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Abstract

Introduction

Air pollution represents a serious threat to health on a global scale, being responsible for a

large portion of the global burden of disease from environmental factors. Current evidence

about the association between air pollution exposure and Diabetes Mellitus (DM) is still con-

troversial. We aimed to evaluate the association between area-level ambient air pollution

and self-reported DM in a large population sample in Italy.

Materials and methods

We extracted information about self-reported and physician diagnosed DM, risk factors and

socio-economic status from 12 surveys conducted nationwide between 1999 and 2013. We

obtained annual averaged air pollution levels for the years 2003, 2005, 2007 and 2010 from

the AMS-MINNI national integrated model, which simulates the dispersion and transforma-

tion of pollutants. The original maps, with a resolution of 4 x 4 km2, were normalized and

aggregated at the municipality class of each Italian region, in order to match the survey

data. We fit logistic regression models with a hierarchical structure to estimate the relation-

ship between PM10, PM2.5, NO2 and O3 four-years mean levels and the risk of being

affected by DM.

Results

We included 376,157 individuals aged more than 45 years. There were 39,969 cases of DM,

with an average regional prevalence of 9.8% and a positive geographical North-to-South

gradient, opposite to that of pollutants’ concentrations. For each 10 μg/m3 increase, the

resulting ORs were 1.04 (95% CI 1.01–1.07) for PM10, 1.04 (95% CI 1.02–1.07) for PM2.5,

1.03 (95% CI 1.01–1.05) for NO2 and 1.06 (95% CI 1.01–1.11) for O3, after accounting for

relevant individual risk factors. The associations were robust to adjustment for other pollut-

ants in two-pollutant models tested (ozone plus each other pollutant).
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Conclusions

We observed a significant positive association between each examined pollutant and preva-

lent DM. Risk estimates were consistent with current evidence, and robust to sensitivity

analysis. Our study adds evidence about the effects of air pollution on diabetes and sug-

gests a possible role of ozone as an independent factor associated with the development of

DM. Such relationship is of great interest for public health and deserves further

investigation.

Introduction

Air pollution is ranked high in the burden of disease attributed to environmental factors,

accounting for 3.1 million deaths in 2012 and for 3.1% (2.7–3.4) of global DALYs [1]. It repre-

sents a serious and growing threat to health on a global scale involving both developed and

developing countries, many of which are experiencing a fast economic growth that is often

associated with the emission of huge amounts of pollutants in the environment. It’s association

with several chronic conditions such as cardiovascular diseases [2,3], asthma [4,5], chronic

obstructive pulmonary disease (COPD) [6,7], and cancer [8] is well documented in scientific

literature.

Diabetes mellitus, for its part, represents a leading cause of morbidity and mortality among

noncommunicable diseases: its global prevalence has risen to 8.5% among adults and it caused

1.5 million deaths in 2012 [9]. It has been recognized as one of four priority diseases by world

leaders in the 2011 Political Declaration on the Prevention and Control of noncommunicable

diseases [10]. Hence, the possibility to target air pollution as a modifiable risk factor on which

to take action for reducing the diabetes epidemic is of great interest for public health, especially

considering its wide diffusion in the population.

The biological plausibility of such relationship is supported by several toxicological studies.

Particulate matter was found to activate different inflammatory pathways leading to endothe-

lial dysfunction and insulin resistance [11,12]. It was demonstrated also to induce metabolic

impairment, increasing adiposity and inflammation in brown and white adipose tissue. The

exposure to ozone was associated with altered glucose and lipid metabolism, activating stress-

hormones responses [13,14].

Epidemiological evidence is more controversial. The first ecological study suggesting an

association between diabetes mellitus and ambient air pollution was published by Lockwood

in 2002 [15]. He found that diabetes prevalence was significantly correlated with total annual

air emissions at state-level in the US. More recently, Pearson et al. observed a 1% increase in

diabetes prevalence per 10 μg/m3 increase in PM2.5 levels among US counties [16]. Another

ecological study conducted in Italy at the province level found an association between PM2.5

levels and diabetes-linked hospital discharges, after adjusting for known risk factors and an

indicator of appropriateness in hospitalizations [17]. Evidence coming from longitudinal stud-

ies is increasing and it has been synthesized in many meta-analyses [18–20], but the results are

still controversial. In particular, there is paucity of evidence about the relationship between

exposure to ozone and diabetes. To our knowledge, only one cohort study explored the effect

of ozone on the development of T2DM, reporting a significant effect [21]. However, it was lim-

ited to the specific population subgroup of African American women.

The purpose of this study was to evaluate the ecological association between area-level

air pollution (PM10, PM2.5, NO2, and O3) and self-reported diabetes mellitus in a large,
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nationwide Italian population sample. Furthermore, we explored effect modification in order

to detect possible variations in susceptibility among different subgroups and to identify the

characteristics of more susceptible individuals.

Our hypothesis was that an increased level of exposure to air pollution is associated with an

increase in prevalent diabetes, when accounting for important individual covariates.

Methods

Study population

We collected data regarding diabetes and the covariates from twelve National surveys, regu-

larly conducted by ISTAT (Italian National Institute of Statistics) from 1999 to 2013. In partic-

ular we used data from the available version of Multipurpose National Surveys on households

about “Health conditions and use of medical services”, carried out in 1999–2000, 2004–2005

and 2012–2013, as well as those of nine National Surveys on households about “Aspects of

daily life”, carried out annually from 2003 to 2012 (except for 2004). These are population-

based cross-sectional surveys that investigate many aspects about individual health status,

socio-economic status, interactions with social and health services, and daily life activities.

They share a complex study design, characterized by a stratified multistage cluster sampling, to

get reliable prevalence estimates at regional and municipality-class level (see the “Air pollu-

tion” paragraph below), as well as many questionnaire’s items, as described in detail elsewhere

[22,23]. From all the available items, we selected those relevant for the outcome and the covari-

ates of interest. We merged the single survey datasets, assembling a study population of

826,080 subjects sampled from all regions and municipality classes. Of the total, we included

376,157 individuals aged over 45.

Outcome and covariates

We considered diabetic the subjects who reported a physician-diagnosed diabetes mellitus.

We selected covariates based on well known diabetes’ risk factors and according to current evi-

dence. They included sex, age, BMI (continuous, derived from height and weight), physical

activity (binomial, yes = subjects who declared to practice sport activity or reporting a moder-

ate to intense physical activity in leisure time or in their working setting), smoking status

(never smoker, current smoker or former smoker), presence of comorbid cardiovascular

conditions (binomial, yes = subjects who declared to be affected by hypertension, angina, or

ischemic heart disease) and socioeconomic status, which was evaluated through questions

about educational level (categorical, low = no education to lower secondary school; intermedi-

ate = high school degree; high = any university degree after high school), occupational status

(categorical: employed, unemployed, housewife, retired, other condition), perceived house-

hold income (binomial, high = subjects who evaluated their household income as high or very

high; low = subjects who evaluated their household income as low or insufficient), and marital

status (categorical: single, married, separated/divorced, widowed).

Air pollution

We used air pollution levels at 4 x 4 km2 horizontal spatial resolution estimated with the AMS

Model, the Italian integrated Assessment Modelling System developed in the MINNI project

funded by Italian Ministry of Environment for supporting the international negotiation pro-

cess on air pollution and assessing air quality policies at national/regional level [24,25]. The

core of the AMS-MINNI modelling system is the three-dimensional Eulerian model Flexible

Air Quality Regional Model (FARM) [26,27], that includes transport and multiphase
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chemistry of pollutants in the atmosphere. The AMS-MINNI outputs are systematically com-

pared with measured concentrations of rural, urban and suburban background air quality

monitoring stations, showing (on NO2, PM10 and O3) good performances, according to the

statistical indicators currently used in air quality models performance assessment [28,29].

For PM10, PM2.5, and NO2, we calculated the annual mean concentrations using AMS--

MINNI model hourly simulated data. For Ozone, we used daily maximum of 8-hours running

average, considering only the warm period lasting from April to September. Data were avail-

able for years 2003, 2005, 2007 and 2010.

For the exposure assessment, we had to match the gridded data with the administrative ref-

erence level allowed by the study population dataset from ISTAT surveys; to do that, we

upscaled the single cell concentration levels to the administrative unit and then calculated

mean, median and 90th percentile annual values for each pollutant (April-September for

Ozone). We started from the resolution of 4 x 4 km2, and using overlay GIS-based procedures

and the weighted mean method, we firstly recalculated the dataset at municipal level (pollut-

ant-specific maps at municipal level are shown in S1–S4 Figs) and then at the aggregation

level. For the second step, we used the resident population of each municipality from Italian

National Census 2011 to weight the attributed concentrations within their reference group.

The aggregation level was defined by the combination of region of residence and a six-level

categorical classification of municipalities based on the number of resident inhabitants (0–

2,000; 2,001–10,000; 10,001–50,000; more than 50,000; regional capitals; municipalities within

regional capital metropolitan areas). This classification, although approximate, showed good

homogeneity of air quality for municipalities belonging to the same group. Finally, we

matched the two datasets by the combination of these two variables and attributed to each

individual the corresponding levels of exposure to air pollutants.

Statistical analysis

We firstly carried out descriptive analysis to assess population sample characteristics, geo-

graphical distribution and correlation coefficients between variables. The binary diabetes out-

come was regressed in a mixed logistic model against the mean levels of each pollutant,

controlling for age, sex, BMI, educational level, occupational status, marital status, physical

activity, household income, and smoking status as fixed variance components. We selected

survey-identifying code and region of residence as random variance components, in order to

deal with the hierarchical structure of the data. We included in covariates also the geographic

coordinates for each regional capital (latitude and longitude) to have some adjustment for spa-

tial autocorrelation. We centred on the mean all numerical variables (age, BMI and pollutant

levels) to limit the effect of different units of measurement.

We used a stepwise regression approach to evaluate the effect of adding-in of single covari-

ates on on goodness of fit, assessed through Akaike Information Criterion (AIC), with lower

AIC values indicating a better fit. To assess possible multicollinearity between variables, we

computed the variance inflation factor (VIF).

We tested for effect modification by gender, age class (<60, 60–74,�75), weight status

(normal/underweight, overweight, obese), physical activity (yes, no), smoking status (never

smoker, current smoker, former smoker) and educational level (high, intermediate, low). We

also explored possible effect modification due to the presence of comorbid cardiovascular dis-

eases (hypertension, angina, ischemic heart disease). We generated interaction terms for each

pollutant with the potential effect modifier, and added them one by one to the fully adjusted

model. Then, we assessed heterogeneity through the likelihood ratio test and recorded the

respective p-values.

Air pollution and self-reported diabetes in Italy
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For sensitivity analysis, we used the same models with different exposure metrics (utilizing

annual median and 90˚ percentile values, or IQR as units of increase). Additionally, we added

the mean-centred proportion of diabetic people for each geographical area, to have some con-

textual adjustment for possible area-level residual confounding. We also evaluated the effect of

air pollutants in the subgroup of the population with exposure levels beyond the limits recom-

mended by WHO [30]. Finally, we performed two-pollutant models for pairs of pollutants. We

only tested for pairs formed by ozone and each other pollutant due to high correlation between

PM10, PM2.5 and NO2.

We explored the shape of relationships between exposures and outcome by replacing the

linear term in the fully adjusted models with B-splines with 3 degrees of freedom (df) and com-

pared the goodness of fit through AIC and likelihood-ratio test.

All statistical analyses were carried out with R version 3.2.3 (The R Foundation for Statisti-

cal Computing, Vienna, Austria), using the packages lme4 for mixed models and dlnm for

non-linear approach and plots. We considered as indication of statistical significance p-values

equal or less than 0.05.

Results

Descriptive statistics of the population sample by diabetic status are reported in Table 1. Mean

(SD) age was 63.5 (11.8); 53.7% of subjects were female, 13.9% were obese, 17.9% were smok-

ers, 66.8% had a secondary school educational level or lower and 38.2% reported low family

income. In total 36,969 individuals reported a diagnosis of diabetes, with an overall prevalence

of 9.8%. Compared to females, males had lower mean age, were more likely obese or over-

weight, current or ex-smokers and had a slightly higher family income and educational level.

Diabetic people were more likely to be female, current or previous smokers, had a lower family

income and educational level and a higher mean age and BMI, compared to the entire popula-

tion sample. The mean (SD) exposure in the study population was 16.9 μg/m3 (7.4) for PM10,

15.9 μg/m3 (7.1) for PM2.5, 15.9 μg/m3 (11.3) for NO2, and 103.2 μg/m3 (5.1) for O3.

Table 2 shows descriptive statistics of PM10, PM2.5, NO2 and O3 variables based on the

municipalities classification. As expected, pollutants levels were higher in regional capitals,

municipalities within regional capital metropolitan areas and more densely populated munici-

palities. Pollutants’ correlation matrix showed Pearson’s coefficients about 0.30–0.40 for all the

combinations that included O3, while for combinations of particulate matter and NO2 the

coefficients were very high (>0.90 between PM10 and PM2.5, and between PMs and NO2), con-

firming the chemical transformations in AMS-MINNI model and the strong weight of NO2

precursor in secondary component of PM. The high correlation is probably also due to the

aggregation process, which tend to reduce the differences among correlated pollutants.

We observed a positive and significant association between the mean levels of all pollutants

and the probability of being affected by diabetes, expressed as Odds Ratio (OR) per increase of

10 μg/m3 [PM10 1.04 (95% CI 1.01–1.07), PM2.5 1.04 (95% CI 1.02–1.07), NO2 1.03 (95% CI

1.01–1.05), O3 1.06 (95% CI 1.01–1.11)] (Table 3).

Results of the stepwise regression approach are provided separately in S1 Table. They indi-

cated that maximum goodness of fit was reached by the fully adjusted models. According to

Variance Inflation Factor (VIF), there was no evidence of multicollinearity between variables

in our fully adjusted models (all values<5).

Table 4 shows the results of effect modification analysis. For PM10 and PM2.5, we observed

effect modification by gender, smoking status, presence of CVD and household income (0.05

for PM10). For NO2, the interaction with gender, smoking status and household income were

significant. For O3, we found evidence of effect modification by gender and household income,

Air pollution and self-reported diabetes in Italy
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Table 1. Descriptive statistics of the study population by diabetic status.

Characteristic

n (%)

Non diabetic

339,188

Diabetic

36,969

All

376,157

Sex

Males 156,880 (46.3) 17,186 (46.5) 174,066 (46.3)

Females 182,308 (53.7) 19,783 (53.5) 202,091 (53.7)

Age class

<60 153,112 (45.1) 6,897 (18.7) 160,009 (42.5)

60–74 123,009 (36.3) 16,729 (45.3) 139,738 (37.1)

�75 63,067 (18.6) 13,343 (36.1) 76,410 (20.3)

Weight status

Normal/Underweight 155,706 (45.9) 11,538 (31.2) 167,244 (44.5)

Overweigh 140,367 (41.4) 16,390 (44.3) 156,757 (41.7)

Obese 43,115 (12.7) 9,041 (24.5) 52,156 (13.9)

Physical activity

Yes 119,244 (35.2) 7,687 (20.8) 126,931 (33.7)

No 219,944 (64.8) 29,282 (79.2) 249,226 (66.3)

Smoking status

Never smoker 176,693 (52.1) 20,101 (54.4) 196,794 (52.3)

Former smoker 96,433 (28.4) 12,238 (33.1) 108,671 (28.9)

Current smoker 62,941 (18.6) 4,433 (12) 67,374 (17.9)

Educational level

High 35,925 (10.6) 1,779 (4.8) 37,704 (10)

Intermediate 81,661 (24.1) 5,600 (15.1) 87,261 (23.2)

Low 221,602 (65.3) 29,590 (80) 251,192 (66.8)

Occupational status

Employed 109,784 (32.4) 4,458 (12.1) 114,242 (30.4)

Unemployed 8,894 (2.6) 618 (1.7) 9,512 (2.5)

Housewife 69,664 (20.5) 8,451 (22.9) 78,115 (20.8)

Retired 134,026 (39.5) 20,187 (54.6) 154,213 (41)

Other 16,820 (5) 3,255 (8.8) 20,075 (5.3)

Household income

High 211,162 (62.3) 19,226 (52) 230,388 (61.2)

Low 126,280 (37.2) 17,582 (47.6) 143,862 (38.2)

Marital status

Single 28,334 (8.4) 2,368 (6.4) 30,702 (8.2)

Married 235,179 (63.3) 22,762 (61.6) 257,941 (68.6)

Separated/divorced 21,178 (6.2) 1,489 (4) 22,667 (6)

Widowed 54,497 (16.1) 10,350 (28) 64,847 (17.2)

CVD

No 230,884 (68.1) 13,804 (37.3) 244,688 (65)

Yes 108,304 (31.9) 23,165 (62.7) 131,469 (35)

Age

mean (SD) 62.8 (11.7) 70.0 (10.7) 63.5 (11.8)

BMI

mean (SD) 25.7 (3.9) 27.4 (4.4) 25.9 (4.0)

Estimated exposure to

air pollutants [mean (SD)]

PM10 16.9 (7,4) 16.4 (7,1) 16.9 (7,4)

PM2,5 15.9 (7.1) 15.4 (6.8) 15.9 (7.1)

(Continued)
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and marginally non-significant interactions with physical activity. Where significant, there

were enhanced effects among men, current or former smokers, individuals not affected by

CVD and with low household income. Additionally, we found enhanced effects among the

elderly (�75 years old), obese, physically inactive and those with low educational level, but p-

values deriving from likelihood ratio test were non-significant.

In sensitivity analysis (Table 3), the use of median and 90th percentile as metrics of expo-

sure to pollutants resulted in associations with similar magnitude and strength, as well as the

use of IQR as unit of increase. Adding diabetes prevalence as a contextual variable caused a

slight increase in the strength of the association, which remained of similar magnitude. The

associations were robust to adjustment for other pollutants in all combination tested in two

pollutant models (PM10 + O3; PM2.5 + O3; NO2 + O3). In the population subgroup with expo-

sure levels below WHO air quality guidelines, we observed a remarkable increase in the magni-

tude of the association for PM10 [1.26 (95% CI 1.17–1.35)], PM2.5 [2.56 (95% CI 1.79–3.66)],

and O3 [1.33 (95% CI 1.15–1.54)], and a slight increase for NO2 [1.06 (95% CI 1.04–1.09)].

According to this results, indicating a possible non-linear exposure-outcome relationship,

we used a non-parametric approach and introduced a B-spline with 3 degrees of freedom

instead of the linear term for each pollutant. Fig 1 shows the estimated concentration-response

curves, while comparison between models are shown in Table 5. We observed a steep almost

linear relationship at low concentrations for PM10, PM2.5 and NO2, and then a progressive

reduction and a plateau effect, although higher levels had few observations. Goodness of fit

tests indicating a better fit for non-linear models. Differently, the association with ozone didn’t

seem to deviate from linearity except for higher concentrations, which had few observations

too; the introduction of the spline term did not improve the performance of the model.

Discussion

In our study, the risk of being affected by diabetes was significantly associated with estimated

long-term exposure to PM10, PM2.5, NO2 and O3 in the area of residence, after controlling for

Table 1. (Continued)

Characteristic

n (%)

Non diabetic

339,188

Diabetic

36,969

All

376,157

NO2 16.0 (11.3) 15.2 (11.1) 15.9 (11.3)

O3 103.2 (5.1) 103.0 (4.8) 103.2 (5.1)

https://doi.org/10.1371/journal.pone.0191112.t001

Table 2. Descriptive statistics of the spatial variation of PM10, PM2.5, NO2 and O3, according to the municipality class.

Municipality

class

PM10 (μg/m3) PM2.5 (μg/m3) NO2 (μg/m3) O3 (μg/m3)

Median Min-Max Median Min-Max Median Min-Max Median Min-Max

Class 1 23.7 14.2–52.6 22.3 12.7–49.7 28.4 15.5–64.8 106.3 94.8–114.1

Class 2 16.8 10.7–37.2 15.9 9.6–35.3 17.2 8.2–47.9 106.4 100.0–112.7

Class 6 15.6 10.7–31.2 14.8 9.6–29.6 15.0 4.0–38.2 104.5 93.5–114.8

Class 5 13.5 9.8–28.0 12.6 8.7–26.5 12.6 3.4–32.8 103.1 86.5–114.6

Class 4 12.0 6.5–23.4 11.3 6.1–22.3 7.8 2.7–25.5 101.2 86.2–113.5

Class 3 10.7 6.0–18.2 10.1 5.6–17.4 5.2 1.9–15.5 99.8 85.5–110.1

Class 1: most populated regional capitals (Turin, Milan, Venice, Genoa, Bologna, Florence, Rome, Naples, Bari, Cagliari, Palermo, Catania); Class 2: municipalities

within regional capital metropolitan areas; Class 3: municipalities with less than 2,000 resident inhabitants; Class 4: municipalities with 2,001–10,000 resident

inhabitants; Class 5: municipalities with 10,001–50,000 resident inhabitants; Class 6: municipalities with more than 50,000 resident inhabitants.

The classes are ordered by decreasing air pollutants concentration levels.

https://doi.org/10.1371/journal.pone.0191112.t002
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important individual covariates. This is the first ecological study conducted nationwide in

Italy to explore the relationship between type 2 diabetes mellitus and those four pollutants at

the same time. Nowadays there is still a steep socio-economic North to South gradient that

reflects on the prevalence of diseases related to socio-economic factors [31]. Hence, diabetes

geographical pattern in Italy tend to be opposite to the pollutant’s one, as the most developed,

urbanized and industrialized areas are located in the Northern part of the country, while the

most important risk factors for DM are more prevalent in South and Islands. It is not surpris-

ing that crude logistic regressions resulted in negative associations (Table 3) until we used a

hierarchical approach by including region and survey year as random components.

Evidences on the association between air pollution and diabetes mellitus deriving from lon-

gitudinal studies are increasing, but still mixed [32–37]. Some studies found associations only

among specific subgroups [38–42]. However, even available meta-analyses supported the exis-

tence of an association, reporting coefficients similar to or slightly higher than ours [18–20]. In

general, our results were more similar to those of the studies with broad population samples

[32,40,42], although it is necessary to take into account the differences in exposure assessment,

as well as in measured covariates and study design. Moreover, differently from our study, geo-

graphical pattern of diabetes and air pollution tended to be concordant (e.g. positive spatial

correlation) in the other study areas. Even if we could rely on detailed individual information

and we modeled the associations accounting for geographic characteristics, we cannot exclude

the presence of residual confounding from area-level factors accounting for the differences in

the effect size. However such effect, if present, is probably small as adding contextual diabetes

prevalence to the main model changed the magnitude of the association with air pollutants by

~1%.

Table 3. Association between air pollution and diabetes mellitus by different exposure metrics and sensitivity

analysis.

Sensitivity analysis PM10

OR (95% CI)

PM2.5

OR (95% CI)

NO2

OR (95% CI)

O3

OR (95% CI)

Unadjusted logistic regression (mean values; 10 μg/

m3 increase)

0.90 (0.89–

0.92)

0.89 (0.88–

0.91)

0.94 (0.93–

0.95)

0.93 (0.91–

0.95)

Main mixed model (mean values; 10 μg/m3

increase)

1.04 (1.01–

1.07)

1.04 (1.02–

1.07)

1.03 (1.01–

1.05)

1.06 (1.01–

1.11)

median values (10 μg/m3 increase) 1.05 (1.02–

1.08)

1.06 (1.02–

1.09)

1.03 (1.01–

1.05)

1.07 (1.02–

1.11)

90th percentile values (10 μg/m3 increase) 1.02 (1.01–

1.03)

1.02 (1.01–

1.03)

1.02 (1.01–

1.03)

1.06 (1.03–

1.09)

IQR increase� 1.04 (1.02–

1.08)

1.05 (1.02–

1.08)

1.08 (1.06–

1.09)

1.04 (1.01–

1.06)

main model + diabetes prevalence 1.05 (1.03–

1.07)

1.05 (1.03–

1.08)

1.04 (1.03–

1.05)

1.07 (1.03–

1.12)

below WHO limits�� 1.26 (1.17–

1.35)

2.56 (1.79–

3.66)

1.06 (1.04–

1.09)

1.33 (1.15–

1.54)

two pollutants models 1.04 (1.01–

1.06)

1.04 (1.01–

1.07)

1.03 (1.01–

1.04)

/

O3 1.05 (1.01–

1.10)

1.05 (1.01–

1.10)

1.05 (1.00–

1.10)

/

� PM10: 8.9 μg/m3; PM2.5: 9.2 μg/m3; NO2: 14.7 μg/m3; O3: 6.8 μg/m3.

�� According to WHO Air Quality Guidelines (2006) recommended annual average levels. PM10: 20 μg/m3; PM2.5:

10 μg/m3; NO2: 40 μg/m3; O3: 100 μg/m3.

https://doi.org/10.1371/journal.pone.0191112.t003
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In our study, ozone showed a different geographical pattern compared to particulate matter

and NO2 and a low correlation with them. In most of our models, the association of ozone

with prevalent diabetes was slightly higher compared to the other pollutants, but usually with

lower p-values. This association remained robust also in two-pollutant models, suggesting that

Table 4. Modification of the associations� between air pollutants (for 10 μg/m3 increase) and diabetes mellitus by characteristics or presence of comorbid

conditions.

Characteristics N diabetic/N tot PM10

OR (95% CI)

PM2.5

OR (95% CI)

NO2

OR (95% CI)

O3

OR (95% CI)

Sex

Males 17,186/174,066 1.09 (1.05–1.12) 1.09 (1.06–1.13) 1.06 (1.04–1.08) 1.10 (1.04–1.16)

Females 19,783/202,091 1.00 (0.97–1.03) 1.00 (0.97–1.03) 1.00 (0.99–1.02) 1.03 (0.98–1.07)

Interaction p-value�� <0.001 <0.001 <0.001 0.006

Age class

<60 6,897/160,009 1.02 (0.98–1.07) 1.03 (0.99–1.07) 1.01 (0.99–1.04) 1.07 (1.00–1.14)

60–74 16,729/139,738 1.04 (1.01–1.07) 1.04 (1.01–1.07) 1.03 (1.01–1.05) 1.03 (0.98–1.09)

�75 13,343/76,410 1.04 (1.00–1.07) 1.04 (1.00–1.08) 1.03 (1.01–1.05) 1.09 (1.03–1.15)

Interaction p-value�� 0.795 0.868 0.455 0.120

BMI

Normal/Underweight 11,538/167,244 1.02 (0.98–1.05) 1.02 (0.98–1.06) 1.02 (1.00–1.04) 1.02 (0.97–1.08)

Overweigh 16,390/156,757 1.05 (1.02–1.08) 1.06 (1.02–1.09) 1.03 (1.01–1.05) 1.08 (1.02–1.14)

Obese 9,041/52,156 1.06 (1.01–1.11) 1.07 (1.02–1.12) 1.04 (1.01–1.07) 1.10 (1.02–1.19)

Interaction p-value�� 0.184 0.155 0.437 0.194

Physical activity

Yes 29,282/249,226 1.03 (0.99–1.07) 1.04 (0.99–1.08) 1.02 (0.99–1.04) 1.02 (0.96–1.09)

No 7,687/126,931 1.04 (1.01–1.07) 1.04 (1.02–1.07) 1.03 (1.02–1.05) 1.07 (1.02–1.12)

Interaction p-value�� 0.681 0.701 0.303 0.083

Smoking status

Never smoker 20,101/196,794 1.01 (0.98–1.04) 1.01 (0.98–1.04) 1.02 (1.00–1.04) 1.04 (0.99–1.09)

Former smoker 12,238/108,671 1.05 (1.02–1.09) 1.06 (1.02–1.09) 1.04 (1.02–1.06) 1.09 (1.03–1.16)

Current smoker 4,433/67,374 1.10 (1.05–1.15) 1.11 (1.06–1.16) 1.06 (1.03–1.09) 1.07 (0.99–1.16)

Interaction p-value�� <0.001 <0.001 0.014 0.164

Educational level

High 1,779/37,704 1.00 (0.94–1.07) 1.00 (0.94–1.07) 1.00 (0.96–1.04) 1.02 (0.91–1.14)

Intermediate 5,600/87,261 1.04 (1.00–1.08) 1.04 (1.00–1.09) 1.02 (1.00–1.05) 1.06 (0.99–1.14)

Low 29,590/251,192 1.05 (1.02–1.07) 1.05 (1.02–1.08) 1.04 (1.02–1.05) 1.06 (1.01–1.11)

Interaction p-value�� 0.432 0.425 0.211 0.792

Household income

High 19,226/230,388 1.02 (0.99–1.05) 1.03 (0.99–1.06) 1.02 (1.00–1.04) 1.04 (0.99–1.09)

Low 17,582/143,862 1.06 (1.03–1.09) 1.06 (1.03–1.10) 1.04 (1.02–1.06) 1.09 (1.04–1.15)

Interaction p-value�� 0.055 0.043 0.035 0.031

CVD

No 13,804/244,688 1.06 (1.03–1.09) 1.06 (1.03–1.10) 1.04 (1.02–1.06) 1.06 (1.01–1.12)

Yes 23,165/131,469 1.03 (1.00–1.06) 1.03 (1.00–1.06) 1.02 (1.01–1.04) 1.06 (1.01–1.11)

Interaction p-value�� 0.055 0.041 0.161 0.925

� Adjusted for: age, sex, BMI, physical activity, smoking status, educational level, marital status, occupational status, and household income, except when tested as effect

modifier; survey and region of residence as random variance components.

�� From likelihood-ratio test for interaction.

Statistically significant results are in bold.

https://doi.org/10.1371/journal.pone.0191112.t004

Air pollution and self-reported diabetes in Italy

PLOS ONE | https://doi.org/10.1371/journal.pone.0191112 January 17, 2018 9 / 17

https://doi.org/10.1371/journal.pone.0191112.t004
https://doi.org/10.1371/journal.pone.0191112


the effects may be independent from each other. Ozone at ground level is one of the major

constituents of photochemical smog. In fact, its levels do not depend only on traffic and indus-

try emissions, as it is formed by reaction of precursors such as nitrogen oxides (NOx) and vola-

tile organic compounds (VOCs) in the presence of sunlight. As a result, the highest levels of

ozone pollution occur in areas with more solar radiation and in periods of sunny weather [30].

However, the association between O3 and diabetes is still understudied. Most of the

Fig 1. Estimated concentration-response curves and 95% CIs for pollutants (PM10, PM2.5, NO2, and O3) and diabetes mellitus.

https://doi.org/10.1371/journal.pone.0191112.g001
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epidemiological studies about ozone impact on health deal with short- and long-term respira-

tory and cardiovascular effects or with all cause and cause-specific mortality. To our knowl-

edge, there is only one study on the association between long-term exposure to ozone and

incident diabetes available to date [21]. This is a prospective study conducted nationwide in

the US on a cohort of 45,231 African American women. The HR reported by authors for inci-

dent diabetes was 1.18 (95% CI 1.04–1.34) per IQR increment of O3 (6.7 ppb, about 13 μg/m3).

Although effect size is higher than our, this study focuses on a specific population subgroup

that has been demonstrated to be at higher risk of diabetes [43] and an enhanced susceptibility

of black women to the effects of ozone compared to other ethnicities cannot be excluded. The

initial but limited evidence deriving from our results and previous studies suggests that the

impact of long term exposure to ozone on diabetes mellitus may be relevant for public health

policies and should be further investigated, especially since many regions worldwide are

experiencing increases in ozone levels, expected to grow even more in the future with the

effects of climate change.

The results of effect modification analysis showed stronger associations among men com-

pared to women (Table 3). This is not unprecedented, as another study had similar findings,

although not significant [33]. However, the majority of previous studies found stronger effects

among women. A 2008 study on patients attending two respiratory health clinics in Canada

showed a relationship between modeled NO2-concentration and the prevalence of diabetes

mellitus among women, but not among men, with an OR of 1.04 (1.00–1.08) per 1 ppb

increase [38]. Puett et al. observed an association with distance to road (<50 m vs�200 m

from a roadway) among women, while no evidence was found among men [42]. Such differ-

ence was mainly attributed by authors to the exposure assessment adopted, based on home

addresses, as women tend to spend more time at home compared to men. Our exposure

assessment is probably less affected by this problem, being based on a municipality level reso-

lution, and may be more representative of the exposure level of individuals that spend more

time away from home. Furthermore, adding gender-restricted diabetes prevalence in covari-

ates resulted in a significant association even in women, except for ozone (data not shown).

Although gender-related differences in predisposition to the effects of air pollution cannot be

excluded, this result may also be due to the effect of residual area-level confounding. We also

found stronger effects among current or former smokers compared to never smokers. This is

coherent with the toxicological mechanism invoked in the association between air pollution

and diabetes, such as vascular inflammation and atherosclerosis, which are involved in smoke

effects on cardiovascular diseases too. Interestingly, we observed stronger effects of PM10 and

PM2.5 among individuals not affected by other cardiovascular diseases. Other studies had simi-

lar findings, but the difference was not statistically significant [32,40].

When we restricted the analysis to exposure levels below the limits recommended by WHO

[30], we observed an overall increase in the strength of the associations. Such increase was

remarkable for PM2.5, with an OR of 2.73 (95% CI 1.92–3.90, p<0.001) per 10 μg/m3 increase.

Increased effect size at exposure levels below air quality standards have been already observed

Table 5. Comparison between standard fully adjusted models and non-linear models, according to goodness of fit.

Sensitivity analysis PM10 PM2.5 NO2 O3

Linear model AIC 212,475 212,475 212,470 212,477

Spline model AIC 212,455 212,454 212,446 212,479

p-value� <0.001 <0.001 <0.001 0.341

�from likelihood ratio test

https://doi.org/10.1371/journal.pone.0191112.t005
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in other studies, with both diabetes [16,33,37] and other cardiovascular events [44,45] as out-

come. This may imply a non-linear relationship between air pollution and diabetes. The use of

a non-parametric approach, with the introduction of a spline term instead of linear term,

seemed to support such hypothesis for PM10, PM2.5 and NO2, showing a steep linear relation-

ship for low concentrations (about 0–12 μg/m3) and then a fast decrease and a plateau effect

starting from concentrations around 15 μg/m3 (Fig 1 and Table 5). However, the great major-

ity of the observations are condensed within this range, and results observed in higher ranges

are probably less reliable. Future research should address this issue trying to study populations

more equally exposed to a wider range of air pollution concentrations.

The use of different annual measures for pollutants (i.e. median and 90th percentile) did not

alter significantly the patterns of the association in our study, as well as the use of IQR as unit

of increase.

Our findings are consistent with evidence coming from mechanistic studies, which sug-

gested different possible pathways involved in this relationship. The first mechanism proposed

for particulate matter is endothelial dysfunction: in both mice and human model studies, it has

been demonstrated that exposure to PM promotes vascular inflammation and atherosclerosis

[11,46]. Insulin ability to induce glucose uptake is in part mediated by the regulation of the

vascular tone [12], and it is likely that interferences in this mechanism could account for a pro-

pensity to insulin resistance. The connection between air quality, inflammation and insulin

resistance, that is one of the most important underlying metabolic conditions predisposing to

T2DM, is reported also in epidemiological studies. In a 2009 cross-sectional study conducted

in Isfahan (Iran) on children and young adults, the authors observed an association between

air pollution and insulin resistance (assessed through HOMA-IR), independently from BMI,

physical activity and dietary intake [47]. Another mechanism that seem to be implicated is the

development of alterations in visceral adipose tissue, with inflammation and increased adipos-

ity eliciting insulin resistance [48]. Eze et al. found that a common interleukine-6 gene poly-

morphism was an effect modifier of the association between long-term exposure to PM10 and

DM in their Swiss cohort, adding further evidence to the inflammatory pathways hypothesis

[49]. Other possible mechanisms included hepatic altered insulin signaling, endoplasmic retic-

ulum stress and mitochondrial dysfunction [50]. Other studies have also shown that T2DM,

metabolic syndrome and other conditions increase the pro-inflammatory effects of air pollu-

tion [51]. Ozone was found to induce impaired glucose, lipid and amino acid metabolism,

insulin resistance and oxidative stress in rats [52], and to provoke similar stress-hormones

response and metabolic alterations in humans [14]. However, studies with inconsistent find-

ings exist [53,54], and most of the mechanistic pathways involved in this association remain

unclear, due to both the multifactorial pathogenesis of diabetes and the heterogeneous compo-

sition of air pollution.

An important strength of our study is that it is based on official and statistically validated

data coming from nationwide surveys designed to be representative of the entire population.

We could rely on a very large sample size, which is necessary when investigating such a slight

association, and on detailed information about the main individual behavioral and socio-eco-

nomic risk factors involved in the development of diabetes mellitus that are rarely available in

similar studies. Furthermore, the estimates of diabetes prevalence calculated from the national

surveys include also those individuals treated in the ambulatory and primary care and are

probably more accurate than those coming from hospital discharge registries only, which

underestimate the true prevalence.

This study has also several limitations. The first one regards the study design: even if the

association we found was significant, this is an ecological association and it does not allow us

to make any inference about causal relationships. Second, as many other ecological studies, we

Air pollution and self-reported diabetes in Italy

PLOS ONE | https://doi.org/10.1371/journal.pone.0191112 January 17, 2018 12 / 17

https://doi.org/10.1371/journal.pone.0191112


attributed exposure levels on a geographical basis with a low-resolution scale, which may lead

to exposure misclassification. In fact, we are assuming that air pollution levels in a specific area

are representative of the real long-term exposure of each individual living in that area. How-

ever, it was interesting to observe how the introduction of a hierarchical structure and of

covariates in the model changed the sign and strength of the association, thus confirming how

accounting for group level effects and individual-level characteristics is useful to limit ecologi-

cal fallacy (Table 3). Another limitation is that the outcome assessment was based only on self-

report of diabetes cases diagnosed by a physician. Other studies reported very little differences

between self-reported and confirmed diagnoses [36]. However, this may lead to outcome over-

estimation in those areas were people have access to better quality healthcare services and may

have higher probabilities to be diagnosed with their condition. In Italy, the regions with better

healthcare performances are in the Northern or north-central areas, which are usually the

most developed and, consequently, the most polluted ones. However, the choice of modeling

the association including the region of residence as random effect should have accounted for

this effect. No information was available on residential history, indoor and workplace expo-

sures, commuting habits, diabetes family history, as well as on diet and alcohol consumption.

In addition, socio-economic level was evaluated only through self-reported occupational status

and self-perception of household income, and no objective measures were available. Further-

more, our study does not distinguish between type 1 and type 2 diabetes mellitus, although our

population was aged above 44 years and T2DM have been reported to account for more than

90% of cases in adults [55].

Conclusions

We found a significant association between self-reported diabetes mellitus and area-level

annual mean levels of all examined air pollutants (PM10, PM2.5, NO2 and O3), in a large popu-

lation sample in Italy. This association was robust utilizing different measures for the exposure

estimate, and two pollutant models including Ozone showed independent, significant effects

of each pollutant. We found significant effect modification by gender, smoking status and

presence of comorbid cardiovascular conditions, with enhanced effects on males, current or

former smokers and in people without other cardiovascular diseases (particulate matter only).

We then observed a general increase in the strength of the association when considering expo-

sure values below WHO recommended annual limits.

Our study contributes to the growing body of evidence that supports a role of air pollutants

in the development of diabetes mellitus, although the observed relationship cannot be consid-

ered causal, due to study design. In particular, we find that the effects of long-term exposure to

Ozone on diabetes are still neglected and should be further investigated.
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