
 International Journal of 

Molecular Sciences

Article

Support Vector Machine as a Supervised Learning for the
Prioritization of Novel Potential SARS-CoV-2 Main
Protease Inhibitors

Nedra Mekni 1,2,*, Claudia Coronnello 2, Thierry Langer 1, Maria De Rosa 2,† and Ugo Perricone 2,*,†

����������
�������

Citation: Mekni, N.; Coronnello, C.;

Langer, T.; Rosa, M.D.; Perricone, U.

Support Vector Machine as a

Supervised Learning for the

Prioritization of Novel Potential

SARS-CoV-2 Main Protease Inhibitors.

Int. J. Mol. Sci. 2021, 22, 7714.

https://doi.org/10.3390/ijms22147714

Academic Editor: Daeui Park

Received: 2 July 2021

Accepted: 15 July 2021

Published: 19 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Pharmaceutical Chemistry, University of Vienna, 1090 Vienna, Austria;
thierry.langer@univie.ac.at

2 Drug Discovery Unit, Fondazione Ri.MED, 90128 Palermo, Italy; ccoronnello@fondazionerimed.com (C.C.);
mderosa@fondazionerimed.com (M.D.R.)

* Correspondence: nmekni@fondazionerimed.com (N.M.); uperricone@fondazionerimed.com (U.P.)
† These authors contributed equally to this work.

Abstract: In the last year, the COVID-19 pandemic has highly affected the lifestyle of the world
population, encouraging the scientific community towards a great effort on studying the infection
molecular mechanisms. Several vaccine formulations are nowadays available and helping to reach
immunity. Nevertheless, there is a growing interest towards the development of novel anti-covid
drugs. In this scenario, the main protease (Mpro) represents an appealing target, being the enzyme
responsible for the cleavage of polypeptides during the viral genome transcription. With the aim of
sharing new insights for the design of novel Mpro inhibitors, our research group developed a machine
learning approach using the support vector machine (SVM) classification. Starting from a dataset of
two million commercially available compounds, the model was able to classify two hundred novel
chemo-types as potentially active against the viral protease. The compounds labelled as actives
by SVM were next evaluated through consensus docking studies on two PDB structures and their
binding mode was compared to well-known protease inhibitors. The best five compounds selected
by consensus docking were then submitted to molecular dynamics to deepen binding interactions
stability. Of note, the compounds selected via SVM retrieved all the most important interactions
known in the literature.

Keywords: machine learning; classification; main protease; COVID-19; molecular docking

1. Introduction

The COVID-19 pandemic, also known as Severe Acute Respiratory Syndrome
Coronavirus-2 (SARS-CoV-2) is afflicting the health and routines of billions of people worldwide.

During the last few months, we are witnessing a race against time to vaccinate as
many people as possible; however, the disparities in vaccine distribution between countries
and the new emerging variants represent a further public health concern, making it hard to
reach a full immunization [1,2].

SARS-CoV-2 is a member of the betacoronavirus family, together with SARS-CoV and
Middle East Respiratory Syndrome (MERS-CoV). The enormous scientific effort worldwide
led to a better understanding of SARS-CoV-2 structure and the infection mechanism,
spotting four main druggable targets, namely the Spike (S) protein, Papain-like protease
(PLpro), RNA-dependent RNA polymerase (RdRp) and the main protease/3C-like protease
(Mpro/3CLpro) [3,4]. In particular, SARS-CoV-2 Mpro leads a crucial role in the viral
replication process. Mpro is a cysteine protease responsible for the cleavage of polypeptides
during the viral genome transcription, promoting the generation of non-structural proteins,
which can assemble to form new infectious virions. As shown in Figure 1, the Mpro
catalytic site includes four subsites, namely S1, S2, S3 and S4, hosting the binding site
of protease inhibitors. [5]. Of special importance, the catalytic dyad is enclosed into the
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S1/S2 pockets and includes the Cys 145 and His 41 residues. According to the inhibition
mechanism, His 41 activates the thiol group of Cys 145 (SH), which, in turn, performs the
nucleophilic attack to the substrate. Gln 189, near S3, confers plasticity to the pocket, while
Glu 166 (S4) is involved in the connection between the dimer interface and the substrate
biding site, thus having a key role for the catalytic activity [6,7].
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Inhibition of the Mpro enzyme blocks the SARS-CoV-2 life cycle; for this purpose,
Mpro represents an appealing target for the development of new potential inhibitors.

There is an urgent need to discover new drugs to help fight the global pandemic.
In this scenario, in silico virtual screening (VS), provides a cost-effective and a more

rapid approach for lead compounds discovery, especially when compared to the traditional
high-throughput screening (HTS) process.

However, vs. has some limitations, such as the inaccuracy of scoring functions, the
partial account of ligands flexibility and the receptor plasticity [8]. Altogether, these factors
could lead to a low hit rate and a low enrichment factor [9].

In the last two decades, the machine learning (ML) approach has been explored in the
field of drug discovery, showing an ever-growing success and overcoming vs. drawbacks.

In this study, we exploited ML techniques to develop a support vector machine (SVM)
model in order to identify potential novel Mpro inhibitors, as a prior classification step
before performing a structure-based prospective vs. on the Mpro protein.

PostEra start-up, in collaboration with Diamonds, launched a crowdsourced initia-
tive in order to boost the discovery of new antiviral compounds against SARS-CoV-2
Mpro [10,11]. The main goal was to design and biologically evaluate as many inhibitors
as possible, in order to rapidly develop new therapeutics. This initiative, namely, COVID
Moonshot, offers a platform collecting molecules designed by several research groups
around the world. PostEra COVID-19 activity data are indeed an interesting data source
reporting a collection of compounds with known inhibitory activities against Mpro.

In our study, the PostEra COVID-19 Moonshot dataset was used as a data source
for the development of a supervised classification model able to discriminate the activity
against Mpro from a pool of unseen compounds. More specifically, our classification model
was trained using 1D and 2D molecular descriptors calculated for the COVID Moonshot
compounds and the inhibitory activities against Mpro were set as a label.
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In order to get a reliable classification model, the main focus was the feature selection
protocol prior to modelling. This workflow task allowed the selection of the most relevant
molecular descriptors able to correlate compound chemical structures to their activity
against Mpro. In this regard, feature selection is a challenging task, as it should be able to
detect a relationship between molecular descriptors and biological activity, starting from
a group of descriptors. A too high number of descriptors, compared to the observations,
could negatively affect the analysis, bringing to a misleading association between the
features and the bioactivity, due to an overfitting error.

The selection of a descriptors subset strongly correlated to the biological activity
contributes to a higher model learning efficiency and improves the performance of the
classification model. Simultaneously, the computational complexity is reduced thanks to a
decreased number of features [12].

In this study, a random forest approach, combined with recursive feature elimination
with cross validation (RF–RFE–CV) [13–15], was performed for the feature selection in
order to achieve good performance with moderate computational efforts. Through the
application of a feature selection protocol, we explored the ability of our model to eliminate
irrelevant features, to reduce data dimensionality and to lead to the recruitment of the most
informative molecular descriptors. Selected molecular descriptors were then used for the
development of the SVM model for the classification of new SARS-CoV-2 Mpro inhibitors.
In parallel, structure-based approaches were used to explore the main protein–ligand inter-
actions and their stability. Docking protocol was validated and the compounds predicted
as active by SVM were submitted to docking and molecular dynamics. The evaluation of
the binding mode allowed us to identify the most promising putative Mpro inhibitors.

2. Results and Discussion
2.1. Feature Selection with the RF–RFE–CV Method

Feature selection was performed through the implementation of a python3 script
using Sklearn libraries. The script is available at GitHub repository [16].

Feature selection was carried out on the training set, in order to identify the crucial
molecular descriptors able to explain the possible correlation between Mpro inhibitors
activity and their chemical structures. Particularly, random forest recursive feature elimina-
tion (RF–RFE) was implemented in order to select relevant molecular descriptors [17,18].
According to the RF–RFE procedure, each feature was weighed, evaluated and recursively
eliminated if not relevant. The process stopped when the most important features were
identified and no further features needed to be eliminated to maintain the performance
of the whole prediction model. The outcome of RF–RFE was recursively validated with
k-fold cross validation (CV), leading to the automatic tuning of the number of features to
be selected and to define the optimal number of decisional trees to build the forest.

The feature selection process is related to the number of trees populating the forest and
to the correlation threshold set for molecular descriptors. Highly correlated variables do
not add any further information. It is worth mentioning here that the number of trees was
not known a priori and it was crucial to set it in order to obtain an accurate model. Aiming
at finding the optimal number of trees and the best correlation threshold, we performed
feature selection by using 1, 10, 100 and 500 trees. For each RF, the descriptors correlation
threshold was set in a range of 0.60–0.90 using a step size of 0.1. The selected descriptors
were analysed from feature selection based on the best results (see SVM development and
evaluation shown in Table 4). By using RF–RFE–CV, the total number of descriptors was
reduced. Table 1 shows the selected molecular descriptors distribution though the RF–RFE–
CV method along with the descriptor type and number of trees. The largest number of
selected descriptors belonged to autocorrelation and atom type electro-topological state
(E-State) families. According to the literature [19,20], these two descriptor classes are
known to be prominent for the identification of proteases inhibitors, as they refer to the
electronic contour of structures. For the covalent inhibition, the electronic and polarizability
characteristic of the reacting moiety (aldehydes, α-keto-esters, nitriles, etc.) is crucial for the
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reaction to happen. For non-covalent inhibitors, the molecular surface electronic features
are equally important, due to the H-bond and π-π network stabilizing the ligand within
the protein catalytic site [21].

Table 1. Molecular descriptors distribution.

Molecular Descriptor Type
n Trees

1 10 100 500

Atom type electro-topological state 16
Autocorrelation 12 24 2 6

Topological charge 7
Barysz matrix 6 5 1 2

Ring count 3
Extended topochemical atom 3

Carbon types 3
Molecular distance edge 3

Burden modified eigenvalues 2 5 3 3
Detour matrix 2

Chi chain 2
Bcut 2 2

Basic group count 1
Molecular linear free energy relation 1

Chi path 1
Longest aliphatic chain 1

Largest pi system 1
Molecular linear free energy relation 1

Petitjean number 1
Crippen logP and MR 1 1 1

XlogP 1
Number of selected descriptors 68 37 7 13

Autocorrelation descriptors encode the molecular structure and the physicochemical
properties assigned to the atoms [12]. E-State values encode the information concerning
the electron accessibility at the atom level. In this regard, the E-state index expresses the
potentially noncovalent intermolecular interactions [13].

Each of the four lists of features, selected by changing the number of trees in the
RF–RFE–CV pipeline, was used to train an SVM, as described in the next paragraph.

2.2. SVM Training and Testing

The SVM purpose is to find the best separating hyperplane, able to maximize the
margin between the two classes (e.g., active–inactive) [22].

Hyperparameters, such as the kernel type, C and gamma type, were tuned and mainly
contributed to the model performance [23,24]. In detail, we implemented a grid searching
algorithm able to consider and evaluate all hyperparameter combinations with a cross
validation approach. In Table 2, the best SVM hyperparameters found, when 1, 10, 100
and 500 trees were set for the random forest method, are reported. Each SVM model was
trained by using the selected features summarized in Table 1.

Our classification model was evaluated as a function of descriptors correlation thresh-
old and the number of decisional trees.

Depending on these parameters, we observed different accuracy and precision values.
In particular, accuracy indicates the fraction of correct predictions from our model, while
precision quantifies the fraction of correctly predicted positive observations. Table 3 reports
our models performance evaluators.
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Table 2. Best SVM hyperparameter found by the grid search algorithm when 1, 10, 100 and 500 trees
were set.

Support Vector Machine Best Hyperparameters

n Trees Kernel C γ

1 RBF * 10.0 0.1
10 RBF 1.0 0.01

100 RBF 1.0 1.0
500 RBF 100.0 0.01

* The radial basis function (RBF) kernel, in the event of non-linear separation, leads to map the data into a
higher-dimensional space.

Table 3. Best correlation, accuracy and precision values obtained setting 1, 10, 100 and 500 decisional
trees in RF–RFE–CV process.

n Tree Correlation Accuracy Precision

1 0.65 0.85 0.66
10 0.74 0.84 0.75

100 0.75 0.88 0.75
500 0.90 0.83 0.5

The best precision and accuracy values were obtained when 100 trees were set, exclud-
ing features with a correlation higher than 0.75. The seven features used to train the best
model are listed in Table 4.

Table 4. Feature selection analysis of the selected molecular descriptors of the best classification model developed. Permuted
feature importance score is reported with the standard deviation.

Optimal n Features
Selected Descriptor Descriptor Type Class Permuted Feature

Importance

7

AATS6i Autocorrelation 2D 0.044 ± 0.006
ATSC7m Autocorrelation 2D 0.047 ± 0.004
VE1_DzZ Barysz matrix 2D 0.086 ± 0.009

SpMax2_Bhm Burden modified eigenvalues 2D 0.070 ± 0.002
SpMax1_Bhv Burden modified eigenvalues 2D 0.052 ± 0.005
SpMax2_Bhv Burden modified eigenvalues 2D 0.076 ± 0.006
CrippenLogP Crippen logP and MR 2D 0.074 ± 0.005

According to these results, we identified the most relevant molecular descriptors
explaining the relation between molecular structure and properties of SARS-CoV-2 Mpro
inhibitors (Supplementary Materials, Table S1). In detail, the ATS descriptor depicts the
distribution of atomic properties (atomic masses, polarizability, charge and electronegativ-
ity) along with the topological structure of the molecule. Polarizability properties are also
described by the Burden modified eigenvalues descriptors. Barysz matrix topological de-
scriptors account for the presence of heteroatoms and multiple bonds; finally, CrippenLogP
reports hydrophobicity properties.

Based on these outcomes, it seemed that parameters related to charge distribution, po-
larizability and electronegativity were crucial for the discrimination of actives in the dataset.

For SVM hyperparameters of C and γ types, we selected 100 and 0.01 values, respec-
tively, while the kernel function was the radial basis function (RBF) [25]. The use of kernel
functions in SVM, also called “kernel trick”, helped us to map the training data into a
higher dimensional space. This function turned out to be essential in our model having
linear non separable data.
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2.3. Structure-Based Insights
2.3.1. PDBs Study and Docking Protocol Validation

In order to select the best protein structure for the validation of the docking protocol,
an extensive PDBs study was conducted.

Firstly, we analysed 25 Mpro co-crystallized PDBs structures to detect the key residues
crucial for the inhibitor–protein interaction. Of the 25 structures analysed, only five (5RF6,
5RGW, 6WCO, 5R82 and 6W79) satisfied our criteria (see Section 3). On these 5 PDBs, the
B-factor (PDB B-value Mean) was checked to assess the protein structure quality [26]. All
the structures analysed presented B-factor values in an acceptable range for further studies
(see Table 5).

Table 5. List of the best 5 PDBs with B-value and cognate docking results RMSD, expressed in (Å).

PDB B-Value Mean (Å) RMSD (Å)

5RGW 27.44 0.50
5R82 18.40 0.78

6WCO 36.09 1.11
5RF6 20.45 3.34
6W79 30.07 4.5

We observed that the noncovalent binding mode was stabilized by hydrogen bonds
to the Gly 143 and Glu 166 NHs and to the aromatic ring of His 163; additionally, a π − π
interaction was observed with His 41.

The docking protocol was validated through cognate docking calculation runs, which
assessed the ability of the docking algorithms to reproduce the correct binding mode of the
co-crystallized ligands. The validation consisted in removing the co-crystallized ligand
and in re-docking it into the active site. The re-docked complexes were then superimposed
onto the reference co-crystallized complex and the root-mean-square deviation (RMSD)
was calculated. Results are shown in Table 5.

The best cognate docking results were observed for 5RGW, 5R82 and 6WCO PDBs
with RMSD values below 2 Å (which is considered the RMSD cut-off to assess docking
accuracy). Despite the high docking accuracy, 5R82 PDB was excluded from further
analysis, having a fragment-size co-crystallized ligand, while the larger and better fitted
co-crystallized ligands of 6WCO and 5RGW were taken further. The binding poses of
docked and crystallographic ligands are depicted in Figure 2.
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2.3.2. Molecular Dynamic Simulation

In order to verify the stability of the retrieved interactions within the crystal structure
and discover new putative ones, 200 ns MD simulations on the two best performing PDBs
(6WCO and 5RGW) were carried out. As seen from the RMSD and RMSF plots (Figure 3),
during the whole 6WCO MD trajectory, the protein and the protein–ligand complex main-
tained a good stability. Moreover, stable interactions with the known crucial residues were
observed during the MD (Supplementary Materials, Figure S1). The simulation of 5RGW
showed instead a less stable behaviour of the complex, compared to 6WCO (MD analysis
of 5RGW is reported in Supplementary Materials, Figure S2).

2.3.3. Virtual Screening of Commercially Available Libraries

The final SVM model was applied for a preliminary screening of about 2 million
compounds from commercial libraries (MolPort, Asinex and ChEMBL). Two hundred
compounds were classified by the model as actives. On this reduced dataset, ADME
parameters were calculated using Qikprop to filter only those presenting a safe predicted
profile (see methods). Compounds that met ADME criteria were subsequently docked [27]
and their binding mode was analysed. Compounds were prioritised based on the docking
score and visual inspection.

The first five binding modes prioritized by the docking studies on the two PDBs
were analysed and the retrieved interactions crucial for the binding mode were evaluated
(Table S2). Table 6 shows the interactions found by the docking runs. In Table 7, the five
compounds binding mode in 2D and 3D are depicted.

Table 6. Residue analysis of the interaction between putative Mpro inhibitors with 6WCO and 5RGW.

6WCO 5RGW

Cmpd AMINO
Acid

Protein
Atom Interaction Protein

Atom Interaction

I

Gly143 NH H-bond
Glu166 CO H-bond NH H-bond
Thr190 NH H-bond
Gln192 NH H-bond a

II

Gly143 NH H-bond NH H-bond
His163 NH H-bond
His41 NH H-bond Ar b π − π

Ser 144 NH H-bond

III Glu166 NH H-bond NH H-bond

IV
Gly143 NH H-bond NH H-bond
His163 NH H-bond a

Glu166 NH H-bond

V

Gly143 NH H-bond
His41 Ar b π − π

His163 NH H-bond
Thr190 NH H-bond
Gln192 NH H-bond
Glu 166 NH H-bond

a Side chain interaction; b aromatic ring.
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Table 7. 2D structure and binding mode of the five consensus prioritized compounds versus the viral Mpro retrieved
by docking calculations. Purple arrows represent H-bond interactions, blue lines surrounding the molecules underline
non-polar regions and orange lines highlight negative charge residues, whereas green lines point polar residues.

Cmpd Docking Pose Ligand Interaction

I
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Table 7. Cont.

Cmpd Docking Pose Ligand Interaction

IV
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From this analysis we observed that the interactions spotted by docking calculations
were maintained as stable during the MD simulations. Moreover, new interactions emerged.
In particular, Glu 166 had the highest interaction rate and was able to establish H-bond
interactions with the ligands throughout the entire dynamic simulations. This residue is
found as conserved in other coronaviruses [24]. This is of special relevance, because it has
been reported that Glu166 is important for the protomer dimerization and catalytic activity
of the protease [29–31].

Of note, some water-mediated H-bonds (His 41, Ala 46, Met 49, Asn142, Glu 166, Gln
189 and Thr 190) were also involved in the ligand protein interaction network.

Compounds III and IV experienced adjustments at the binding pocket, resulting in
RMSD fluctuations. In particular, the isopropyl moiety of compound III and the nitrile
group of compounds IV showed high rotamers mobility. The nitrile moiety of compound
V maintained H-bond interaction with Gln 192 even during movements.

3. Material and Methods
3.1. Data Curation

PostEra COVID-19 Moonshot public database contains about 719 compounds and
their reported activities are related to a fluorescence assay, by RapidFire mass spectrometry
technology. The activity is expressed as the half inhibitory concentration (IC50) [32]. Activity
data lead to the identification of the most and less potent compounds. Compounds were
represented as SMILES strings, which were then converted into SDF format using the
chemoinformatic tool rdkit [33]. In detail, SMILES strings were first converted in a Mol file;
hydrogen atoms were added and, for each compound, a few conformations were generated
using the ETKDG method [34]. With the SDF file as the input, the PaDEL software [35]
calculated a total of 1444 1D and 2D type molecular descriptors. For each compound,
the IC50 values were set as the labels. In order to select the most informative descriptors,
no missing values were detected, while descriptors with zero variance were excluded
from the dataset. Moreover, a correlation matrix was computed and high correlated
features were dropped. This dataset cleaning process afforded a reduced number of
78 molecular descriptors.

The inactive compounds, with an IC50 higher than 98 µM, were excluded from the
dataset, reducing the chance of introducing bias in the analysis.

The final dataset was randomly split into a training set (80%) and a test set (20%). The
training set was standardized and the same scaling was applied to the test data, which
were solely used during the evaluation stage. Standardization was performed using the
Sklearn Standard Scaler class. Training set bioactivity values were discretized through the
KBinsDisretizer class from Scikit learn library.
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After training-set standardization, discretization technique was performed in order
to transform the numerical input variables into discrete ordinal labels that led to the
development of our machine learning model.

Continuous values of the training set were grouped into k = 2 discrete bins using the
uniform method, making the data discrete. In this way, data were labelled in two categories,
active and inactive, respectively, according to compounds corresponding IC50 values.

3.2. Feature Selection

Feature selection was performed by applying the RF method combined with the RF–
RFE–CV methods on the training set (Figure 5). The RF–RFE–CV method was implemented
by using Sklearn RFE–CV class, where random forest was set as the estimator.
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Figure 5. RF procedure. Each tree is built over a bootstrap sample (about 2/3 of the samples) of data and is used as a
training set, in order to predict the data in the remaining 1/3, which is instead used as a test set sample (out-of-bag samples,
or OOB) [17,36]. When a decision is made, the best predictor is identified and split on until the final decision is reached [37].

Firstly, Sklearn random forest was performed in order to get information about the
feature importance. Molecular descriptors significance was detected on the basis of their
correlation with biological activity. At this point, it was necessary to set the number of
decisional trees, being an important parameter for the forest population. We evaluated the
model performance by setting a population of 1, 10, 100 and 500 trees [36].

Feature importance was ranked by performing a recursive feature elimination and a
cross-validation, affording the best feature number selection. In particular, for each iteration,
one feature was deleted at a time, until no further features were left to be removed. For the
RFE–CV implementation, we defined a function using random forest as an estimator and
setting the minimum number of features as one. This function returned the collection of
the most informative molecular descriptors. Moreover, the RFE–CV applied a 5-fold cross
validation method [38] (Figure 6).
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3.3. Support Vector Machine

With the selected molecular descriptors in hands, we trained an SVM aiming at
predicting the activity of novel Mpro inhibitors.

The SVM model was implemented in python 3 using Sklearn libraries. The SVM
model was trained using the training set (80% of the data). Sklearn SVM class takes several
parameters, such as kernel function, regulation parameter (C) and gamma parameter (γ).

SVM hyperparameter tuning was performed through a grid algorithm using Sklearn
GridSearchCV. The specified grid hyperparameters set were the kernel parameter (RBF,
poly and linear), C values (in a range between 1 × 100.001 and 1 × 1000.001) and the γ

parameter (range between 1.0 and 1 × 10−3). Next, the model was trained using the
best SVM hyperparameters in terms of accuracy and precision, through the fit method,
according to the given training data (Figure 7).
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3.4. Structure-Based Approach
3.4.1. Proteins and Ligands Preparation

Proteins were prepared using the Protein Preparation Wizard tool (Schrödinger,
LLC) [39] in order to optimize their improprieties, such as missing hydrogens and missing
loops, and to avoid atomic clashes. The protonation state was set in the pH range of
7.0 ± 2.0. Protein crystal structures were further optimized using energy minimization
with the OPLS3e force field [40,41]. The receptor grid was centred on the co-crystallized
ligand and the receptor Van der Waals radii was unscaled. Ligands were prepared using
the Schrödinger LigPrep tool v. 2018-2 [39]. OPLS3e was again adopted as the force field
(ff) and Epik was selected at a pH of 7.0 ± 2.0, as the ionization tool.

3.4.2. PDB Study

From the PDB database [42], 25 structures containing co-crystallised ligands with
a resolution between 1.0 and 1.5 Å (optimal range for a reliable interaction study) were
obtained. The selected PDBs were analysed to verify that ligands bound non covalently to
the catalytic site with known interactions. In Table 8, the identified PDB codes are reported.
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Table 8. PDB codes of Mpro with co-crystallized ligand having resolution < 1.5 Å.

PDB Codes

5RGW 7AWR 5RGJ 5RFW 5RGR
5R82 7D1M 7AQE 5RH4 5RGK

6WCO 5RF9 7AOL 5RFC 5RED
5RF6 7K6D 6W79 5FRV 6XR3
6W79 7K40 5RL2 7AXM 5RF8

Out of these 25 structures, only five (5RGW, 5R82, 6WCO, 5RF6, 6W79) have a co-
crystallized ligand within the catalytic cavity. On these structures, electron density maps
(2Fo-Fc) and B-values were analysed to assess that the interacting ligands were well covered
and the overall structure quality. The analysis revealed a good fit on the electron density
maps and reasonable B-values.

3.4.3. ADME Filter and Docking Calculations

Compounds selected by the SVM model were filtered according to ADME criteria
(Table 9).

Table 9. ADME criteria.

Propriety Description Range of
Values

QPlogS Predicted aqueous solubility 7–200
QPlogHERG Predicted IC50 value for blockage of HERG K+ channels <−5
QPlogPo/w Predicted octanol/water partition coefficiency −2–6.5

QPPCaco Predicted apparent Caco-2 cell permeability, in nm/sec >25
Rule of five Number of violations of Lipinski’s rule of five ≤ 3
mol_MW Molecular weight of the molecule >250

# rotor Number of non-trivial and non-hindered rotatable bonds <10

The filtered compounds were docked using the Glide software (Schrodinger, L.LC)
on 5RGW and 6WCO. The retrieved binding mode of the consensus prioritized molecules
was analysed.

A maximum of 10 generated conformers was set. The binding site was defined
using the co-crystallized ligands coordinates. Finally, 200 selected compounds from the
commercial libraries were docked in standard precision mode (SP) and the top ranked
poses were analysed [43].

3.4.4. Molecular Dynamics

Molecular dynamic simulation (MD) was performed using the Desmond simulation
package by Schrödinger LLC, v5.6 [44,45], on the co-crystallized Mpro crystal structure
(PDBs 6WCO and 5RGW).

The key residues involved in ligand–protein complex stabilization were analysed by
MD 200 nanosecond (200 ns) long, using a 0.002 ps (2.0 fs) time step. The complex was
enclosed in an orthorhombic box and a TIP3P water model was used. The box volume
was minimized and OPLS3e force field (ff) was applied. The same ff was used to perform
the MD simulation. The simulation was performed at 300 K in an NPT ensemble. A
Nosé–Hoover chain thermostat was used with a relaxation time of 1 ps. A Martyna–
Tuckerman–Klein barostat was set to regulate the pressure with isotropic coupling and
relaxation time of 2.0 ps. The complex stability evaluation between the putative Mpro
inhibitors identified by consensus docking was performed by running MD simulations
100 ns long, under the same conditions reported above.
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4. Conclusions

In this study, an SVM model was built for the prediction of inhibitory activity of novel
chemo-types against SARS-CoV-2 Mpro. The model was implemented in python3 language
using Sklearn libraries and was developed using PostEra COVID-19 Moonshoot public
activity data. The main relevant molecular descriptors were selected through a random
forest approach combined with a recursive feature elimination and a cross validation
method (RF–RFE–CV). The final model was tested and showed an accuracy of 0.88. Finally,
the model was used for the prediction of the inhibitory activity of compounds commercially
available against the viral protease. These compounds were docked and the key residues
for crucial interactions were retrieved, analysing the binding poses of ligand-protein co-
crystallized complexes. Moreover, a deep binding study was carried on by performing
MD simulations, which showed an acceptable complex stability for all the compounds
analysed. Of high interest was the interaction of the best five ligands with Glu 166 of the
protein. This residue, found as conserved in other coronaviruses, was demonstrated to
be crucial in the dimerization of the Mpro protomers, that is the key event related to the
catalytic activity of Mpro.

Compounds with the best binding poses will be evaluated in the biological primary
assay and validated as promising Mpro inhibitors.

Of note, although the SVM model was built over a limited number of compounds,
it turned out to be a valid approach for the identification of new potential SARS-CoV-2
Mpro inhibitors.
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