
Citation: Rosso, A.D.; Aguilera, P.;

Quesada, S.; Mascardi, F.; Mascuka,

S.N.; Cimolai, M.C.; Cerezo, J.;

Spiazzi, R.; Conlon, C.; Milano, C.;

et al. Comprehensive Phenotyping in

Inflammatory Bowel Disease: Search

for Biomarker Algorithms in the

Transkingdom Interactions Context.

Microorganisms 2022, 10, 2190.

https://doi.org/10.3390/

microorganisms10112190

Academic Editor: Alexei V. Tumanov

Received: 30 September 2022

Accepted: 1 November 2022

Published: 4 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

microorganisms

Article

Comprehensive Phenotyping in Inflammatory Bowel Disease:
Search for Biomarker Algorithms in the Transkingdom
Interactions Context
Ayelén D. Rosso 1,2,3,4,†, Pablo Aguilera 2,3,† , Sofía Quesada 1,2,3, Florencia Mascardi 3,5 ,
Sebastian N. Mascuka 1,2, María C. Cimolai 1,2, Jimena Cerezo 6, Renata Spiazzi 6, Carolina Conlon 6,
Claudia Milano 6, Gregorio M. Iraola 7,8,9 , Alberto Penas-Steinhardt 1,2,3,10 and Fiorella S. Belforte 1,2,3,4,*,†

1 Laboratorio de Genómica Computacional (GeC-UNLu), Departamento de Ciencias Básicas,
Universidad Nacional de Luján, Luján 6700, Argentina

2 Programa del Estudio de Comunicación y Señalización Interreino (PECSI-UNLu),
Departamento de Ciencias Básicas, Universidad Nacional de Luján, Luján 6700, Argentina

3 Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET),
Ciudad Autónoma de Buenos Aires C1425FQB, Argentina

4 Instituto de Ecología y Desarrollo Sustentable (INEDES-CONICET-UNLu), Departamento de Ciencias Básicas,
Universidad Nacional de Luján, Luján 6700, Argentina

5 Instituto de Medicina Traslacional e Ingeniería Biomédica (IMTIB), CONICET,
Instituto Universitario del Hospital Italiano (IUHI), Hospital Italiano de Buenos Aires (HIBA),
Ciudad Autónoma de Buenos Aires C1199, Argentina

6 Servicio de Gastroenterología, Hospital Nacional Prof. Alejandro Posadas,
Ciudad Autónoma de Buenos Aires 1704, Argentina

7 Laboratorio de Genómica Microbiana, Institut Pasteur Montevideo, Montevideo 11400, Uruguay
8 Centro de Biología Integrativa, Universidad Mayor, Santiago 7510041, Chile
9 Wellcome Sanger Institute, Wellcome Genome Campus, Cambridgeshire CB10 1SA, UK
10 Instituto Universitario de Ciencias de la Salud, Fundación H.A. Barceló,

Ciudad Autónoma de Buenos Aires 1127, Argentina
* Correspondence: fiorellabelforte@gmail.com; Tel.: +54-91153114059
† These authors contributed equally to this work.

Abstract: Inflammatory bowel disease (IBD) is the most common form of intestinal inflammation
associated with a dysregulated immune system response to the commensal microbiota in a genetically
susceptible host. IBD includes ulcerative colitis (UC) and Crohn’s disease (CD), both of which are
remarkably heterogeneous in their clinical presentation and response to treatment. This translates
into a notable diagnostic challenge, especially in underdeveloped countries where IBD is on the
rise and access to diagnosis or treatment is not always accessible for chronic diseases. The present
work characterized, for the first time in our region, epigenetic biomarkers and gut microbial profiles
associated with UC and CD patients in the Buenos Aires Metropolitan area and revealed differences
between non-IBD controls and IBD patients. General metabolic functions associated with the gut
microbiota, as well as core microorganisms within groups, were also analyzed. Additionally, the
gut microbiota analysis was integrated with relevant clinical, biochemical and epigenetic markers
considered in the follow-up of patients with IBD, with the aim of generating more powerful diagnostic
tools to discriminate phenotypes. Overall, our study provides new insights into data analysis
algorithms to promote comprehensive phenotyping tools using quantitative and qualitative analysis
in a transkingdom interactions network context.

Keywords: comprehensive-phenotyping; gut-microbiota; ulcerative-colitis; crohn-disease

1. Introduction

Inflammatory bowel disease (IBD) represents a complex, polygenic chronic disorder
of unknown etiology [1]. It is estimated that IBD is associated with industrialized countries,
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where the decrease in contact with microorganisms, parasites or their derivatives promote
an increase in the prevalence of chronic inflammatory diseases. This is consistent with
the hygiene hypothesis that suggests that a lack of early childhood exposure to pristine
microbial conditions may increase the individual’s susceptibility to disease [2]. In particular,
IBD includes two main phenotypes: Crohn’s disease (CD) and ulcerative colitis (UC).
However, between 10–17% of IBD patients do not have a definitive diagnosis of CD
or UC, a phenomenon known as “inflammatory bowel disease unclassified” (IBDU) [3].
UC mainly comprises the rectum, affecting contiguously and symmetrically the colon
being more severe distally. Depending on the colonic segments involved, UC extent can
be classified as proctitis, left-sided colitis, or extensive colitis. CD is not continuous or
symmetrical and usually does not involve the rectum. CD is also associated with intestinal
granulomas, strictures and fistulas, which are not common findings in UC [1]. In CD,
inflammation is often transmural, whereas in UC is typically confined to the mucosa. As
eventually CD could compromise the colon and share UC pathognomonic manifestations,
its diagnosis could be confused despite being different diseases. Colonic CD and UC
need to be distinguished by differences in genetic predisposition markers, risk factors
and clinical features [1,4]. Additionally, IBD can be identified months or years after the
first appearance of symptoms, requiring clinical, serological, radiological, endoscopic and
histological information to define its prognosis and treatment.

Globally, IBD is the most common form of intestinal inflammation associated with a
deregulated immune-system response to commensal microbiota in a genetically susceptible
host. Multicellular organisms, such as humans, rely heavily on their commensal, symbi-
otic microbiota. This heterogeneous community is composed of microbial groups such
as viruses, bacteria, archaea, fungi, and other eukaryotes found in multiple body niches,
such as the intestine, skin, vagina, mouth, etc. In particular, the human gut microbiota
outnumbers human cells and expresses more genes than those present in our genome [5].
These complex communities of microorganisms mediate physiologically important chemi-
cal transformations playing a key role in recovering energy and nutrients from the diet as
well as promoting ion absorption at the colon level [5].

Likewise, it is postulated that there is an intestinal “inter-kingdom” communication
mediated, at least in part, by microvesicles carrying different types of biological messages.
Among the known nanometric-sized microvesicles are exosomes, which play a funda-
mental role in RNA-mediated cell-to-cell communication, especially in inflammatory and
malignant processes. Currently, there are many studies that propose the search for miRNAs
as plasmatic and fecal biomarkers associated with chronic inflammatory processes [6,7];
however, few describe its interaction with the microbiome and possible inter-kingdom
communication mechanisms [8]. In this sense, it is essential to assess the composition of
the gut-associated microbiota in the context of IBD, as certain groups of organisms may
alter the communication between the immune system and commensal microbes, triggering
an exacerbated response in the intestinal mucosa [9].

However, little is known about the human microbiome of South American popula-
tions [10–12]. Reports of gut dysbiosis processes associated with IBD in this region are
almost null, despite reports of a rapid increase in the incidence in South America [2]. So
far, most of the available literature on the study of the gut microbiome associated with IBD
points to developed countries, which differ both in the genetic background and in several
environmental factors from our population [13]. In particular, our group published the
microbial gut diversity of Buenos Aires (BA), being the first local report in this area [14].
Since BA is the second most populated agglomeration in South America and the southern
hemisphere (with a large genetic and cultural component of European immigration inter-
acting with local indigenous people), BA microbiota analysis was compared with different
16S rRNA gene sequence data sets. In addition, our group has recently performed a two-
time point analysis of the fecal microbiota in those Metropolitan Buenos Aires inhabitants
previously studied to compare pre-pandemic data and its variation during preventive and
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compulsory social isolation (PCSI) in 2020 [15]. These works provided the first data related
to the gut microbiota of our population and its resilience to disturbances.

In the present work, we characterized, for the first time in our region, epigenetic
biomarkers and gut microbial profiles associated with UC and CD patients in the BA
Metropolitan area and revealed differences between non-IBD controls and IBD patients.
General metabolic functions associated with the gut microbiota, as well as core microor-
ganisms within groups, were also analyzed. Additionally, the gut microbiota analysis was
integrated with relevant clinical, biochemical, and epigenetic markers considered in the
follow-up of patients with IBD, with the aim of generating more powerful diagnostic tools
to discriminate phenotypes. [16]. In this sense, there is an enormous unsatisfied need for
biological markers that allow evidence of the status, progression and response to therapy of
complex diseases with an inflammatory component. Defining data analysis algorithms that
integrate clinical, biochemical, and metagenomic information is relevant to facilitate patient
evaluation and allow the discovery of new biomarkers. Overall we intend to generate
comprehensive phenotyping tools providing new knowledge on the differences and simi-
larities of the gut microbiota of IBD patients compared to controls of the South American
population, using quantitative and qualitative analysis of microbiome profiles as well as
clinical, biochemical and epigenetic parameters, in a context of transkingdom interaction.

2. Materials and Methods
2.1. Ethics Statement

This study received approval from Hospital Nacional Profesor Alejandro Posadas
according to local regulations and the Helsinki declaration. Written informed consent was
obtained from all study participants.

2.2. Selection of Participants and Environmental Data

This cross-sectional study recruited consecutive UC and CD patients attending the Gas-
troenterology Service of the Posadas Hospital. Non-IBD controls were selected according
to age and body mass index (BMI) in order to match the patient population characteristics
(Table 1), considering the same geographical location for all participants. The exclusion
criteria established for both non-IBD controls and IBD patients considered individuals
who have not received antibiotic therapy in the last 6 months, subjects on extreme diets
(e.g., macrobiotics, vegans), surgical intervention in the gastrointestinal tract (gastrectomy,
bariatric surgery), pregnancy, digestive neoplasias, patients on renal replacement therapy,
transplant recipients and HIV infected. Additional exclusion criteria for non-IBD controls
were the presence of IBD or irritable bowel syndrome (IBS). The sample size was deter-
mined using a Dirichlet multinomial distribution model. With an expected number of
more than 50,000 sequence reads per sample and an α of 5%, ~15 subjects per group were
required for ~80% power [17].

Table 1. Population general description.

Groups UC CD Non-IBD
Controls p

General
descriptions

Overall subjects n = 20 n = 14 n = 13 -
Female % 60 57 69 ns
Male % 40 43 31 ns

Mean age,
years ± (SD) 46.65 ± (17.80) 44.42 ± (16.61) 52.84 ± (17.94) ns

BMI ± (SD) 26.60 ± (4.09) 25.01 ± (3.84) 28.40 ± (5.44) ns
Variables were assessed by ANOVA test. No significant (ns).

2.3. General Diagnosis

Physicians apply the European Crohn’s and Colitis Organization (ECCO) guidelines
for the diagnosis, treatment and surveillance of IBD patients. The diagnosis was performed
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by combined studies of endoscopy, histology, serology, and clinical data. UC patients were
defined based on Truelove & Witts’ criteria for clinical activity [18]. On such a basis, patients
can be classified as normal, mild, moderate or severe. Endoscopic studies were evaluated
based on Mayo Score, as follows: normal, mild disease (erythema, decreased vascular
pattern, mild friability), moderate disease (marked erythema, lack of vascular pattern, fri-
ability, erosions), or severe disease (spontaneous bleeding, ulceration) [19,20]. CD patients
were characterized based on Crohn’s Disease Activity Index (CDAI) for clinical activity [21].
For endoscopic evaluations, the Simple Endoscopic Score for Crohn’s Disease (SES-CD)
was defined [22]. The general diagnosis for active or remission patients was defined by
clinical and endoscopic scores together; this determination is based on medical criteria. To
assess the general information about participants, anthropometric measurements (height,
weight, and waist circumference) and blood pressure were determined by standardized
protocols. Body mass index (BMI) was calculated as weight (kg)/[height(m)]2.

2.4. Biochemical Measurements

After a 12 h overnight fast, venous blood samples were obtained from volunteers for
further analyses. Fasting plasma glucose (FPG), creatinine, total cholesterol, triglycerides,
LDL-C, and HDL-C were determined by enzymatic methods in serum samples using
standardized procedures. Hemoglobin, platelets, albumin, and ultra-sensitive C-Reactive-
Protein (us-CRP) were measured in order to determine the severity of the disease. All bio-
chemical measurements were performed at the Hospital Posadas Laboratory, BA, Argentina.
Given the low predictive nature of serological data in IBD patients, anti-Saccharomyces
cerevisiae/antineutrophil cytoplasmic antibodies (ASCA/ANCA antibodies) were deter-
mined by immunofluorescence and immunoenzymatic standard techniques only in those
patients who required it to define the diagnosis. Likewise, patients undergo annual video
colonoscopies to monitor the pathology, as well as histopathological analysis of biopsy
samples taken for this purpose.

2.5. Blood and Stool RNA Extraction

In order to investigate the expression levels of hsa-miR-146a-5p, hsa-miR-155-5p,
and hsa-miR-223-3p IBD biomarkers, 2 types of samples were chosen: (BCF) and fecal
cell fraction (FCF). Briefly, the BCF isolation was performed at the time of sampling by
density gradient by means of centrifugation at 1600 rpm (20 min) of the blood diluted in
half with physiological solution (SF: NaCl 0.9% M/V) on Ficoll Hypaque reagent. BCF
was resuspended in 1 mL of Trizol reagent and stored at −80 ◦C for further processing.
To generate FCF, 250 mg of solid feces were transferred in 2 mL tubes. Filtered 1× PBS
was added to the tubes until completing the 2 mL of the tube and vortexed for 2 min.
Tubes were centrifuged at 100 g for 15 min in order to eliminate macroscopic traces of
food from the sample, recovering the supernatant in a new tube. The supernatants were
transferred to 2 mL tubes to be centrifuged at 8000 g for 5 min. The pellet FCF was
resuspended in 1ml of Trizol reagent and stored at −80◦C for further processing. Total
RNA was extracted using the phase separation technique with Trizol reagent following the
manufacturer’s instructions.

2.6. miRNAs Identification

Reverse transcription of hsa-miR-146a-5p, hsa-miR-155-5p, and hsa-miR-223-3p IBD
biomarkers was performed using Stem Loop Primers (SLP) strategy and the reverse tran-
scriptase enzyme MMLV (Moloney Murine Leukemia Virus Reverse Transcriptase) from
Promega following the manufacturer’s instructions. SLPs were designed using the se-
quence described by Martha F. Kramer [23] and adding a 3’ end of six nucleotides sequence
specific to each miRNA. The quantitative real-time PCR method (qPCR) was performed
with “SYBR™ Select Master Mix” from Applied Biosystems in StepOnePlus Real-Time PCR
equipment. Absolute Quantification by Standard Curve was implemented, using synthetic
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plasmids designed with the sequence corresponding to the PCR products that are expected
to be obtained from the cDNAs generated by the SLPs strategy.

2.7. Stool Samples Collection and DNA Extraction

Each participant was given a written protocol for stool sample collection, which
considered the introduction of approximately 5g of stool into a sterile wide-mouth tube
containing a teaspoon in the lid. DMSO/EDTA/saturated sodium chloride buffer (DESS)
was used to preserve the samples at both room and subzero temperatures, preventing
freezing and cell damage as described [14]. The samples were aliquoted and stored at
−80 ◦C until use. DNA extraction was performed using QIAamp PowerFecal DNA Kit
following the manufacturer’s instructions. The concentration and purity of the nucleic acids
were determined by spectrophotometry in NanoDrop ND-1000 (NanoDrop Technologies,
Wilmington, DE, USA).

2.8. 16S Bacterial rRNA Fragment NGS

To amplify the 16S rRNA gene fragments of gut microbiota, 30 ng of purified DNA
was used, and V3-V4 hypervariable regions of the bacterial 16S gene were amplified using
337F/805R primers. All segments of the variable regions of the 16S rRNA gene were
normalized and multiplexed in a single tube. Sequencing was carried out using a MiSeq
sequencer performing the synthesis sequencing methodology. Libraries were sequenced
in the 5’ and 3’ directions (paired-end mode), ensuring 300–500 bp long sequences and
~150,000 average coverage for taxonomic identification.

2.9. Sequence Analysis and Comparison of Microbial Communities

Sequences generated were analyzed using Quantitative Insights Into Microbial Ecology
(QIIME2) version 2021.2 software package [24]. Raw fastq reads were quality filtered
(denoised, merged, and assessed for chimeras) to produce amplicon sequence variants
(ASV) using the “DADA2” (Plugin version 2021.2.0) pipeline [25]. Figaro software was used
to determine optimal trimming parameters (trunc-len for IBD patients and non-IBD control
samples was f280 r200 around) [26]. After rare amplicon sequence variant filtering, a 0.1%
minimum abundance filter was chosen based on the known 0.1% bleed-through between
Illumina MiSeq runs [27,28], and tables were merged. In order to place each sequence into
a phylogenetic reference tree, qiime fragment-insertion SEPP (version 4.3.10) was used
(sepp-refs-silva-128.qza reference database) [29]. To perform the taxonomic classification
by qiime feature-classifier classify-sklearn, we train a supervised learning classifier with
RESCRIPt package [30,31], using the V3-V4 primers from this study and a 99% similarity
threshold following the author’s tutorial. The database used for this taxonomic assignment
was Silva Release 138 [32].

Alpha and beta diversity were calculated using qiime diversity core-metrics-phylogenetic
pipeline at genus-level data. Alpha diversity measures were tested with a general linear model:
Shannon diversity, which defines the total number of species (species richness) weighted
for their relative abundances (species evenness). Differences in beta diversity were assessed
using ADONIS permutation-based statistical test in vegan-R (accessed on 29 September 2022
from https://CRAN.R-project.org/package=vegan) implemented in QIIME2 (q2-diversity
plugin 2021.2.0) [33]. A standard pipeline of Phylogenetic Investigation of Communities by
Reconstruction of Unobserved States (PICRUSt version 2.4.1), implemented in QIIME2, was
used to generate MetaCyc pathway ontology profiles [34,35]. Differences in taxa abundance at
the genera level and functional profiles between groups were determined using the analysis
of the composition of microbiomes (ANCOM) framework [36]. Core microbiota was defined
as the set of amplicon sequence variants detected in 50–100% of the samples with a relative
abundance threshold value above 0.01% (calculated with Core microbiome from R microbiome
package). Data are presented using ggplot2 (version 3.3.1) with data extracted from QIIME2
artifacts by using qiime 2R (v0.99.5) (accessed on 29 September 2022 from https://github.

https://CRAN.R-project.org/package=vegan
https://github.com/jbisanz/qiime2R/
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com/jbisanz/qiime2R/). Posterior analysis was realized with phyloseq [version 1.34.0, [37]]
and microbiome [version 1.12.0, [38]] R packages.

2.10. Logistic Regression Model

In order to achieve a predictive signature capable of discriminating between UC, CD,
and non-IBD controls, forward stepwise logistic regression models were constructed using
R version 4.0.5. Clinical characteristics age, BMI, biochemical parameters, core microbiota
(identified by the microbiome R package), differentially abundant bacterial taxa (identified
by the ANCOM framework) and statistically significant differentially abundant metabolic
pathways (p < 0.05) (inferred by the PICRUSt pipeline) were used to design the best feature
combination that could establish a predictive model for the disease. The global performance
of each model was evaluated using the Area Under the ROC (AUROC).

2.11. Weighted Correlation Network Analysis

Considering that IBD affects and is caused by a wide range of molecular interactions, a
holistic, comprehensive approach is required to identify key biomarkers involved. Clinical
characteristics include age, BMI, biochemical measurements, miRNAs from BCF and FCF,
core microbiome (identified by the microbiome R package), differentially abundant bacterial
taxa (identified by the ANCOM framework) and statistically significant differentially
abundant metabolic pathways (p < 0.05) (inferred by the PICRUSt pipeline) were input for
weighted correlation network analysis in accordance with samples’ groups. To conduct
this analysis, adjacency matrices based on Spearman’s correlation were built using the
rcorr function in Hmisc R package version 4.7-0 [23,39]. Significant positive and negative
correlations (p < 0.05) were selected to generate weighted correlation networks for CD and
UC patients and non-IBD controls. Igraph R package version 1.2.7 (Csardi G, Nepusz T.
The igraph software package for complex network research. InterJournal. 2006; Complex
Systems 18: 1695) and Cytoscape version 3.71 were used for network visualization and
topological characterization [40]. A combination of the centrality scores degree (the number
of edges attached to a node) and eigenvector (the transitive influence of a node on high-score
nodes) was applied to infer the regulatory relevance of each node and to identify potential
keystones or hubs, which are nodes with the strongest influence on the environment’s
dynamics [41,42]. The fast greedy modularity optimization algorithm of igraph was used
to identify clusters within networks [43].

2.12. Data Accession

Raw sequences of the 16S rRNA gene reported in this article were deposited in NCBI
Short Read Archive (SRA) and are accessible under the accession number PRJNA646271.

3. Results
3.1. Characteristics of the Studied Population

This cross-sectional study recruited unrelated individuals, including consecutive UC
and CD patients attending the Gastroenterology Service of the Posadas Hospital. Non-IBD
controls were selected according to age and body mass index (BMI) in order to match the
patient population characteristics (Table 1), considering the same geographical location
for all participants. All IBD patients were under chronic medical treatment as they had
previously been diagnosed (Table 2).

Blood samples were taken by the responsible professionals during recruitment in order
to determine biochemical variables and autoantibodies. These complementary parameters
are useful for monitoring IBD patients since they can usually have low hemoglobin due
to intestinal bleeding, hyperplatelet, low albumin levels, and high us-CRP, indicating
inflammation and tissue damage. As shown in Table 2, we found no abnormal values
among IBD patients in these parameters, except for the CD group whose us-CRP levels
were high (>0.5 mg/dL).

https://github.com/jbisanz/qiime2R/
https://github.com/jbisanz/qiime2R/
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In relation to the collected clinical data, most UC patients suffered from extensive or
left-sided colitis, while one proctitis case. Notably, our UC population had most of the colon
compromised, observing colonoscopic alterations from the rectum to the descending colon.
In order to define our patients’ states, the clinical, endoscopic, and histological activity of
our population were evaluated. These three parameters were considered since the disease
may not manifest itself clinically but may be reflected in the endoscopic and histological
examinations. In this sense, 25% of UC patients presented clinical activity classified with
Truelove & Witts as mild-moderate phenotypes. Interestingly, 50% of the UC group showed
the presence of inflammatory infiltrate in biopsy samples (Table 2). This also happens in
patients with CD since most of them are under clinical remission, but almost 80% of the
population shows inflammatory infiltration in histological studies.

Table 2. IBD patients’ characterization.

Groups UC CD

mean ± (SD)

Biochemical data

Hemoglobin, g/dL 13.74 ± (1.41) 12.61 ± (1.92)
us-CRP, mg/dL 0.35 ± (0.26) 1.37 ± (2.48)
Albumin, g/dL 4.55 ± (0.34) 4.39± (0.25)

Platelets, ×103/mL 238.11 ± (58.02) 297.86 ± (107.15)
FPG, mg/dL 92.43 ± (13.36) 97.35 ± (15.98)

Creatinine, mg/dL 0.77 ± (0.16) 0.82 ± (0.22)
Triglycerides, mg/dL 92.47 ± (49.33) 107.22 ± (43.28)

Total cholesterol, mg/dL 177.77 ± (43.04) 216.16 ± (53.09)
LDL-C, mg/dL 109.07 ± (42.50) 136.89 ± (41.31)
HDL-C, mg/dL 56.87 ± (13.44) 61.50 ± (22.45)

GOT (UI/I) 23.89 ± (8.49) 23.89 ± (8.49)
GPT (UI/I) 22.14 ± (10.88) 23.14 ± (10.88)

No. (%)

IBD therapy

5-ASA 20 (100.00) 14 (100.00)
Steroids 1 (5.00) 5 (35.71)

AZA 4 (20.00) 3 (21.42)
Rectal budesonide 5 (25.00) 4 (28.57)

ADA 0 (0.00) 2 (14.28)

Lesion localization UC
E1 proctitis 1 (5.00) -

E2 left-sided colitis 8 (40.00) -
E3 extensive 11 (55.00) -

Lesion localization CD

L1 ileal - 0 (0.00)
L2 colon - 8 (57.14)

L3 ileocolonic - 4 (28.57)
L2-L4 upper GIT - 1 (7.14)
L3-L4 upper GIT - 1 (7.14)

General activity according
to medical criteria

General remission 10 (50.00) 4 (28.57)
General active 10 (50.00) 10 (71.42)

Clinical activity
(Truelove & Witts

and CDAI)

Remission 15 (75.00) 10 (71.42)
Mild 5 (25.00) 4 (28.57)

Moderate 0 (0.00) 0 (0.00)
Severe 0 (0.00) 0 (0.00)

Endoscopic score
(Mayo score and SES-CD)

Normal 10 (50.00) 4 (28.57)
Mild 7 (35.00) 4 (28.57)

Moderate 1 (5.00) 3 (21.42)
Severe 2 (10.00) 3 (21.42)

Histology activity
Quiescent 10 (50.00) 3 (21.42)

Inflammatory infiltrate 10 (50.00) 11 (78.57)
Ultra sensitive C-Reactive Protein: us-CRP, Fasting plasma glucose: FPG, 5-ASA: Mesalazine, AZA: Azathioprine,
ADA: Adalidumab, glutamic oxaloacetic transaminase: GOT, glutamic pyruvic transaminase: GPT.
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3.2. miRNAs Characterization

The use of miRNAs as biomarkers is a widely studied strategy worldwide in various
complex pathologies with an inflammatory component due to the availability of massive
public data on gene expression [44–48]. In addition, as they regulate specific biological
processes, their correlation with pathological phenotypes can be used to understand the
molecular pathophysiology of diseases of unknown etiology, such as IBD. In order to
analyze whether characteristic epigenetic biomarkers in IBD could provide valuable in-
formation in comprehensive phenotyping, miRNAs previously associated with IBD were
selected [47] and quantified by qPCR both at the intestinal and peripheral levels. Figure 1
summarizes some of the significant differences observed in patients with UC and CD in
the miRNAs studied: hsa-miR-146a-5p, hsa-miR-155-5p, and hsa-miR-223-3p. In BCF, a
greater expression was quantified with statistical significance for hs-miR-155-5p in both
UC and CD (p < 0.5), while in FCF, a significant increase in the expression of hs-miR-223-3p
was observed in both groups (p < 0.05) (Figure 1A,D). In UC BCF, hs-miR-155-5p shows a
significant increase in those treated with 5-AZA/steroids compared to controls (p < 0.05)
(Figure 1B), being also increased in BCF of CD patients treated with 5-AZA (p < 0.05)
(Figure 1C). It was also observed a significant increase of miR-155-5p in the FCF of patients
with UC treated with 5-AZA (p < 0.05), while hs-miR-223-3p was significantly increased in
the FCF of CD with the same treatment (p < 0.05; Figure 1E,F). There were no significant
differences in the expression levels of hs-miR-146a-5p in patients with IBD in any of the
samples evaluated (data not shown).

3.3. Microbial Composition

Low-quality reads and chimera sequences were filtered and denoised from the raw
data with DADA2, eventually producing an average of 41.590 reads per sample. These reads
corresponded to 1804 features and identified 222 genera of the Silva reference database. Ap-
proximately 70% of genera in non-IBD controls and IBD patients have a relative frequency
between 0–5%. In contrast, the remaining 30% is represented by the genera Bacteroides in
CD and Prevotella and Bacteroides in non-IBD controls and UC patients. All these genera
belong to the phylum Bacteroidota (data not shown).

3.4. Alpha and Beta Diversity

The rarefaction curve came to a plateau indicating the sequencing depth was suffi-
cient to measure the bacterial community (data not shown). Shannon diversity index was
calculated [49], and its distribution was compared to determine if there were differences in
the richness or uniformity of the samples between both groups. No significant differences
were found between non-IBD controls and UC patients. In contrast, Shannon diversity
values have been statistically different between non-IBD controls and CD (p-value < 0.05;
Figure 2A,D). Hence Shannon diversity, chao1 richness, evenness, and phylogenetic diver-
sity were similar between non-UC controls and UC patients. In terms of beta-diversity,
robust compositional unweighted-weighted UniFrac distances were calculated and plotted
with ellipses representing the 95% of confidence intervals of each group. Variability was
explained by the first two principal components, and differences between non-IBD con-
trols and UC patients were significant for unweighted diversity analysis (p-value < 0.05;
Figure 2C), while the weighted diversity did not show significance (Figure 2B). On the
other hand, when analyzing weighted and unweighted UniFrac distances between non-IBD
controls and CD, both result in significance values (p-value < 0.05; Figure 2E,F).

3.5. Differentially Abundant Taxa between Patients and Controls

To study differentially abundant taxa between non-IBD controls and IBD patients,
the compositional algorithm ANCOM-BC was used, with a 0.70 detection rate. Ten taxa
were identified by the ANCOM framework: Bifidobacterium is the genera found differen-
tial within UC patients compared to non-IBD controls (Figure 3A). While Bifidobacterium,
Bacteroides, Lactobacillus, Streptococcus, Lachnoclostridium, Olsenella, Faecalibacterium, Clostrid-
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ium_sensu_stricto_1, Flavonifractor, Turicibacter are found to be differential only in CD
compared to non-IBD controls with a p-value < 0.05 (Figure 3B).
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Figure 1. Evaluation of miRNAs. hs-miR-155-5p and hs-miR-223-3p expression levels in IBD patients
compared to non-IBD controls (A,D). Expression of hs-miR-155-5p and hs-miR-223-3p compared to
non-IBD controls in relation to medication received by UC patients or CD patients (B,C,E,F). Wilcoxon
test was calculated between groups (* = p-value < 0.05, ** = p-value < 0.01). 5-ASA, 5-aminosalicylic
acid (mesalamine); AZA, azathioprine; ADA, Adalimumab biological therapy.
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Figure 2. Comparison of microbiota community of the IBD patients and non-IBD control groups.
Shannon diversity measures for Alpha Diversity (A,D) and Wilcoxon test were calculated between
groups (* = p-value < 0.05, ** = p-value < 0.01) (A). Representation of richness and evenness in a dot
plot (D). PCoA plots of beta diversity (Weighted and Unweighted Unifrac distances) for UC patients
and non-IBD controls (B,C) and CD patients and non-IBD controls (E,F).
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Figure 3. Volcano plot. Differentially abundant genera between non-IBD controls and UC patients
(A) or non-IBD controls and CD patients (B). Volcano plot of the differentially abundant metabolisms
between non-IBD controls and UC patients (C) or non-IBD controls and CD patients (D). Red dash
lines represent a significance threshold (p-value = 0.05). Yellow, green or blue represents significant
genera or metabolisms more abundant. In gray, non-significant features are represented.

3.6. Functional Analysis

To predict the functional capacity of the gut microbiota in non-IBD controls and IBD
patients, a full pipeline of PICRUSt2 implemented in QIIME2 was used. PICRUSt uses
an extended ancestral-state reconstruction algorithm to estimate which gene families are
present and then combines gene families to estimate the composite metagenome. From the
data on functional capabilities, we focused primarily on those which were associated with
microbial metabolism. Significant differences were noticed in certain metabolic functions
in the gut microbiota of non-IBD controls and IBD patients. MetaCyc Metabolic Pathways
were predicted for groups, from which one only differs significantly in abundance for
non-IBD controls, between UC patients and non-IBD controls (Figure 3C). For CD patients
and non-IBD controls, thirteen metabolic pathways were significant, appearing in the
group of CD patients (Figure 3D). Broadly, among gene families associated with metabolic
pathways, menaquinol-9 biosynthesis (associated with the production of vitamin K2) was
under-represented in UC patients. Instead, for CD patients, gene families associated with
aromatics degradation appear in half of the differential metabolic pathways in this group
when compared to non-IBD controls. Other annotations were not part of any specific route.

3.7. Common Core Microbiota

For non-IBD controls, 79 bacterial genera were identified as core microbiota, corre-
sponding to 46.19% of the genera present in the group, 65 genera for UC representing
37.79% of the total, and 46 genera for CD core which correspond to 24.86% respectively
(Figure 4A,B). The genera were assigned as core microbiota considering prevalence ≥50%
and a detection threshold ≥0.10% (or else a frequency of ≥0.001). At the intersection of
groups, 38 genera were found at the triple intersection, observing only a few core features
exclusively represented in each of the groups. In this sense, there were 16 genera present
in non-IBD controls that were lost in IBD patients’ core microbiota: three genera in UC
and seven in CD specific to each group (Figure 4B). Clinical activity was also analyzed
with respect to the core microbiota in IBD patients. The Venn diagram for UC activity
is composed of the group of non-IBD controls and UC patients, classified as active or in
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remission, showing the number of genera common to and exclusive among these groups
(Figure 4C). For the CD patients, the same approach was followed (Figure 4D).
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Figure 4. Heatmap core. Genera core microbiota for non-IBD controls and IBD groups. The
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patients (D) discerning active and remission patients.
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3.8. Comprehensive Phenotyping Algorithms

In order to define data analysis algorithms that integrate clinical, biochemical, and
metagenomic information to further gauge their ability to distinguish among patients with
UC, CD, and non-IBD controls, several models were established applying forward stepwise
logistic regression analyses and their potential predictive utility was assessed by ROC
curve analysis.

A Biochemical Model (BM) was first developed using biochemical parameters, epi-
genetic biomarkers and clinical features, including age, BMI, BCF, and FCF miRNAs,
FPG, creatinine, total cholesterol, triglycerides, LDL-C, HDL-C, hemoglobin, platelets,
albumin, and us-CRP. As shown in Figure 5, the BM for CD was defined as follows
(AUROC = 1): 208.69 + 0.001 × miR223_FCF − 0.015 × miR155_FCF − 1.187 × Platelets +
0.001 × miR155_BCF.
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For the case of UC, the BM (Figure 6) was defined as follows (AUROC = 0.916):
−6.077 + 3.024 × 10−4 × miR223_FCF + 1.721 × 10−1 × GOT + 2.894 × 10−5 × miR155_BCF.

Subsequently, we developed a Microbiota Model (MM) using the microbiota core data
plus genera and metabolic pathways exhibiting statistically significant differences in the
ANCOM analysis. A logistic regression model for CD (Figure 7) was defined as follows
(AUROC =1): −51.66 + 1051745.67 × PWY5415 − 6208.25 × Ruminococcus_torques_group +
214212.44 × Hungatella.

On the other hand, MM for UC (Figure 8) was defined as follows (AUROC = 1):
−89772 × Desulfovibrio − 43021 × Lachnoclostridium − 7759 × Subdoligranulum
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1 
 

 

Figure 8. Box plot in the microbiota model. Values present in patients with UC compared to non-IBD
controls (A–C). Performance of microbiota model, as assessed via the area under the ROC curve (D).

3.9. Correlation Network Analysis

In the present work, we performed a correlation network analysis to gain insight into
the interactions between the variables that are part of the selected logistic regression models
for UC and CD patients. This aims to clarify which nodes hold the strongest influence
on the others and to identify variables that could increase the specificity of the logistic
regression models by means of taking part in the same cluster within the network.

The network representing the CD environment consisted of 129 nodes and 887 edges
representing significant interactions (p < 0.05), out of which 23.11% were negative correla-
tions. After ruling out those interactions that expressed Spearman’s correlation coefficients
under |0.7|, 110 nodes and 252 edges were left (Figure 9). In order to identify potential
keystones, we evaluated which nodes overpassed the obtained average for centrality scores,
degree, and eigenvector (See Supplementary Data). The combination of these two situa-
tions was observed in the Eubacterium siraeum group, Lachnospiraceae GCA-900066575, and
Oscillospiraceae UCG-002, suggesting them as keystones in CD patients.

The analysis of UC patients’ data resulted in a network consisting of 130 nodes and
638 edges representing significant positive correlations (p < 0.05), and following the filtering
by Spearman’s coefficients, 90 nodes and 124 remained (Figure 10). The top three nodes
exhibiting the highest degree and eigenvector centrality scores were Ruminococcaceae UCG-005,
Odoribacter, and Christensenellaceae R7 group, identified as co-abundant as all three belonged
to the same cluster after running the community detection algorithm.

The fast greedy algorithm, a hierarchical agglomeration algorithm for detecting com-
munity structure, was applied within the correlation networks consisting of nodes whose
edges represented correlations greater than 0.7. This analysis resulted in 16 and 22 detected
clusters in UC and CD networks, respectively (See Supplementary Data).

Figures 9 and 10 show the clusters to which the variables from the respective logistic
regression model belong, where it can be observed that most of these variables were
distributed in different clusters, suggesting that each one could be representative of a
distinctive biological process underlying the disease.
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Figure 9. Correlation CD-network. Clinical characteristics age, BMI (gray nodes), biochemical
measurements (orange nodes), core microbiota and differentially abundant bacterial taxa (yellow
nodes), statistically significant differentially abundant metabolic pathways (p < 0.05; green nodes),
and miRNAs from BCF (blue nodes) and FCF (red nodes) of the CD patients. Only correlations with
Spearman’s correlation coefficients over 0.7 are shown. Green edges represent positive correlations.
Red edges represent negative correlations. Variables from the logistic regression model of CD patients
are indicated in red font.
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statistically significant differentially abundant metabolic pathways (p < 0.05; green nodes), and
miRNAs from BFC (blue nodes) and FCF (red nodes) of the UC patients. Only correlations with
Spearman’s correlation coefficients over 0.7 are shown. Green edges represent positive correlations.
Red edges represent negative correlations. Variables from the logistic regression model of UC patients
are indicated in red font.

4. Discussion

The global epidemiology of inflammatory bowel disease (IBD) is changing rapidly
with the increasing incidence and prevalence of the disease in developing regions. Sriharan
Selvaratnam et al. performed a systematic review between January 1990 and December 2018
of the South American IBD burden and its rapid increase, particularly in industrialized
regions [50]. They showed that there is a paucity of robust and representative epidemi-
ological studies to explore modifiable risk factors and disease phenotypes in our region.
Considering that the South American continent is home to more than 400 million people,
it is expected to represent a significant proportion of those affected by IBD in the world.
This translates into a notable diagnostic challenge, especially in underdeveloped countries
where access to diagnosis or treatment is not always accessible for chronic diseases.

The present work characterized, for the first time in our region, epigenetic biomark-
ers and gut microbial profiles associated with UC and CD patients in the Buenos Aires
Metropolitan area and revealed differences between non-IBD controls and IBD patients.
General metabolic functions associated with the gut microbiota, as well as core microor-
ganisms within groups, were also analyzed. Additionally, the gut microbiota analysis was
integrated with relevant clinical, biochemical, and epigenetic markers considered in the
follow-up of patients with IBD, with the aim of generating more powerful diagnostic tools
to discriminate phenotypes.

In IBD, there are no good biomarkers with a strong positive predictive value. Com-
plete blood count, erythrocyte sedimentation rate (ESR), us-CRP, albumin and total protein
levels, fecal lactoferrin or calprotectin, and ANCA and ASCA antibodies may be helpful in
diagnosis but are non-specific and non-pathognomonic [51]. In the present work, we sought
to characterize three miRNAs in two different matrices in order to find biomarkers with
greater predictive power and thus help in the diagnosis and prognosis of inflammatory
bowel disease. The use of miRNAs as biomarkers is a widely studied strategy worldwide
in various complex pathologies with an inflammatory component due to the availability of
massive public data on gene expression [44–48]. Paraskevi et al. detected overexpression of
hs-miR-155-5p in the peripheral blood of patients with active UC [52], while the expression
in patients with active CD was invariable. In contrast, our patient population showed
a significant increase in hs-miR-155-5p in the BCF of UC and CD patients. Pathak et al.
identified SOCS1 (Cytokine Signaling Suppressor 1) as one of the targets of hs-miR-155 in
intestinal myofibroblasts (IMF). Interestingly, some studies revealed that SOCS1 deficiency
exacerbates intestinal inflammation and that SOCS1-deficient mice, which are hypersen-
sitive to toll-like receptor (TLR) ligands, showing dysregulated cytokine production that
perturbs immune cell activation and triggers the development of systemic autoimmunity
suppressor of cytokine signaling-1 ameliorates dextran sulfate sodium-induced colitis in
mice [53,54]. Furthermore, they found that the SOCS1 protein level is significantly lower
in UC-derived IMF than in control-derived IMF. These findings suggest an inverse rela-
tionship between hs-miR-155 and SOCS1 expression. This points to SOCS1 as a powerful
molecular switch that, by tuning key signaling pathways such as JAK kinases and activated
cytokine receptor complexes, regulates the development of a variety of cell populations,
inflammatory processes, and immune responses. Previous studies suggested that SOCS1 is
inactivated in human IBD, contributing to dysregulated mucosal inflammation, although
the cell populations involved were not identified [53].

When analyzing our patients according to their treatment, it was observed that al-
though there is a general trend towards higher hs-miR155-5p expression in patients, the
differences became significant in BCF of patients with UC treated with the 5-AZA-steroid
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combination and in the CD group treated with 5-AZA. This fact would show a limited
effect of 5-AZA on the reduction of the inflammatory process, as it does not reduce the
levels of this miRNA, which in this case acts as a buffer for the activity of the immune
system. On the other hand, Daniel Szucs et al. found that hs-miR-155 expression was
significantly increased in biopsies of macroscopically inflamed duodenal mucosa from
pediatric patients compared with the control group [55,56]. Our results showed that this
overexpression not only occurs at the peripheral level in UC BCF but also occurs in the
fecal cell fraction FCF of adult patients, which broadens the potential of hs-miR-155-5p as a
biomarker in our population.

Regarding hs-miR-223-3p, it was overexpressed in FCF of IBD patients in our pop-
ulation and is significantly increased in individuals with CD treated with 5-AZA and
5-AZA/steroids. This not only corroborates the ability of fecal hsa-miR 223-3p to discrimi-
nate IBD patients from controls but also highlights the limited role of 5-AZA in our CD
population, which in many cases is the only treatment available due to the inability of low-
income patients to access biologic treatments such as infliximab, adalimumab, golimumab,
and vedolizumab. The hs-miR-223 is expressed and strictly regulated in hematopoietic
cells contributing to a negative feedback mechanism that controls excessive innate immune
responses in maintaining myeloid cell homeostasis [57]. There are many genes regulated
by this miRNA, among them TRIL (toll-like receptors, TLR4) interactor with leucine-rich
repeats), a key player in the costimulatory complex of TLR4 [58]. It was shown that TRIL
can interact with TLR4 and that this interaction is enhanced by lipopolysaccharide (LPS)
mediated stimulation. This suggests that the regulation of the immune response in IBD
mediated by hs-miR-223 could, in turn, involve the regulation of TRIL expression. Contro-
versially, other studies point to a proinflammatory role of hs-miR-223. Wang et al. argue
through analyzes in animal models that hs-miR-223 interacts with the IL23 pathway target-
ing CLDN8 (Claudin-8), a critical member of the family of proteins involved in maintaining
the normality of the intestinal barrier. According to their theory, hs-miR-223 functions as a
proinflammatory miRNA and is tightly controlled by IL23 in IBD [59].

The fact that both hs-miR-155-5p and hs-miR-223-3p are significantly different between
cases and controls may be related to their functions described so far, as they are involved
in the regulation of hematopoietic cell maturation, being expressed in hematopoietic stem
cells, B cells, T cells, monocytes, and granulocytes [60]. The expression of these miRNAs is
regulated by the activation of receptors such as TLRs, so potential phenomena of intestinal
dysbiosis could trigger activation of the immune response, generating an overexpression of
these miRNAs in a transkingdom communication context.

As reported previously, IBD has been associated with a decline in the diversity of
commensal microorganisms [61]. However, with respect to UC patients, there is no bib-
liographical concordance on this point. There is evidence of significant differences in
alpha diversity in some populations and an absence of significant differences between UC
patients and their healthy partners who share the same environment [62,63]. In our study,
no significant differences in alpha diversity between non-UC controls and UC patients were
found. Considering that our UC patients were all under medical treatment, the symptoms
of inflammation and bleeding were controlled, with 50% of our UC patients under remis-
sion and the rest presenting mild clinical features. In this sense, partial or total remission
could define a new microbial state, not identical to the pre-pathogenic one but stable and
flexible enough to maintain equilibrium in the new inflammatory context. Additionally,
beta diversity changed significantly between groups. This would indicate the key role
of microbial structure in this disease [62,63]. Regarding differentially abundant taxa, we
identified Bifidobacterium as the genus found differentially expressed within UC patients
compared to non-IBD controls. This is consistent with previous reports that identified
Bifidobacterium as an overrepresented genus in active UC patients [64]. Some studies sug-
gested that exogenous administration of Bifidobacterium strains improved human intestinal
barrier function, mucus production, and immune modulation [65,66], thus preventing the
circulation of pathogen-associated molecules such as LPS and preventing the development
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of colitis in mice [67]. The fact that the Bifidobacterium genus is overrepresented could
explain the controlled inflammatory state that was demonstrated in our UC population,
given that half were found to be in clinical remission and the rest with mild activity. Regard-
ing the prediction of differential expression of genes associated with metabolic pathways,
menaquinol-9 biosynthesis (associated with vitamin K2 production) was underrepresented
in UC patients. Kuwabara et al. had evidenced that IBD patients had a high prevalence
of decreased vitamin K and D, probably caused by malabsorption of these vitamins [68].
The fact that this metabolic pathway is underrepresented in UC patients could show that
this deficit is not only due to a malabsorption phenomenon but also to a direct effect of the
dysbiosis phenomenon associated with UC.

As regards CD patients, both Shannon diversity (alpha diversity) and weighted and
unweighted UniFrac distance values (beta diversity) have been statistically different be-
tween non-IBD controls and CD patients. Regarding differentially abundant taxa, Bifidobac-
terium, Bacteroides, Lactobacillus, Streptococcus, Lachnoclostridium, Olsenella, Faecalibacterium,
Clostridium_sensu_stricto_1, Flavonifractor, Turicibacter are found to be differential only in
CD patients compared to non-IBD controls. There are discordant bibliographic reports
regarding each of the genders found as differentials in our population, some being equally
increased in some populations and diminished in others [69–72]. It is essential to con-
sider the importance of a global state, where genera should not be evaluated in isolation
but rather in the context of a microbial complex signature that can undergo metabolic
compensation according to the population structure defined by the pathological state. In
this sense, the observed intestinal dysbiosis translated into a trend of increased aromatic
degradation, which appears to be overrepresented in many of the metabolic pathways
predicted as differential in this group compared to controls without IBD. Gut metabolism is
closely related to host health, and the role of aromatic amino acid (AAA) catabolism by the
intestinal microbiome is being increasingly evaluated, as it produces numerous metabolites
that can regulate immune, metabolic, and neuronal responses in local and distant sites [73].
AAAs are generated by proteolysis in the gastrointestinal tract and are actively sensed and
processed by both the host and microbiota. Our results are in line with the bibliography
that points to unbiased metabolomic studies that suggested elevated fecal AAAs metabolite
levels to discriminate patients with CD from controls [74–76]. Targeting AAA metabolism
has shown therapeutic promise in animal models of IBD [73].

Additionally, common core microbiota was analyzed, finding that UC and CD have
different core microorganisms with different metabolic capabilities compared to the control
group and that active or remission states have some interesting differences in terms of
core microbial profiles [77,78]. For non-IBD controls, 79 bacterial genera were identified
as core microbiota, 65 for UC and 46 genera for CD, respectively. At the intersection
of groups, 38 genera were found at the triple intersection, observing only a few core
features exclusively represented in each of the groups. With these results, we set out to
determine which was the most informative data source to differentiate between cases
and controls, whether the information provided by the microbiota or the data from the
biochemistry of the patients. Our results showed that both the model built based on
biochemical parameters, epigenetic biomarkers, and clinical characteristics, as well as the
model built with microbiota data, were sufficient to discriminate controls from patients
with IBD. It should be noted that regarding the MM, the genera present in the models
for both pathologies do not correspond, with the exception of Lachnoclostridium, to those
found by the differential abundance test. The fact that differential abundance analysis
does not detect such genera is because ANCOM-BC is not ideal for detecting genera
that are completely absent from a group. Therefore, by complementing both analyses,
differential abundance and core microorganisms, the differences between groups can be
characterized in a more comprehensive way in logistic regression models. Furthermore,
Ruminococcus_torques_group, Lachnoclostridium, and Subdoligranulum genera were found
to be part of the core microbiota of all three groups. Likewise, Hungatella formed part
of the CD microbiota core, and Desulfovibrio was part of the non-IBD control and UC
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microbiota cores. In this regard, the core microbiome is important for understanding the
stable components in complex microbial assemblages. These shared taxa are assumed to
represent the most ecologically and functionally important associated microbes in a specific
environment. Parameters defined by traditional ecological theory, such as composition,
phylogeny, persistence, and connectivity, will also create a portrait of the core microbiome
and advance understanding of the role of key microorganisms and their functions within
and between ecosystems.

Remarkably, some studies of Desulfovibrio strains have shown that intestinal sulfate-
reducing bacteria isolated from patients with UC were associated with the development
of gut inflammation [79]. Additionally, recent works have explored IgA-SEQ’s ability
to identify bacteria with distinct immunomodulatory properties capable of inducing in-
testinal pathology [80]. By evaluating the fecal microbiome of patients with IBD, Jason
M.Shapiro et al. demonstrated a selective enrichment of IgA-coated bacteria, detecting Lach-
noclostridium among the colitogenic genera for CD [81,82]. In this sense, Zhibing Qiu et al.
observed that Lachnoclostridium notably increases only in samples from UC patients, and
Subdoligranulum also decreases significantly, but these changes were not observed in CD
samples [83]. Taken together, these data reinforce the diagnostic power of these genera
present in our MM for UC.

In line with CD-MM genera, Casey M A Jones et al. have recently associated Hungatella
with disease activity in patients with CD [84]. Also, the authors point to Ruminococcus gnavus
as the second most important taxonomic feature in their Random Forest model, considering
that although it is among the most common 57 species of the gut microbiome in >90%
of people [85], its increased abundance was reported in several cohorts of CD patients [81].
Notably, the PWY5415 pathway (also present in CD-MM) involves catechol degradation, being
catechol itself an intermediate in the degradation of many different aromatic compounds. This
agrees with the trend of increased aromatic degradation, which appears to be significantly
overrepresented in many of the metabolic pathways predicted as differential in our CD group
(ANCOM-BC p < 0.05).

As regards biochemical models (BM), both hs-miR155-5p and hs-miR223-3p were
potent representatives of the pathological state, as in both UC-BM and CD-BM, this miRNA
overexpression discriminates accurately between cases and controls. This indicates that,
after future validation, the use of these models could simplify daily clinical screening
and surveillance in IBD using easy-to-obtain samples such as peripheral blood collection
and stool. Notably, it was recently reported that platelets could reflect the severity of
Crohn’s disease without the effect of anemia [86]. Even though the primary role of platelets
in hemostasis, it has been demonstrated that they have immunological properties as
their activation transforms them into high-affinity inflammatory platforms [86,87]. They
also express Toll-like receptors (TLRs) that can bind to LPS on the outer membrane of
gram(-) bacteria [88] and excrete large amounts of pro-inflammatory substances to activate
dendritic cells in the injured tissue [89,90]. In this sense, the authors demonstrated the
higher the platelet count, the more serious the CD. Regarding GOT, Yu-Feng Liu et al.
have shown how hepatic fibrosis can be aggravated by ulcerative colitis through the
activation of hepatic stellate cells (HSCs) and TLR4 signaling through the gut-liver axis [91].
Authors demonstrated in mice models that gut barrier dysfunction in UC leads to bacterial
translocation and elevated LPS, which may promote the activation of TLR4 signaling and
HSCs in the liver.

Finally, in the present work, we performed a correlation network analysis to gain
insight into the interactions between the variables that are part of the selected logistic
regression models for UC and CD patients. In a detailed view of Figures 9 and 10, it can be
noticed that Hungatella and miR155_MF from the CD network, as well as Desulfovibrio,
platelets, and miR223_MF from the UC network, are variables from the respective logistic
regression models that are not shown. This is because these variables were filtered out
from the networks due to their relatively weak interaction with other nodes (r < |0.7|). In
this matter, it should be clarified that, with the exception of Hungatella, all these variables
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were part of the network built for the non-IBD control group (data not shown) even after
applying the correlation filters. In fact, the weighted correlation networks of the control
group presented close interactions, where all the edges represented coefficients greater than
|0.7| and nodes associated in 7 clusters only. The disintegration of interactions observed
in the pathological situations with respect to the control group could suggest that, in the
context of IBD, correlations are probably lost or shifted because other biological processes
underlying the disease gain influence on certain variables. This reinforces the concept of
the complexity that characterizes these multifactorial diseases and the need for biomarkers
capable of fully outlining the main processes that underlie the pathogenesis of each patient.

Notably, this is the first report describing the epigenetic and microbial taxonomic
composition of intestinal microbiota in Argentine subjects diagnosed with IBD. Although
the vast majority of studies of intestinal microbiome composition in different human
populations are performed from fecal samples, it is important to note that human fecal
microbiota is not a faithful reflection of the cecal or colonic microbiota [92]. Despite this,
the use of this sampling methodology is less invasive than endoscopies and biopsies that
can lead not only to health but also to ethical problems since not only sick patients but also
healthy volunteers are intervened. Therefore, the study of fecal matter is a limitation that
must be considered in the interpretation of the results, but not an exclusion. Additionally, it
is important to note that this study is correlational, and therefore, conclusions related to the
pathogenesis of IBD at these low taxonomic levels are difficult. Even though the sample size
could be improved, this pilot study contributed to the knowledge of the uncharacterized
miRNA biomarkers and gut dysbiosis associated with IBD patients in the Argentinean
population. Similar studies have been conducted in small cohorts and the changes observed
were clear [71]. Further functional characterization, such as proteomics or metabolomics, as
well as longitudinal metagenomic shotgun studies, should be performed in South American
IBD patients. This could improve sampling limitations and consider intestinal mucosa
metabolism within our local environmental factors, allowing a better understanding of the
role of gut dysbiosis in these chronic diseases of unknown etiology [13–15,93].

Overall, our analysis of specific epigenetic and microbial signatures related to the
transkingdom development of IBD in our region provides a first exploration of the IBD-
associated features in Buenos Aires (BA) and its metropolitan area, which constitutes a
megalopolis being the second most populated agglomeration in South America and the
southern hemisphere.

5. Conclusions

In this work, we set out to integrate data of uncharacterized epigenetic biomarkers and
gut microbiota profiles of IBD patients in our region, with relevant clinical and biochemical
features in the follow-up of patients, with the aim of generating more powerful diagnostic
tools to discriminate phenotypes. Overall, our study provides new insights into data
analysis algorithms to promote comprehensive phenotyping tools using quantitative and
qualitative analysis in a transkingdom interactions network context.
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