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Introduction
The scarring that occurs after penetrant central nervous 
system (CNS) injury results from interaction between in-
vading leptomeningeal/pericyte-derived fibroblasts and 
endogenous reactive astrocytes in the wound margins. The 
extracellular matrix (ECM) deposited in the lesion core by 
fibroblasts becomes sequestered from the surrounding neu-
ropil by a laminin-rich basement membrane (glia limitans 
accessoria-GLA) formed at the astrocyte/fibroblast interface 
through the interaction of astrocyte-derived ephrins and 
eph-receptors on core fibroblasts (Bundesen et al., 2003). 
The environment in and around the developing CNS scar 
is rich in axon growth inhibitory chondroitin sulphate 
proteoglycans (CSPG), including neurocan, phosphacan, 
brevican and NG2 (Davies et al., 2004), semaphorin3A 
(Sema3A) and ephrin B3 (Sandvig et al., 2004), secreted by 
reactive endogenous astrocytes, oligodendrocyte progenitor 
cells (synantocytes) and also by immigrated core menin-
geal/pericyte-derived fibroblasts and leucocytes (Fitch and 
Silver, 1997; Fawcett and Asher, 1999; Sandvig et al., 2004; 
Kundi et al., 2013; Cregg et al., 2014).  The CNS myelin-de-
rived inhibitory Nogo, myelin associated glycoprotein 
(MAG) and oligodendrocyte-derived myelin glycoprotein 
(OMgp) are also released into the peri-lesion neuropil as 
myelin is degraded (Fawcett and Asher, 1999; Sandvig et 
al., 2004; Berry et al., 2008; Minor et al., 2008; Kundi et al., 
2013; Mei et al., 2013; Ahmed et al., 2014). Binding of these 
ligands to their respective cognate receptors activates the 

Rho/ROCK signalling pathway (required for the integrity 
of growth dynamics) and leads to growth cone collapse and 
arrest of CNS axon growth.

Fibrogenic growth factors and CNS scarring
Wound healing is orchestrated by many growth factors 
and cytokines prominent among which are transforming 
growth factor beta 1 and 2 (TGFβ1/2). After activation, the 
TGFβ receptor (comprised of two transmembrane serine/
threonine kinases – TβRI and TβRII) phosphorylates and 
activates Smad2 and Smad3 proteins which complex with 
co-Smad (Smad4), translocate to the nucleus and transcribe 
genes whose products regulate scarring (reviewed by (Finn-
son et al., 2013). Immediately after injury, TGF-β1/2 levels 
rise rapidly, secreted first by extravasated platelets and later 
by macrophages, leucocytes and reactive glia within dam-
aged neural tissue (Border and Ruoslahti, 1992; Logan et 
al., 1992, 1999a; Logan et al.; Ahmed et al., 2014). TGF-β1/2 
promote scarring by blocking the degradation of leptome-
ningeal fibroblast-derived ECM through suppression of the 
activity of metalloproteinases (MMP) and tissue plasmino-
gen activator (tPA), released from endogenous glia (Border 
and Ruoslahti, 1992; Logan et al., 1992), and activation of 
tissue inhibitors of MMP (TIMP) and plasminogen activa-
tor inhibitor-1 (PAI-1) (Ahmed et al., 2014).  Conversely, 
ECM deposition is increased in CNS wounds after TGF-β1 
administration (Logan et al., 1999a; Zhang et al., 2009) and 
inflammation and scarring are suppressed after both treat-
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ment with TGF-β1/2 antibodies (Logan et al., 1999a) and 
the synthetic TβRI/II blockader LY-364947 (Yoshioka et al., 
2011).  

Other injury responsive growth factors include connective 
tissue growth factor (CTGF), hepatocyte growth factor and 
pro-inflammatory cytokines e.g., tumour necrosis factors 
(TNF) and interleukins (IL). CTGF promotes fibrobloblast 
cell adhesion and the production of the ECM components 
collagen I/III, the integrin β1 subunit and fibronectin in 
scars (Frazier et al., 1996; Vial et al., 2011), is expressed in 
reactive astrocytes, invading fibroblasts and endothelial 
cells in CNS wounds (Schwab et al., 2001) and regulated by 
TGF-β (Frazier et al., 1996). Hepatocyte growth factor (HGF) 
promotes the proliferation of macrophages by binding to 
its tyrosine kinase receptor cMet present on macrophages 
and NG2 producing synantocytes (Moransard et al., 2010). 
Pro-inflammatory cytokines bind to the toll-like family of 
receptors (TLR) expressed by microglia and astrocytes and 
effect their transformation into reactive phenotypes (Crack 
and Bray, 2007).

Decorin suppresses CNS scarring
Decorin is a small, leucine-rich, chondroitin-dermatan sul-
phate proteoglycan expressed by neurons and astrocytes in 
the CNS, but also sequestered in the ECM of many tissues 
(Hocking et al., 1998; Davies et al., 2004; Minor et al., 2008). 
Decorin is anti-fibrotic and anti-inflammatory in many tis-
sues (Border and Ruoslahti, 1992; Hildebrand et al., 1994) 
including the brain (Logan et al., 1999) and greatly attenu-
ates the formation of acute and causes the partial dissolution 
of established chronic SCI scars (Davies et al., 2004, 2006; 
Ahmed et al., 2014) by abrogating inflammation, CSPG/
ECM deposition, and glia and macrophage responses to 
injury (Lagord et al., 2002; Davies et al., 2004, 2006).  More 
specifically, Decorin regulates scarring by: (1) blocking 
TβRI/II activation and subsequent signalling through Smad 
2 and Smad 3 (Yamaguchi et al., 1990; Akhurst, 2006); (2) 
binding to type I collagen to inhibit fibrogenesis (Reese et 
al., 2013); (3) inhibiting CTGF activity (Vial et al., 2011); (4) 
inhibiting cell adhesion and fibroblast migration by binding 
to fibronectin (Winnemoller et al., 1991); (5) stimulating the 
release of plasminogen from glia and its conversion to tPA 
(Davies et al., 2006); (6) regulation of angiogenesis (Neill et 
al., 2012) and inflammation (Hamada et al., 1996) by inter-
action with EGFR, cMet) and TLR; and (7) reducing mRNA 
and protein levels of Sema3A within CNS scar tissue (Minor 
et al., 2011; Ahmed et al., 2014) and suppressing Sema3A 
and fibronectin expression by invading leptomeningeal/
pericyte-derived fibroblasts (Minor et al., 2011). Decorin 
modulates the acute phase of scarring by suppression of inju-
ry-induced TGF-β1/2 (Logan et al., 1999a) and inhibition of 
cell adhesion and migration by sequestration of TGF-β1/2 af-
ter binding to fibronectin (Zhang et al., 2009; Vial et al., 2011; 
Reese et al., 2013), and causes dissolution of the established 
chronic scar through induction of MMP and tPA activity and 
simultaneous suppression of TIMP and PAI-1 (Renckens 
et al., 2005; Davies et al., 2006; Ahmed et al., 2014). EGFR 

activation stimulates CSPG production (Asher et al., 2000; 
Dobbertin et al., 2003) and Decorin counteracts this activ-
ity by competing with EGF for EGFR binding (Yamaguchi 
et al., 1990; Logan et al., 1999a; Santra et al., 2000; Davies 
et al., 2004; Ahmed et al., 2014). Here, we review the use of 
Decorin both for suppression of acute CNS scar formation 
and for dissolution of the mature scar after SCI, and discuss 
the corollary that concomitant reductions in axon growth 
inhibitory ligands are conducive to the regeneration of spi-
nal axons.

Decorin suppresses titres of axon growth 
inhibitors in SCI sites
The anti-scarring effects of Decorin significantly lower the 
build-up of titres of scar-derived axon growth inhibitors by 
degradation and suppression of their synthesis (Davies et al., 
2004; Davies et al., 2006) in and around the SCI injury site, 
leading to reduced binding of inhibitory ligands to their re-
ceptors expressed on axon growth cones, including the pro-
tein tyrosine phosphatase receptor sigma (PTPRS) and the 
leucocyte common antigen related receptor (LAR) for CSPG 
(Shen et al., 2009; Sharma et al., 2012); the neuropilin/plex-
in receptor complex (reviewed by Sandvig et al., 2004) for 
Sema3A; and NgR and PirB for the myelin-derived inhibi-
tory ligands (Liu et al., 2002; Wang et al., 2002). After ligand 
binding, these receptors activate intracellular signalling path-
ways which converge on the ras homolog gene family mem-
ber A (RhoA)/Rho associated protein kinase (ROCK) (RhO/
ROCK) intracellular signalling pathway (which regulates ac-
tin polymerisation in axon growth cones) inducing growth 
arrest through growth cone collapse (Sandvig et al., 2004; 
Ahmed et al., 2014). However, it is not known if suppression 
of EGFR activity by Decorin (Iozzo et al., 1999; Csordas et 
al., 2000; Zhu et al., 2005) is correlated with concomitant in-
hibition of Rho/ROCK signalling to protect against growth 
cone collapse (Minor et al., 2011).

Axon regeneration in SCI lesions after Decorin 
treatment
The expectation that suppression of growth inhibitory 
ligands by Decorin would promote axon regeneration af-
ter SCI has not been realised since very few axons traverse 
Decorin-treated spinal cord wounds (Moon and Fawcett, 
2001; Davies et al., 2004, 2006; Ahmed et al., 2014) and 
might be deemed counter-intuitive if the motoring analogy 
applies that releasing the brake will not initiate forward mo-
tion unless the accelerator is engaged. This concept implies 
that robust CNS axon regeneration may only be possible 
when disinhibitory (including anti-fibrotic) and axogenic 
treatments are combined and is borne out by the observa-
tions that treatment with an NgR signalling blocker must 
be supplemented with NTF to achieve axon growth through 
a CNS wound (Douglas et al., 2009; Berry et al., 2011). 
Nonetheless, Decorin does have limited axogenic proper-
ties, exemplified in vivo and by the growth of neurites in 
Decorin-treated adult dorsal root ganglion neurons grown 
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on inhibitory CSPG and CNS myelin substrates without the 
presence of plasmin (Minor et al., 2008). Since EGFR block-
ade promotes some spinal cord motor neuron (Erschbamer 
et al., 2007) and retinal ganglion cell axon growth (Koprivica 
et al., 2005) (although the latter claim has been challenged 
by Douglas et al. (2009)), this axogenic effect of Decorin has 
been attributed to the suppression of EGFR (Minor et al., 
2008). NTF stimulate axon regeneration by activation of the 
phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) 
pathway, which promotes axogenic protein synthesis and 
protects against growth cone collapse through down-stream 
mammalian target of rapamycin (mTOR) and glycogen 
synthase kinase 3β (GSK3β), respectively (Morgan-Warren 
et al., 2013). Moreover, NTF induce regulated intramem-
branous proteolysis (RIP) of the transmembrane p75/TROY 
signalling moieties of the NgR trimeric complex (Ahmed et 
al., 2005, 2006) blocking Rho/ROCK pathway-mediated de-
polymerisation of actin in growth cones thereby preserving 
their functional integrity. Moreover, it has been suggested 
that binding of Decorin to the transcription factor STAT3 
regulates Sema3A expression and that activation of the ErB4 
receptor (an EGFR family member) by Decorin suppresses 
STAT3 through suppressor of cytokine signalling 3 (SOCS3) 
and Src homology phosphatase-1 (SHP-1) production (Mi-
nor et al., 2011) resulting in reduced levels of Sema3A in a 
SCI wound.

The assertion that Decorin treatment is a panacea for SCI 
is tempered by the caveat that scar tissue may develop by 
default if axon regeneration fails, since scarring is universally 
absent in experimental CNS lesions when they are traversed 
by significant numbers of regenerating axons (Berry et al., 
2008; Park et al., 2008; Liu et al., 2010); a phenomenon that 
may be explained by the observation that regenerating axons 
stimulate MMP/tPA release from astrocytes and inhibit the 
production of TIMP/PAI-1, thereby impairing the formation 
and promoting the dissolution of CNS scar tissue (Ahmed 
et al., 2005). Massive scarring and cavitation are unfailing 
sequelae of spinal cord trauma (Edgar and Quail, 1994; Fitch 
et al., 1999; Ahmed et al., 2014; Surey et al., 2014), demon-
strating that the growth cones of the few axons spontaneous-
ly regenerate after SCI has no impact on scar deposition. 
Accordingly, we suggest that a combined NTF and Decorin 
treatment regimen would act synergistically to depress scar 
formation and have added value in promoting the regrowth 
of lost connections, offering the hope of functional recovery 
in SCI patients.

Conclusions
Delivery of Decorin to SCI sites greatly reduces scarring and 
the accumulation of associated axon growth inhibitory li-
gands in both acute and chronic scenarios, but has restricted 
effects on the promotion of axon growth. Thus, we suggest 
that return of function in SCI patients requires the applica-
tion of a combined Decorin and NTF treatment.
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