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Abstract

The aim of the study was to examine the role of dietary consumption of different types of fatty 

acids on metabolic risk factors and regional fat deposition in older men and women. We 

hypothesized that saturated fatty acid (SFA) intake, monounsaturated fatty acid (MUFA) and low 

intake of polyunsaturated fatty acids (PUFA) would be associated with markers of insulin 

resistance, hyperlipidemia, and hypertriglyceridemia. Sedentary, overweight and obese (body mass 

index: 29–48 kg/m2) adults (N=20) aged 45–78 years underwent two-hour oral glucose tolerance 

test, blood draw, DXA scan, and completed seven-day diet records. Subjects had low fitness levels 

(VO2 max=23.5 ± 2.4 mL/kg/min) and high total body fat (43.5 ± 1.7%). The average 

macronutrient composition of the diet was high in fat as a percent of total kcal (35.5%). The ratio 

of MUFA to PUFA was associated with serum cholesterol (r=0.48, P=0.03) and tended to be 

associated with higher fasting glucose (r=0.42, P=0.06) and glucose at 120 min (r=0.43, P=0.06). 

PUFA intake as a percentage of fat intake was associated with lower serum cholesterol (r=−0.44, 

P=0.05). Therefore, dietary MUFA intake unbalanced by PUFA may confer increased risk for 

diabetes among obese, sedentary individuals. Future investigation of food sources, or context of 

dietary lipids, could lead to individualized dietary recommendations to promote healthy eating 

habits and potentially alter metabolic risk.
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Introduction

Dietary fat composition is highly modifiable, and possibly one of the most important factors 

influencing insulin resistance and blood cholesterol. In the last several decades, unsaturated 

fatty acids have gained importance as a dietary component that could prevent chronic 

disease, with saturated fats generally regarded as detrimental to one’s health [1]. Dietary 

fatty acids determine plasma availability and tissue storage of lipids, and have long been 

speculated to exert an effect through altering cell membrane composition and function 

particularly in skeletal muscle, as well as gene expression, enzyme activity, and immune cell 

function [2–6].

Several large epidemiological studies support the association between dietary saturated fat 

intake and type two diabetes risk [7–9]. In a large prospective study, development of diabetes 

over nine years was associated with saturated fatty acid (SFA) in serum cholesterol and 

phospholipids with adjustment for diabetes risk factors [10]. A large prospective case-cohort 

study of Pima Indians demonstrated an association between dietary fatty acids, serum 

saturated fatty acids and self-reported diabetes four years later [11]. Dietary linoleic acid 

(LA), a polyunsaturated fatty acids (PUFA) estimated to account for 85–90% of dietary 

PUFA, was inversely associated with diabetes risk [11,12]. Likewise, in the prospective 

Nurses’ Health Study, polyunsaturated fat intake was reported to lower relative risk of 

diabetes [13].

Obese adults and those with type-two diabetes are known to have higher circulating levels of 

free fatty acids than non-obese non-diabetic individuals [14]. Cross-sectional studies 

demonstrated that lean individuals have a greater proportion of LA, in serum fatty acids than 

obese individuals, who tend to have more serum fatty acid in general, and a greater 

proportion of saturated fatty acid intake such as palmitate [15]. MUFA and PUFA are 

thought to benefit serum lipid profiles by limiting hepatic steatosis and subsequently 

increasing lipid metabolism and decreasing lipogenesis [3,16]. A controlled study of 

supplemented LA intake demonstrated favorable decreases in total and LDL cholesterol but 

HDL and triglycerides were unchanged [17]. High PUFA diet has been shown to decrease 

LDL in small controlled studies, and high SFA to increase LDL [16,18]. Yet, studies 

analyzing MUFA in relation to PUFA on diabetes risk and its effect on serum lipid profile 

are limited in number [16].

The aim of the study was to examine the role of dietary consumption of different types of 

fatty acids on metabolic risk factors in middle-aged and older men and women. We 

hypothesized that SFA intake, and low intake of MUFA and PUFA would be associated with 

markers of insulin resistance, hyperlipidemia, and hypercholesterolemia in middle-aged and 

older overweight and obese men and women.

Methods

Male and female adults aged 45–80 years from the Baltimore/Washington area were eligible 

if overweight or obese (BMI 29–50 kg/m2) but otherwise healthy. Women were included 

only if they had undergone menopause for at least one year. Only adults who were weight 
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stable (<2.0 kg weight change in past year) and sedentary (<20 min of aerobic exercise 2x/

week) were recruited. Men and women were excluded for the presence of heart disease, 

diabetes, cancer, anemia, dementia untreated dyslipidemia, as well as those with other 

unstable or chronic diseases affecting the liver, lungs, or kidneys. Potential participants were 

screened and underwent a physical examination including a comprehensive past medical 

history, fasting blood profile, and a graded exercise treadmill test. Each study participant 

provided written consent. All methods and procedures were approved by the Institutional 

Review Board at University of Maryland and the VA Research and Development 

Committee.

Nutrition

Subjects were instructed by a registered dietician (RD) on how to complete a food record. 

Each subject completed a 5-day food record and recorded all foods eaten, and the estimated 

quantity of each food. Diet records were analyzed for macronutrient content, with lipids 

further recorded as SFA, MUFA, PUFA, omega 3, omega 6, Eicosapentaenoic Acid (EPA), 

Docosahexaenoic acid (DHA), trans-fatty acid and cholesterol, as well as sodium and fiber 

using Nutritionist Pro software. Additional analysis of the food records were performed with 

the USDA Foodapedia feature of the Super tracker program.

VO2 max

VO2max was measured using a continuous treadmill test protocol [19].

Body composition

Height (cm) and weight (kg) were measured to calculate BMI. Percent body fat mass was 

determined by dual-energy X-ray absorptiometry (iDXA, LUNAR Radiation Corp, 

Madison, WI).

Oral Glucose Tolerance Test (OGTT)

After a 12-hour overnight fast, the subjects had a blood draw before and at 30-min intervals 

for 2 h after ingestion of 75 g glucose. Samples were collected in heparinized syringes, 

placed in pre chilled test tubes containing 1.5 mg EDTA/ml blood, centrifuged at 4°C and 

stored at −80°C until analysis. Plasma glucose concentrations were measured using the 

glucose oxidase method (2300 STAT Plus, YSI, Yellow Springs, OH). Plasma insulin was 

measured in duplicate by radioimmunoassay (RIA) (Millipore, St. Charles, MO). The 

subjects were defined by glucose tolerance status.

Lipoprotein lipids

Plasma triglyceride and cholesterol levels were averaged from two fasting blood draws 

analyzed using enzymatic methods (UniCel DxC880i, Beckman Coulter, Inc., Brea, CA) and 

high-density lipoprotein cholesterol (HDL-C) measured in the supernatant after precipitation 

with dextran sulfate (low-density lipoprotein cholesterol (LDL-C)=total cholesterol–(TG/5 + 

HDL-C)) [20].
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Statistical analyses

Descriptive means were calculated on variables. Unpaired t-tests were used to test 

differences by sex. Pearson correlations and partial correlations were used to assess 

relationships between key variables. Statistical significance was set at a two-tailed P<0.05. 

Data were analyzed using SPSS (SPSS Inc., Chicago). Results are expressed as mean ± 

SEM.

Results

Phenotype and diet composition

Descriptive characteristics of the subjects are provided in table 1. The subjects were 70% 

Caucasian and 30% African American and included 9 men and 11 women. Subjects had low 

fitness levels (VO2 max: 23.5 ± 2.4 ml/kg/min) and high total body fat (43.5 ± 1.7%). 

Fasting and OGTT results as well as lipoprotein lipid results are shown in Table 1. Twelve 

subjects had normal glucose tolerance (NGT) and seven subjects had impaired glucose 

tolerance (IGT).

Dietary characteristics of the subjects are compared to national dietary reference intakes 

(DRI), including accepted macronutrient distribution range (AMDR) or adequate intake 

(AI), and are presented in Table 2 [21]. The average macronutrient composition of the diet is 

fairly homogenous. Diets were high in proportion of fat with roughly equal percentages of 

SFA and MUFA, whereas intake of PUFA intake had the lowest percent of total fat intake. 

No significant differences were noted in the diets between NGT and IGT subjects for 

percent of calorie intake for carbohydrate, protein, and fat (data not shown) or for daily 

intake of MUFA (31.0 ± 2.7 vs. 28.7 ± 3.4 g), PUFA (20.3 ± 1.9 vs. 18.2 ± 2.7 g) and SFA 

(29.3 ± 2.5 vs 27.0 ± 3.4 g), respectively.

Men on average consumed more total calories per day than women (2506 ± 110 vs. 1948 

± 110 kcal/d, P<0.005). Although men had higher carbohydrate, protein, and fat intake than 

women (all P<0.05), there were no significant differences between men and women for 

percent calories from carbohydrate (47.1 ± 1.9 vs. 49.0 ± 2.0), percent calories from protein 

(15.9 ± 0.8 vs. 16.5 ± 0.5), and percent calories from fat (35.8 ± 0.7 vs. 35.2 ± 1.6). Men had 

higher total MUFA intake than women (36.3 ± 2.0 vs. 25.8 ± 2.4 g, P<0.01) and MUFA as a 

percent of total fat intake (36.4 ± 1.0 vs. 33.4 ± 1.1%, P=0.05), with no difference between 

men and women in PUFA intake (22.0 ± 0.7 vs. 17.5 ± 2.5 g) or SFA intake (32.6 ± 3.2 vs. 

25.5 ± 1.9 g).

Relationships of diet with glucose tolerance and lipids

The ratio of total MUFA to PUFA was associated with serum cholesterol and tended to be 

associated with markers of glucose intolerance including fasting glucose and glucose AUC 

(Table 3). Total MUFA to PUFA ratio was not associated with fasting insulin or insulin 

AUC. Average daily PUFA intake tended to be associated with lower glucose at 120 min of 

the OGTT (r=−0.43, P=0.08). PUFA intake as a percentage of fat intake and the ratio of 

PUFA:SFA was associated with lower serum cholesterol (r=−0.44, P=0.05 and r=−0.40, 
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P=0.07, respectively). Additionally, the ratio of omega-3 to omega-6 fatty acids was 

negatively correlated to insulin AUC (r=−.054, P=0.01).

Discussion

Our results indicate that overweight and obese subjects have a high dietary intake of fat as a 

percent of total caloric intake, especially SFA and MUFA. The dietary intake of SFA, MUFA 

and PUFA in our sample closely resembles those of the average American using NHANES 

data [22]. We did not find differences in dietary intake of fatty acids between adults with 

normal and impaired glucose tolerance. Greater MUFA intake compared to PUFA tended to 

be associated with glucose intolerance and higher serum cholesterol in these overweight and 

obese sedentary subjects.

Our results would suggest that dietary intake of PUFA confer some reduction in metabolic 

risk in terms of glucose metabolism and hypercholesterolemia. In a systematic review and 

meta-analysis of randomized controlled feeding trials, replacing carbohydrate intake with 

PUFA or replacing SFA with PUFA reduces blood glucose levels and insulin resistance and 

improves insulin secretion [23]. The association between PUFA intake and lower total 

cholesterol further support a potentially beneficial effect of PUFAs on various aspects of 

lipid metabolism.

In a small meta-analysis of four studies of adults with type-two diabetes that compared high-

MUFA to high-PUFA diets, the MUFA groups had reductions in fasting plasma glucose 

[24]. Although our results appear to contradict this analysis, MUFA intake is confounded by 

its food source as it can reflect either consumption of meat and dairy products containing 

oleic acid, or of non-hydrogenated vegetable oils like olive oil or avocado. Thus, detailed 

food records of intake are necessary to further elucidate any conclusions.

The proportion of omega-3 intake to omega-6 may partly explain greater insulin sensitivity. 

This would be in concert with epidemiologic studies drawing attention to increasing ratios of 

omega-6 to omega-3 in the American diet over time and associations with obesity, as well as 

benefits to insulin sensitivity with supplementation of omega-3 fatty acids [25,26].

We did not find any significant associations of saturated fat intake with metabolic risk, likely 

due to the homogenous sample of overweight and obese adults. Our findings align with the 

longitudinal findings of the Nurses’ Health Study, where Type 2 diabetes risk was not 

associated with total fat intake, saturated or monounsaturated fat intake [13]. Furthermore, 

analysis of a single fats alone, or proportions of fat groups in a dietary pattern, may not have 

been sufficient to relate to metabolic outcomes. In fact, inverse association are reported with 

percentage of energy derived from fat, SFA, MUFAs and PUFAs suggesting that overall 

composition may play a more important role than total amount of each type of fatty acid 

[27]. Using the National Health and Nutrition Examination Survey (NHANES) of over 

24,000 participants, Mazidi et al. [28], reported that subjects who adhered to dietary patterns 

determined by a one-day 24 h food record either comprised of SFA, total fat, MUFA and 

CHO and or composed of PUFA, cholesterol, and protein had a higher likelihood of 

developing insulin resistance.
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Analysis of diet composition in terms of individual nutrients should put the food in context; 

specifically that food is not composed simply of individual nutrients, but is a complex 

interplay of micro and macronutrients, influenced by its source, preparation, and by the 

other foods in a meal. This multi-layered context of a nutrient, as well as the metabolic 

characteristics of an individual, will determine the uptake, use, storage of said nutrient, as 

well as long term metabolic sequelae of any diet patterns.

Limitations of this study include the small sample size, relatively homogenous nature of the 

group, and inability to control for potential confounding factors such as age, sex, and race. 

In addition, the cross-sectional design of the present study does not allow investigation of 

the impact of dietary fat composition on the development of diabetes as in a follow-up study. 

However, the strengths of the study include a thorough analysis of dietary intake with a 5-

day dietary intake and careful characterization of the subjects including measures of fitness 

by VO2 max testing, glucose metabolism by oral glucose tolerance test, and lipoprotein lipid 

profiles which were measured twice and averaged.

Conclusion

In conclusion, dietary MUFA intake, unbalanced by PUFA was associated with glucose 

intolerance and increased serum cholesterol, and therefore may confer increased risk for 

diabetes among obese, sedentary individuals. Further investigation could potentially aim to 

analyze the source of dietary fat, as well as meal patterns. Individualized dietary 

recommendations could therefore aim to incorporate food source and context of dietary 

lipids to promote healthy eating habits and potentially alter metabolic risk.
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MUFA Monounsaturated Fatty Acid

PUFA Polyunsaturated Fatty Acid

SFA Saturated Fatty Acid

LA Linoleic Acid
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EPA Eicosapentaenoic Acid

DHA Docosahexaenoic acid

DRI Dietary Reference Intake

AMDR Accepted Macronutrient Distribution Range

AI Adequate Intake

UL Upper Limit
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Table 1.

Subject Characteristics.

Variables N=20

Age (yrs) 59 ± 2

Weight (kg) 98.6 ± 1.8

BMI (kg/m2) 34.8 ± 1.0

Waist Circumference (cm) 107.4 ± 3.3 (n = 18)

Fasting Glucose (mg/dL) 98 ± 3

2 hr glucose OGTT(mg/dL) 139 ± 9

Glucose AUC (mg/dL120 min) 18204 ± 878

Fasting Insulin (pmol/L) 116 ± 12

2 hr Insulin OGTT (pmol/L) 681 ± 74

Insulin AUC (pmol/L.120 min) 77543 ± 8640

Triglycerides (mg/dL) 125 ± 13

Low-density lipoprotein (mg/dL) 110 ± 5

High density lipoprotein (mg/dL) 46 ± 3

Cholesterol (mg/dL) 181 ± 6
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Table 2.

Dietary Characteristics.

Variables Mean ± SEM (N=20) AMDR, AI, UL

Caloric intake (kcal/day avg) 2200 ± 99 n/a

%Kcal from Fat 35.5 ± 0.9 20–35

%Kcal from CHO 48.1 ± 1.3 45–65

%Kcal from Protein 16.2 ± 0.4 10–35

MUFA % Total Fat 34.8 ± 0.8 n/a

PUFA % Total Fat 22.1 ± 1.2 n/a

SFA % Total Fat 33.0 ± 1.1 n/a

MUFA %Total kCal 12.3 ± 0.4 n/a

PUFA % Total kCal 8.0 ± 0.5 n/a

SFA % Total kCal 11.7 ± 1.2 n/a

MUFA:PUFA Ratio 1.66 ± 0.1 n/a

PUFA:SFA Ratio 0.7 ± 0.1 n/a

Omega-3 fatty acid (mg/day) 1.9 ± 0.2 0.6–1.2

EPA (g/day) 0.11 ± 0.1 n/a

DHA (g/day) 0.12 ± 0.2 n/a

Omega-6 fatty acid (mg/day) 16.2 ± 1.2 5–10

Omega-3: Omega-6 ratio 0.1 ± 0.01 n/a

Trans Fatty Acid (g/day) 0.7 ± 0.1 n/a

Cholesterol (mg/day) 314.2 ± 26.1 <300

Sodium (mg/day) 3458 ± 210 <2300

Fiber (g/day) 22.9 ± 1.7 30 (male), 21 (female)
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Table 3.

Pearson correlations.

Dietary Variable Metabolic Variable Pearson Correlation (r) P-value

MUFA:PUFA Fasting glucose 0.42 0.06

Glucose at 120 min 0.42 0.06

Glucose AUC 0.41 0.07

Fasting insulin −0.18 0.45

Insulin AUC −0.22 0.36

Cholesterol 0.48 0.03

Triglycerides 0.33 0.16

LDL-cholesterol 0.38 0.09
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