 6.2◦, 10.1◦, 11.8◦, 20.2◦, 23.5◦, 26.9◦, 30.5◦, 31.2◦, and 32.2◦ corresponding to 
(1 1 1), (2 2 0), (3 1 1), (4 4 0), (5 3 3), (6 4 2), (8 2 2), (5 5 5), and (8 4 0), respectively (Supplementary Fig. 1). The peak of zeolite-Y 
crystals with the highest intensity appears at 2θ of 6.2◦ which indicates high crystallinity and that no other phase is formed besides 
zeolite-Y. Furthermore, the XRD results of the synthesized silver nanoparticles (AgNPs) showed four XRD peaks of silver nanoparticles 
at 2θ of 38.3◦, 44.3◦, 64.6◦, 77.5◦, and 81.7◦ corresponding to (1 1 1), (2 0 0), (2 2 0), (3 1 1), and (2 2 2), respectively (JCPDS No. 
04–0783) [33]. 

In the AgNPs-Zeolite NaY sample, a distinctive peak of silver nanoparticles appeared, indicating that the impregnation of silver 
nanoparticles on the surface of the zeolite Na–Y was successful. Moreover, the XRD peaks revealed that the composite consisted of 
PVDF and AgNPs/zeolites, with the structure of AgNPs being face-centered cubic (FCC) crystals. The average crystal size of silver 
nanoparticles calculated by the Debye-Scherrer equation was 27.69 nm. 

3.1.2. Scanning electron microscope analysis 
SEM analysis was performed to observe the morphology of the AgNPs/Zeolite Na–Y coated membrane (Supplementary Fig. 1). It 

can be seen that there are octahedral-shaped lumps, which indicate the presence of zeolite Y. SEM results show differences in dark and 
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light images that are influenced by its constituent elements. Compounding elements that have a higher atomic number will produce a 
brighter color image when compared to elements that have a lower atomic number [34–36]. In this study, the constituent elements of 
the AgNPs/Zeolite Na–Y coated PVDF membrane were Ag, Si, Al, Na, O, C, and F. In the SEM image, the brightest nodules, which are 
Ag elements, are spread evenly throughout the membrane surface. Therefore, the dip-coating process in this study was successfully 
carried out. The even distribution of these particles can increase the antifouling and antimicrobial properties of the membrane. 

3.1.3. Tensile test 
Stress, modulus young, and strain tests were carried out on PVDF membrane, Na–Y zeolite membrane, and AgNPs/Zeolite Na–Y 

membrane, as shown in Fig. 2a, b, and c, respectively. From the results of stress, strain, and Young’s modulus, there is no significant 
difference between the three materials. it indicated that modifying the coating did not change the mechanical properties of the 
membrane [37]. Adding zeolite Na–Y to a PVDF membrane can alter its mechanical properties in several ways. Zeolite Y is a material 
with a high surface area that, when incorporated into a polymeric matrix, can modify the membrane’s mechanical behavior. Zeolite Y 
is well-known for its exceptional mechanical strength and rigidity [38]. Incorporating zeolite particles into a polymeric membrane 
enables them to serve as reinforcing additives, thereby improving the membrane’s overall mechanical properties. It can increase the 
membrane’s tensile strength, flexural strength, and resistance to deformation [39]. In addition, zeolite Y has a greater modulus of 
elasticity than the vast majority of polymers [40]. It can enhance the composite material’s rigidity when added to a polymeric 
membrane, making it less susceptible to warping or sagging under load. This can be especially beneficial in applications where 
membrane stability and dimensional integrity are essential. As a result, introducing Zeolite Y into the PVDF membrane improved the 
stress point while also decreasing the strain due to the membrane becoming stiffer. On the other hand, the addition of silver nano-
particles (AgNPs)/Zeolite Na–Y to PVDF membrane provided more impact on the improvement of the stress point and the reduction of 
membrane strain. This result was consistent with a prior study that demonstrated the AgNPs/SPS nanocomposite films became more 
resistant to break, stiffer, and less stretchable compared to the control SPS films [41]. The enhanced mechanical properties of the 
membrane were contributed by strong interactions between AgNPs/Zeolite Na–Y and the polymer matrix, facilitating adequate 
interfacial adhesion. 

Fig. 2. (a) Stress, (b) modulus young, and (c) strain testing of the membrane.  
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3.2. Membrane performance 

The membrane bioreactor’s performance was evaluated by analyzing the flux, rejection, and water content of water and waste-
water. Fig. 3a, b, c, and d depict flux performances of hollow fiber and flat sheet membrane using water and wastewater, respectively. 
The addition of zeolite and silver nanoparticles significantly increased the flux because of increased water absorption on the surface, 
since zeolites had high micropores and mesopores and thus easily absorbed water [42]. The structure of zeolites consists of alumina 
and silica linked with oxygen and hydroxyl groups. The hydroxyl group can strongly interact with water so that the zeolites can easily 
absorb water, as shown in Fig. 4 [42–44]. The highest water flux of membranes was obtained at 204.54 L/m2h by the addition of 0.2 g 
AgNPs/Zeolite Na–Y into the PVDF matrix polymer membrane bioreactor. However, a higher loading concentration did not signifi-
cantly increase the flux. It could also indicate that there is an optimal loading filler concentration beyond which further increases do 
not significantly enhance the system’s performance. The addition of silver nanoparticles provided higher flux performance after 
washing when compared to zeolite addition alone [18]. This was consistent with the previous result result, which reported that 
introducing Ag nanoparticles aid to promote hydrophilicity of the membrane [45]. In addition, the presence of silver nanoparticles was 
also an inhibitor of the growth of microorganisms [25,46]. The antimicrobial activity of AgNPs was determined by two different 
processes, including the dissolution/release of AgNPs and Ag+ and their reaction with cells [47]. On the other hand, hollow fiber 
membrane showed slightly higher flux than flat membrane. The hollow fiber provided better porosity, which decreased the resistance 
of the flow rate. In addition, hollow fiber modulation offers high specific surface area and packing density, and the associated 
membrane module is simple to build in the absence of spacers such as support mesh and grid [48]. 

Fig. 4 shows the water content of the membranes. The addition significantly increased the water content. A high water content 
indicates a higher hydrophilicity of the membrane. Previous reports have mentioned that the high hydrophilicity of the surface 

Fig. 3. Flux performance of hollow fiber membrane using water (a) and wastewater (b) as a feed, and flat sheet membrane using water (c) and 
wastewater (d) as a feed. 
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increases the water flux due to its positive capillary force [44,49,50]. As a result, AgNPs surface contains hydroxyl groups that attach 
water to form a water moiety. 

Antifouling performances of Zeolite Na–Y hollow fiber membrane, AgNPs-Zeolite Na–Y/PVDF hollow fiber membrane, Na–Y 
Zeolite flat sheet membrane, and AgNPs- NaY/PVDF flat sheet membrane were shown in Fig. 5a, b, c, and d, respectively. The 
membrane with the zeolite’s addition provided better antifouling properties compared to the neat membrane. Total fouling resistance 
(RT), reversible fouling resistance (RR) and irreversible fouling resistance (RIR) decreased by zeolite addition. The reversible fouling 
resistance indicates that the clogging is removable. Low RR and RIR imply the fouling by removable and unremovable pollutants is 
minimal, respectively. The AgNPs showed low RIR and contributed to the low RT . AgNP zeolite Na–Y increases the hydrophilicity of the 
membrane significantly due to its high-water content, thus preventing irreversible fouling. A hydrophobic pollutant, organic matter, or 
bacteria will repel from the surface before it enters the pores of the membrane, preventing it from being an irreversible pollutant. In 
contrast, zeolite Na–Y alone had a lower water content, so the pollutant could penetrate the membrane pores, creating an irreversible 
pollutant. The prevented irreversible pollutant becomes a reversible pollutant due to its presence on the membrane surface. As shown 
in Fig. 5, the reversible pollutant was higher for AgNPs/zeolite Na–Y than zeolite Na–Y. In addition, silver nanoparticles acted as an 
inhibitor and degraded pollutants or microorganisms [20]. 

Fig. 6a, b, c, and d show rejection performances of hollow fiber membrane with addition zeolite, AgNPs-zeolite, and flat sheet 
membrane with addition zeolite, and AgNPs-zeolite, respectively. The membrane modified with zeolite and silver nanoparticles gave 
good COD, BOD5, and TSS removal performance. However, the performance of TDS removal did not yield significant results. The 
permeation of TDS contaminants through the ultrafiltration membrane was facilitated by the presence of cations and anions [51]. The 
TDS removal performance with the addition of zeolite and silver nanoparticles was higher than without the addition of filler. Zeolite 
performs ion exchange [52], hence that it absorbs anions and cations contained in the TDS pollutants [37]. The highest rejection 
performance of the membrane was shown by filler loading 0.3 (g) zeolites addition and filler loading 0.3 (g) AgNPs/zeolite Y addition, 
namely water flux (195.45; 202.62 L/m2.h), wastewater flux (104.53; 129.07 L/m2.h), rejection (COD: 98.5; 99 %, BOD5: 98.5; 99 %, 
TSS: 99.8; 99.9 %, and TDS: 65.6; 66 %), FRR (82.5; 95 %), Rrev (26.84; 30.6 %), Rirrev (18.62; 9.28 %), and Rtot (4608; 4015 %), 
respectively. 

Table 1 shows a comparison of the performance of membrane bioreactors with different fillers. The flux varied from 2.87 to 484 L 
m− 2 h− 1 [53–58]. The rejection rate also varies from 89.04 to 99.99 %. The membrane bioreactor with PVDF/PANI-TiO2 filler has the 
highest flux value of 484 L m− 2 h− 1, but the rejection rate is only 90 % [59]. When compared with other fillers, membranes with 
PVDF/Zeolite Na–Y and PVDF/Zeolite Na–Y AgNPs fillers have high flux values and high rejection rates. Hollow fiber membrane with 
PVDF/Zeolite Na–Y composite has a flux value of 106.26 L m− 2 h− 1 and a rejection rate of 98.382 %. While the hollow fiber membrane 
with PVDF/Zeolite Na–Y AgNPs composite has a flux value of 127.57 and a rejection rate of 99.019 %. Based on this, it can be 
concluded that the contribution level of AgNPs/zeolite composite membrane separation significantly improves membrane perfor-
mance. The addition of AgNPs to the membrane also increases the hydrophilicity of the membrane, thereby reducing the hydrophobic 
interactions between the foulant molecules and the modified membrane surface. Thus, it can be concluded that the dip-coating method 
on PVDF membranes, Na–Y zeolite membranes, and AgNPs/Zeolite Na–Y membranes has advantages in flux values, COD rejection, and 
antifouling without affecting the mechanical properties of the membrane. 

Fig. 4. The effect of zeolite addition on water content of Zeolite Na–Y/PVDF membrane and AgNPs-Zeolite Na–Y/PVDF membrane.  
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4. Conclusion 

In this work, different types of membrane preparation, including TIPS and dip coating, were performed and analyzed. Hollow fiber 
modulation demonstrated more favorable with higher performance compared with flat sheet membranes due to the different surface 
areas of the membranes. In addition, zeolite Na–Y and AgNPs/Zeolite Na–Y at various loadings (0.1–0.4g) were introduced in the PVDF 
membrane bioreactor matrix and studied for their contribution to improving performances. The highest water flux of membranes was 
obtained at 204.54 L/m2h by the addition of 0.2 g AgNPs/Zeolite Na–Y into the PVDF matrix polymer membrane bioreactor. The 
highest rejection performance of the membrane was shown by filler loading 0.3 (g) zeolites addition and filler loading 0.3 (g) AgNPs/ 
Zeolite addition, namely COD: 98.5; 99 %, BOD5: 98.5; 99 %, TSS: 99.8; 99.9 %, and TDS: 65.6; 66 %), FRR (82.5; 95 %), Rrev (26.84; 
30.6 %), Rirrev (18.62; 9.28 %), and Rtot (4608; 4015 %), respectively. Moreover, the addition of zeolites and silver nanoparticles 
resulted in satisfying performance, increased flux, rejection, and antifouling properties. The best-performing membrane was obtained 
by the addition of zeolites and AgNPs/zeolite. The value of the performance was water flux (195.45; 202.62 L/m2.h) and Rejection 
(COD: 98.5; 99 %, BOD5: 98.5; 99 %). Furthermore, the addition of silver nanoparticles (AgNPs)/Zeolite Na–Y to PVDF membrane 
provided more impact on the improvement of the stress point and the reduction of membrane strain. This study suggested that adding 

Fig. 5. Antifouling performance a) Zeolite Na–Y hollow fiber membrane, b) AgNPs-Zeolite Na–Y/PVDF hollow fiber membrane, c) Na–Y Zeolite flat 
sheet membrane, d) AgNPs- NaY/PVDF flat sheet membrane. 
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AgNPs/Zeolite Na–Y filler into the PVDF membrane bioreactor matrix has advantages in flux values, COD rejection, and antifouling 
without adversely affecting the membrane’s mechanical properties. 
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