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Dynamic causal modeling (DCM)—a framework for inferring hidden neuronal states from

brain activity measurements (e. g., fMRI) and their context-dependent modulation—was

developed for human neuroimaging, and has not been optimized for non-human

primate (NHP) studies, which are usually done under anesthesia. Animal neuroimaging

studies offer the potential to improve effective connectivity modeling using DCM through

combining functional imaging with invasive procedures such as in vivo optogenetic or

electrical stimulation. Employing a Bayesian approach, model parameters are estimated

based on prior knowledge of conditions that might be related to neural and BOLD

dynamics (e.g., requires empirical knowledge about the range of plausible parameter

values). As such, we address the following questions in this review: What factors need

to be considered when applying DCM to NHP data? What differences in functional

networks, cerebrovascular architecture and physiology exist between human and NHPs

that are relevant for DCM application? How do anesthetics affect vascular physiology,

BOLD contrast, and neural dynamics—particularly, effective communication within, and

between networks? Considering the factors that are relevant for DCM application to

NHP neuroimaging, we propose a strategy for modeling effective connectivity under

anesthesia using an integrated physiologic-stochastic DCM (IPS-DCM).

Keywords: non-human primate, fMRI, effective connectivity, dynamic causal modeling, image analysis, DCM,

anesthesia, BOLD

INTRODUCTION

Neuroimaging analyses in humans and non-human primates (NHP) have become increasingly
sophisticated. One such innovative image analysis technique is dynamic causal modeling (DCM)
which has been applied to human fMRI data (Friston et al., 2003; Rowe et al., 2010; Boly et al.,
2012; Havlicek et al., 2017; Park et al., 2018; Tak et al., 2018). DCM is a method for inferring
hidden neuronal states from brain activity measurements (e.g., fMRI) and their context-dependent
modulation (Stephan et al., 2010). Using a Bayesian framework, DCM generates a predicted time
serious using a set of differential equations to model neural dynamics. Then, one estimates model
parameter by optimally fitting the predicted time series with the observed data. Using DCM, one
can test mechanistic hypotheses about how the observed data was generated.
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Utilizing a Bayesian approach, model parameters are
estimated based on prior knowledge of conditions that might be
related to neural and BOLD dynamics (e.g., requires empirical
knowledge about the range of plausible parameter values).
As such, we discuss: (1) what factors need to be considered
when applying DCM to NHP (keeping in mind that it was
designed for human fMRI data); and (2) considering said factors,
what strategies can one implement when modeling effective
connectivity to fMRI data recorded under anesthesia. The latter
is an important consideration in NHP fMRI, since most imaging
experiments are done under anesthesia and anesthetics have
been demonstrated to impart changes in BOLD and neural
dynamics, particularly the inhibitory drive (Martin et al., 2006;
Masamoto et al., 2007; Moran et al., 2011; Aksenov et al., 2015;
Paasonen et al., 2018).

Herein we discuss the following: (1) DCM overview and
motivation for NHP data application; (2) comparison of
cerebrovascular architecture and functional networks between
humans and NHPs; (3) effects of anesthetics on vascular
physiology, BOLD contrast, and neural dynamics—focusing on
effective communication within and between networks. Lastly,
we propose a strategy for modeling effective connectivity under
anesthesia using an integrated physiologic-stochastic DCM (IPS-
DCM). Taking all these together, we can avoid pitfalls in
DCM application in NHP data and facilitate more accurate
interpretation of the observed neural dynamics as measured
through BOLD fMRI.

DYNAMIC CAUSAL MODELING (DCM) IN
NON-HUMAN PRIMATES

DCM Overview
This section discusses an overview of DCM, including its
assumptions, and the motivations for NHP data application.
DCM, developed by Friston et al. (2003), is a method that allows
estimation of network dynamics and how the dynamic neuronal
states give rise to the measured data (Heinzle and Stephan, 2018),
as well as how functional coupling is affected by experimental
factors. When applied to fMRI data, the BOLD signal is
considered ameasurable (observed) variable (y) of the underlying
neural activity (z) that is not directly measured with fMRI; hence,
neural activity is considered a “hidden state variable” (Kahan
and Foltynie, 2013). As a measure of effective connectivity
(EC), DCM quantifies the directed (causal) influence between
regions (Friston, 2009) and considers the rate of change of neural
activity over time (z) in response to incoming signals—afferents
from other brain regions, experimental manipulation, or both.
This is done by creating generative models which are plausible
models of how the observed BOLD signal may be generated by
those influences.

In DCM, one needs to specify which regions to include in
the overall model. As such, DCM follows an analysis that can
address which regions in the brain an experimental manipulation
induces changes in BOLD response such as a general linear
model (GLM) (Stephan et al., 2004). In GLM, time series from
each voxel are fitted with an experimental design matrix wherein

each condition is specified and the relationship between neural
and BOLD response is modeled via a hemodynamic response
function (Pernet, 2014). When there are no contrast differences
between conditions, there is no motivation to do DCM. Once the
relevant regions are identified with GLM, the time series from
each region of interest is extracted. After which, one specifies
the model architecture—the location of intrinsic connections,
driving, and modulatory inputs. Then, one proceeds to estimate
the parameters of the generative model.

DCM can offer a more accurate modeling of network
dynamics from fMRI data as it considers both the distributed
neuronal interactions, and the transformation of the neuronal
dynamics to the measured (BOLD) signal (Havlicek et al., 2015).
This is accomplished through three fundamental components of
the DCM generative model: (1) neuronal (connectivity) model,
(2) hemodynamic “Balloon” model, and (3) BOLD signal change
equation (Stephan et al., 2007; Havlicek et al., 2015; Friston et al.,
2017). A discussion on strategies for modifying the generative
model for NHP fMRI under, particularly under anesthesia, will
be discussed in a later section.

Each region or node is represented by (differential) neural
state equations that provide an abstraction of the summed
activity of a neuronal population. The neural state equation
is comprised of three parameters that embody: (1) intrinsic
connectivity among regions in the absence of input (A matrix);
(2) direct influence of extrinsic input on neuronal activity
(C matrix); and (3) context-dependent change in connectivity
induced by the input (B matrix). Neural dynamics in DCM have
been characterized by single-state, two-state, and adaptive two-
state equations. The single-state neural equation (Friston et al.,
2003) of the classical DCM models synaptic activity of a single
excitatory neuronal population in a cortical region—with the
rationale that most cortico-cortical connections are excitatory.
Two-state (Marreiros et al., 2008) and adaptive two-state
(Havlicek et al., 2015) neural equations model both excitatory
(glutamatergic) and inhibitory (GABAergic) connections within
each region, which makes it a more physiological representation
of neural population dynamics. In contrast to the two-state
model, the adaptive two-state model includes parameters which
allow for adaptation and refractory effects of the neuronal
response (Havlicek et al., 2015). These are described in detail in
Friston et al. (2003), Marreiros et al. (2008), Havlicek et al. (2015).

The neural model is combined with the hemodynamic
model (Friston et al., 2003)—which incorporates the dynamics
of neurovascular coupling and the Balloon–Windkessel
model (Buxton et al., 1998; Mandeville et al., 1999). This
biophysical forward model provides region-specific estimates
of the translation of neuronal activity into a predicted BOLD
response—as such, hemodynamic states are a function of the
neuronal state/s of each region (Friston et al., 2003). The
hemodynamic model is comprised of four differential equations
that characterize how for each region pre-synaptic activity drives
hemodynamic responses—which are mediated by astrocytic
Ca2+ signaling whose endfeet release vasodilatory metabolites
(MacVicar and Newman, 2015). This vasodilatory signal is
subject to auto-regulatory feedback (Attwell and Iadecola, 2002;
Friston et al., 2003) and blood flow changes proportionately
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to the vasodilatory signal which leads to an increase in blood
volume with concomitant decrease in deoxyhemoglobin
(Stephan et al., 2004).

The output signal is defined by the BOLD signal change
equation—which links blood volume and deoxyhemoglobin
content to the BOLD signal change (Stephan et al., 2007). The
resulting BOLD signal depends on the depends on the relative
contributions of intra- and extravascular signals (Buxton et al.,
2004; Friston et al., 2017) and follows the flow dynamics with
a delay of ∼1 s (Stephan et al., 2004). The BOLD signal change
equation completes the DCM generative model.

In standard DCM, the parameters of the full forward model
(combined neural and hemodynamic models) is estimated from
the measured BOLD data using is estimated iteratively from the
measured BOLD data using Variational Bayesian (VB) algorithm
(Friston et al., 2007) to produce probabilistic estimates of the
expected value of each parameter given the data. Details of
the parameter estimation process are beyond the scope of this
review and the reader is referred to Friston et al. (2002). The
objective of the estimation process is to generate a predicted
signal that closely matches the observed BOLD data (Kahan and
Foltynie, 2013). From the DCM parameter estimates, one can
then quantify and make inferences about connection strength
and direction between regions based on prior assumptions about
connectivity architecture.

Finally, Bayesian model selection (BMS) is done to compare
a series of models that represent different prior hypotheses of
connectivity architecture to examine which of the competing
models most likely generated the observed data. This is
done by comparing the evidence for each model. Model
evidence—the normalization constant for the product of the
likelihood of the data and prior probability of the parameters—
is approximated using Laplace approximation in standard DCM
(Stephan et al., 2007). This yields the log-evidence for each
model, characterized as the conditional probability (posterior
probability) of competing models given the observed data
(Kahan and Foltynie, 2013). The optimal model is one that
represents the best compromise betweenmodel fit (accuracy) and
complexity (characterized by the number of free parameters in
the model) (Stephan et al., 2007)—it is the best fitting, yet, most
parsimonious model. As such, this model is more generalizable.

DCM Assumptions
There are three main assumptions in DCM: (1) deterministic
assumption on the inputs that enter the system; (2) Gaussian
assumption on the posterior density; and (3) assumption of equal
detection of BOLD signal changes throughout the brain. Firstly,
in classical DCM, all processes in the system are considered
deterministic such that it is presumed that neural dynamics
in a region is entirely due to incoming afferents from other
regions and/ or experimental inputs. This assumption is not
always tenable in NHP fMRI studies which are mostly done
under anesthesia—this restricts task-based imaging to simpler
visual/ auditory experiments and many imaging experiments are
task-free. However, extensions of DCM in humans have allowed
its application in resting state studies: (1) using classical DCM,
one can stimulate nodes with fluctuations of specific frequencies

(Di and Biswal, 2014); (2) modeling random fluctuations in
neural dynamics explicitly using stochastic DCM (Li et al.,
2011; Daunizeau et al., 2012); or (3) estimating the spectral
density of neuronal fluctuations such that effective connectivity
of hidden neuronal states is a function of observed functional
connectivity from hemodynamic responses (Friston et al., 2014;
Park et al., 2018). Secondly, parameter estimates of the generative
model are assumed to be Gaussian—i.e., that the values are
normally distributed. This may be a concern when using two-
state DCM which use exponentiated scale parameters that
introduce positivity constraints as these values likely do not
have a normal distribution (Hillebrandt et al., 2014). Lastly,
DCM rests on the assumption that BOLD signal detection
is equally sensitive across brain regions. This was validated
by Friston et al. (2003) by simulating region-specific dropout
wherein they found that DCMdoes not accommodate substantial
signal dropout (e.g., 50%). In the absence of profound dropout,
DCM is robust to regional variations in sensitivity to BOLD
signal changes.

Why Apply DCM to NHP FMRI?
The motivations for applying DCM to NHP data are founded
on the prospective to make DCM models more accurate with
animal experiments that are not yet feasible or are considered
unethical in humans, as well as on being a more physiologically-
informed characterization of network dynamics vs. previous
effective connectivity models.

Animal imaging data and experiments possess the potential
to make DCM models more accurate. Invasive procedures
such as in vivo optogenetic and electrical stimulation can be
combined with functional imaging to examine how disruptions
at the microscale can affect whole brain network dynamics.
Additionally, one can also investigate the temporal evolution of
the effects of drugs (e.g., administered intravenously or through
gas inhalation). Moreover, advances in high-field fMRI at the
sub-millimeter scale, allows imaging and modeling at laminar
resolutions (Heinzle et al., 2016; Friston et al., 2017).

In order to accurately disentangle neuronal- and hemo-
dynamics, experimental manipulation can provide necessary
constraints to estimate hemodynamic parameters, which may
explain discrepancies in response shape between neuronal and
BOLD response. This can be addressed by using multi-modal
recordings (e.g., simultaneous measurements of CBF, CBV, and
BOLD), which is often more feasible in animal studies, including
NHP. For instance, Havlicek et al. (2017) showed that combined
analysis of BOLD and CBF data yields more robust effective
connectivity estimates.

Furthermore, DCM was originally developed specifically
for fMRI data (Friston et al., 2003) which gives it an edge
over other models such as Granger causality and structural
equation modeling (SEM) that were initially applied in the
fields of economics, psychology, and genetics (Wright, 1920;
Granger, 1969). Compared with previous EC measures, DCM
allows a more physiologically-informed characterization of
network dynamics as it incorporates a hemodynamic model
that has previously been experimentally validated (Buxton
et al., 1998; Friston et al., 2003). On the other hand, the
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disadvantages of Granger causality in fMRI application
is plentiful. Using four different algorithms, Smith et al.
(2011) demonstrated that Granger causality exhibits poor
(<20%) sensitivity in connection link detection, false
positive identification and directionality estimation (Smith
et al., 2011). Moreover, Witt and Meyerand (2009) found
that Granger causality has poor sensitivity and specificity
(close to chance levels) when modeling data including
intrinsic variance from trimmed time series. While DCM
is computationally costly, its ability to model non-linear
and dynamic neuronal interactions (Bielczyk et al., 2019),
as well as both unidirectional and bidirectional connections
(Vaudano et al., 2013; Buijink et al., 2015) give a more
accurate picture of underlying neuronal activity. While
originally designed for task fMRI, recent developments such
as stochastic or spectral DCM allow modeling of resting
state fMRI (Li et al., 2011; Daunizeau et al., 2012; Friston
et al., 2014; Park et al., 2018). Classical DCM (Friston et al.,
2003) pose restrictions on network size as increasing the
number of nodes considerably increases computational time
(Bielczyk et al., 2019). However, ensuing extensions allow
exploratory studies involving larger networks such as spectral
DCM (Friston, 2011) for resting-state fMRI and DCM with
sparsity constraints for task fMRI (Frässle et al., 2018). The
many advantages of DCM over previous effective connectivity
measures and the ability to combine invasive procedures
in neuroimaging make DCM application to NHP data an
exciting endeavor and may offer the possibility to improve
the accuracy of causal models. A summary of the advantages
and disadvantages of the commonly used effective connectivity
models (structural equation modeling, Granger causality,
transfer entropy, and dynamic causal modeling) is outlined
in Table 1.

CONSIDERATIONS SPECIFIC TO DCM
APPLICATION IN NHP

Functional Networks and Cerebrovascular
Architecture: Human vs. NHP
Cerebrovascular Architecture and Physiology
The cerebral vasculature of NHP is largely similar to humans
in terms of the architecture of superficial pial vessels and
intracortical vessels (Duvernoy et al., 1981; Weber et al., 2008).
Similarly found in humans (Duvernoy et al., 1981), large vessels
are found on the surface of the macaque brain (Weber et al.,
2008). The density of superficial vessels have been found to
vary across cortical regions—the occipital lobe surface is highly
vascularized compared to the less dense vascularization at the top
of the hemispheres near the interhemispheric fissure (Scharrer,
1960; Duvernoy et al., 1981). In terms of vessel diameter, pial
veins generally have a larger diameter than arteries— central
veins have an average diameter of 280–380µm and peripheral
veins average 130µm, while central arteries have a diameter
of 260–280µm and peripheral arteries average 150–180µm
(Duvernoy et al., 1981; Guibert et al., 2010). As for intracortical
vessels, the laminar distribution of vessels in NHP are similar

to that found in humans. Studying the primate visual cortex,
Bell and Ball (1985) found a high density of cortical vessels
in layer IVC that ends at the boundary between primary and
secondary visual cortices—akin to the vascular distribution
in humans.

The fluctuations in deoxyhemoglobin concentration detected
by the BOLD contrast depends on the combined changes in
cerebral blood volume (CBV), cerebral blood flow (CBF), and
cerebral metabolic rate of oxygen (CMRO2) (Buxton et al., 2014).
In general, the values for each hemodynamic component is
comparable between humans and NHP. Van Aken et al. (1986)
found CBF at 48 ± 4 mL/100 g/min in baboons. In humans,
Olsen et al. (1994) demonstrated 51 mL/100 g/min, while Ito
et al. (2004) found 69.8 ± 15.4 mL/100 mL/min CBF values.
CBV ranged from 3.5 to 4.7 ml/100 g of brain tissue in the
macaque (Phelps et al., 1973; Grubb et al., 1974; Eichling et al.,
1975) while CBV = 3.8 ± 0.7 ml/100ml−1 (Ito et al., 2004).
As for CMRO2, Van Aken et al. (1986) obtained 3.64 ± 1
(ml/100 g/min) in baboons and Olsen et al. (1994) found 3.5
(ml/100 g/min) in humans. The values for CBF and CMRO2
are modulated by anesthetics and this will be discussed in an
ensuing section.

Functional Differences
Resting-state fMRI studies comparing human and NHP
connectivity have revealed three main differences. First, there
are differences in specific connectivity patterns that may
potentially indicate cognitive specializations in humans. For
example, comparing the organization of the dorsal frontal
cortex between humans and macaques (Sallet et al., 2013),
found a high degree of similarity in functional coupling patterns
between the medial frontal cortex and other regions (i.e.,
frontal pole, medial prefrontal, and dorsal frontal convexity)
in both. However, certain regions in the dorsolateral prefrontal
cortex (areas 9/46) were coupled with the superior and medial
parietal cortex in humans but not in macaques. Further,
Mars et al. (2011) demonstrated resting-state functional
connections between anterior prefrontal cortex and central
inferior parietal lobule (IPL) in humans which are not found
in macaques. Second, there may be species-specific differences
in cortical hub distribution. Upon mapping putative hubs
in humans, chimpanzees, and macaques, Li L. et al. (2013)
demonstrated the ventrolateral prefrontal, medial parietal
and retrosplenial cortices are hubs across three species. In
contrast, medial prefrontal, inferior parietal, and V1 cortices
were hubs in macaques and chimpanzees and not in humans.
Additionally, superior parietal and medial premotor cortices
were hubs in humans and not in the NHPs. Third, though
it has been demonstrated that there are 11 functionally
correspondent networks in both humans and macaques,
three networks were found in humans that are missing in the
latter (Mantini et al., 2013). While sensory-motor, attention,
language, and default mode networks are evolutionarily
conserved, two lateralized fronto-parietal networks are
unique to humans (Van Essen and Dierker, 2007). These
have been implicated in general intelligence (Duncan et al.,
2000), abstract reasoning (Dehaene et al., 2003), and tool
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TABLE 1 | Comparison of commonly used effective connectivity models.

Pros Cons

Structural equation

modeling

* Can detect excitatory and inhibitory connections and connection

strength (Bielczyk et al., 2019)

* Sensitivity to small changes in path weight values due to large

dynamic range

(Witt and Meyerand, 2009)

* Difficulty in estimating reciprocal and cyclic connections (physiologically,

reciprocal connections are ubiquitous in the brain) (Friston, 2011)

* May not be as suitable to event-related design due to the assumption that

random fluctuations change very slowly in relation to neuronal dynamics

such that neuronal dynamics has already reached steady-state at the time

of recording (Friston, 2011)

* May be inappropriate in the context of disease or pharmacologic

experiments that can affect hemodynamic response function

(Rowe et al., 2010)

Granger causality * Can detect excitatory and inhibitory connections and connection

strength (Bielczyk et al., 2019)

* Yields bidirectional connections (Bielczyk et al., 2019)

* Results can be mapped onto the brain similar to fMRI (Goebel

et al., 2003; Roebroeck et al., 2005; Witt and Meyerand, 2009)

* Poor sensitivity and specificty (close to chance levels) when modeling data

including intrinsic variance from trimmed time series (Witt and Meyerand,

2009)

* Assumption of signal stationarity (Seth et al., 2015)

* Restriction on network size–the number of nodes divided by the number of

shifts can never exceed the number of time points (Bielczyk et al., 2019)

* Markovian assumption that random terms in the vector autoregression

model are serially independent may not hold when the terms become

temporally correlated upon converting from continuous to discrete time

formulations (Friston, 2011)

* The spatial distribution of GC has been associated with the Circle of Willis

and identifies major arteries and veins as causal hubs (Webb et al., 2013)

* Assumption of uniform hemodynamic response function across regions

may elicit spurious causal relationship when one region has faster

hemodynamic activity–the temporal precedence of the peak in one region

may be mistaken for Granger causing the other (Bielczyk et al., 2019)

* fMRI temporal resolution may be too slow for accurate depiction of neural

dynamics using Granger causality (Witt and Meyerand, 2009)

* Poor (<20%) sensitivity in connection link detection, false positive

identification and directionality estimation (Smith et al., 2011)

Transfer entropy * Can detect excitatory and inhibitory connections and connection

strength (Bielczyk et al., 2019)

* Captures linear and non-linear interactions between nodes

(Bielczyk et al., 2019)

* Computationally cost-efficient (Vicente et al., 2011)

* Restriction on network size–the number of nodes divided by the number of

shifts can never exceed the number of time points (Bielczyk et al., 2019)

* Imposes a time-lag in the inference procedure with similar disadvantages

as Granger Causality in fMRI application (Schreiber, 2000)

Dynamic causal

modeling

* Developed specifically for fMRI (Friston et al., 2003) data and

incorporates a biologically-informed model of BOLD dynamics

(Buxton et al., 1998), unlike other models Granger causality and

SEM were originally applied in the fields of economics,

psychology, and genetics (Wright, 1920; Granger, 1969)

* Can detect excitatory and inhibitory connections and connection

strength (Bielczyk et al., 2019)

* Can model both unidirectional and bidirectional connections

(Vaudano et al., 2013; Buijink et al., 2015)

* Models nonlinear and dynamic neuronal interactions (Bielczyk

et al., 2019)

* Classical DCM is suitable for event-related designs (Rowe et al.,

2010)

* Stochastic or spectral DCM is suitable for resting state studies

(Li et al., 2011; Daunizeau et al., 2012; Friston et al., 2014; Park

et al., 2018)

* For exploratory studies involving larger networks, spectral DCM

(Friston, 2011) can be applied for resting-state fMRI while DCM

with sparsity constraints can be applied for task fMRI (Frässle

et al., 2018)

* High reproducibility (Rowe et al., 2010; Schuyler et al., 2010;

Bernal-Casas et al., 2013; Tak et al., 2018)

* Computationally-expensive (Bielczyk et al., 2019)

* Restriction on network size (using classical DCM)—increasing the number

of nodes considerably increases computational time (Bielczyk et al., 2019)

* Depends on prior assumptions on connectivity architecture

(Friston et al., 2003)

* Assumes all models are equally likely (even implausible models) (Lohmann

et al., 2012); hence, substantial knowledge is needed to define all

plausible causal connections between nodes

use, particularly retrieving and planning transitive actions
for subsequent hand motor behavior (Frey, 2008). A third
human-specific network includes the anterior insula and dorsal
anterior cingulate cortex—both putatively involved in empathy
(Singer and Lamm, 2009).

The Anesthetized Brain
Anesthetic Effect on Vascular Physiology and BOLD

Contrast
Anesthetics have been found to impart changes in
cerebrovascular function and the BOLD signal. As these are
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incorporated in the DCM generative model, it is important
to examine how these are affected in the anesthetized
brain, particularly since most NHP neuroimaging is done
under anesthesia.

There are conflicting results in the regional distribution of
anesthetic-induced changes in vascular physiology. Li C.-X.
et al. (2013) examined the dose-dependent effect of isoflurane
on regional CBF of cortical and subcortical structures in
macaques. They found that high isoflurane concentrations
(i.e., 1.5%) resulted in global CBF increase which was most
evident in subcortical structures—specifically in the thalamus
and cerebellum in macaques. Interestingly, under the 0.75–1.5%
isoflurane maintenance doses, there were no observable CBF
changes in cortical regions (i.e., anterior cingulated cortex, motor
cortex, medial prefrontal cortex) and the caudate. These indicate
that while CBF auto-regulation is intact in cortical regions and
the caudate under isoflurane maintenance dose, it is impaired
in the thalamus and cerebellum, and suggest that subcortical
structures contribute the most to the increase in global CBF. On
the other hand, Långsjö et al. (2005) demonstrated that ketamine
increased whole brain CBF in humans—with the highest increase
in the anterior cingulate. They found that CMRO2 increased only
in the frontal cortex while glucose metabolism increased only the
in the thalamus. Långsjö et al. (2005) assert that this indicates
that majority of the increases in CBF most likely do not indicate
neuronal activation. Another study by Van Aken et al. (1986)
showed that the impact of isoflurane on CBF was biphasic—
low levels (0.5 ± 0.35 vol%) resulted in vasoconstriction and
decreased CBF while higher concentrations (0.95 ± 0.7 vol%
and 1.4 ±1 vol%) caused vasodilation and increased CBF to
baseline levels (no anesthesia). While they found that the effect of
isoflurane on CBF was biphasic, CMRO2 continually decreased
in a dose-dependent manner. The disparity in the findings of
these studies may be attributed to methodological differences in
anesthetic (isoflurane vs. ketamine), species (human vs. primate),
and imaging modality (arterial spin labeling MRI vs. PET).
Nonetheless, the results of these studies indicate anesthetic-
related disruption of CBF-metabolism coupling characterized
by more widespread CBF increases with minor changes in
CMRO2 and glucose metabolism, with dose-related variabilities
in response.

As for the impact of anesthetics on BOLD contrast, anesthetics
have been demonstrated to cause changes in the spectral
components and decrease the activated area and magnitude
of the signal, as well as change the hemodynamic response
temporal structure (Martin et al., 2006; Aksenov et al., 2015;
Paasonen et al., 2018). Paasonen et al. (2018) found that awake
mice exhibit higher spectral BOLD power at a wide frequency
range. In contrast, they found that all six anesthetic conditions
studied strongly suppressed power and BOLD fluctuations
occurred at narrower frequency ranges, which potentially reflect
more homogeneous activity. This was a predictable outcome
as by definition, anesthetics exert an inhibitory effect on
brain function. Aksenov et al. (2015) suggested that enhanced
GABA-A receptor inhibition and diminished afferent input
reduces the spread of stimulus-related activity, which results
in more focal activation and decreased BOLD response area.

Further, they surmised that decreased BOLD responsemagnitude
reflects reduced thalamic input and intra-cortical processing
associated with decreased neuronal excitation. A decrease
in hemodynamic response magnitude under anesthesia has
also been demonstrated in previous studies employing optical
imaging spectroscopy (OIS) (Berwick et al., 2002). Aside from
decreased duration of the BOLD signal reported by Aksenov
et al. (2015), Martin et al. (2006) found that anesthesia increased
hemodynamic response latency (∼2 s awake vs. 4 s anesthetized).

Anesthetic Impact on Effective Communication

Within and Between Networks
It is now widely acknowledged that anesthetics modulate
communication within and between networks. Anesthetic-
induced perturbations in effective connectivity have been
observed across multiple neuroimaging techniques, species
(humans and rodent models), and anesthetics. In particular,
effective connectivity changes have been demonstrated in
thalamo-cortical, cortico-thalamic, and cortico-cortical (both
association and sensory cortices) connections. Under propofol,
ketamine, or isoflurane, selective disruption of frontal to parietal
feedback has been widely replicated in human subjects and
rats (Imas et al., 2005; Lee et al., 2009; Boly et al., 2012)—
particularly gamma frequencies (50Hz) (Imas et al., 2005). In
addition, Gómez et al. (2013) found that propofol decreased
feedback from middle frontal gyrus to superior temporal gyrus.
As for sensory-motor regions, multiple studies found impaired
effective connectivity under anesthesia. White and Alkire (2003)
demonstrated impaired effective drive from the supplementary
motor area (SMA) to the primary motor (M1) cortex in
humans, while Kang et al. (2016) showed abolished causal
flow of 7–12Hz activity from primary sensory (S1) to M1 and
ventrobasal thalamic nucleus in mice. Decreased feedforward
and feedback connections were found within auditory cortical
regions (Heschl’s gyrus and superior temporal gyrus) in humans
under propofol (Gómez et al., 2013). Pertaining to anesthetic-
related changes in thalamocortical effective connectivity, the
results are more heterogeneous. Causal flow from the thalamus
to the anterior cingulate and posterior parietal cortices was intact
under propofol (Boly et al., 2012). On the other hand, effective
connectivity from the thalamus to the SMA was impaired under
halothane or isoflurane (White and Alkire, 2003). However,
effective thalamic drive to M1 has shown variable results—
remaining unchanged under ketamine in mice (Kang et al.,
2016) compared to the awake state, while decreasing under
halothane or isoflurane in humans (White and Alkire, 2003). This
discrepancymay indicate species-specific differences in thalamic-
motor connectivity in response to anesthetics, differences in
regional distribution of different anesthetics (ketamine vs.
halothane or isoflurane), or both. Altogether, these findings
indicate that anesthetics induce: (1) disruption of higher-order
information processing; and (2) reduced capacity for sensory-
motor integration.

Relevance to DCM in NHP
For DCM to generate reliable neuronal signal estimates, having
an accurate model of the hemodynamic response is crucial; thus,
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it is important to assess whether differences in cerebrovascular
architecture and physiology in NHP—factors that contribute
to the BOLD contrast—may affect priors on the biophysical
parameters of the model.

The cerebrovascular architecture and laminar distribution of
blood vessels in NHPs are similar to that of humans. The fMRI
BOLD signal indicates changes in deoxyhemoglobin and the
signal is sensitive to fluctuations in venous blood volumes. The
cerebral vasculature of NHP is largely similar to humans in terms
of the architecture of superficial pial vessels and intracortical
vessels (Duvernoy et al., 1981; Weber et al., 2008; Adams et al.,
2015). By extension, the BOLD signal-to-noise ratio in superficial
to deep brain areas is expected to have similar distribution
in both.

More importantly, the BOLD signal is a function of CBV, CBF,
and CMRO2—which reflects fluctuations in deoxyhemoglobin
content (Buxton et al., 2014), and DCM includes priors on these
hemodynamic parameters. Since the CBV, CBF, and CMRO2 in
NHP are comparable to human values (Phelps et al., 1973; Grubb
et al., 1974; Eichling et al., 1975; Van Aken et al., 1986; Olsen
et al., 1994), it is tempting to presume that one can proceed with
applying DCM in NHP without adjustments on the biophysical
parameters if one solely considers cerebrovascular architecture
and physiology.

Notably, anesthetics such as isoflurane and ketamine have
been found to increase blood flow (Van Aken and van
Hemelrijck, 1991; Långsjö et al., 2005; Slupe and Kirsch, 2018),
which is relevant in primate neuroimaging as it is usually
done under anesthesia. The decision on how to proceed with
DCM in the anesthetized brain depends on the research
question. Upon comparing eight different hemodynamic models
by modifying the coefficients of the BOLD signal change
equation, Stephan et al. (2007) assert that variations in the
hemodynamicmodel are relatively inconsequential whenmaking
inferences on underlying neuronal dynamics and their causal
influences. This is due to the relative independence of the
parameters of the neural state equation—characterizing intrinsic
connectivity and their context-dependent modulation (A and B
matrices)—from the amplitude of the hemodynamic response
and the direct influence of extrinsic inputs on neuronal activity
(matrix C). On the other hand, if the research question focuses
on regional variations in hemodynamic parameters (e.g., in
healthy vs. clinical populations), then preliminary tests need
to be performed to determine the effect of variations on the
priors of the biophysical model—related to anesthetic influence.
For instance, if the experimenter can identify the baseline
CBF and CBV using multi-modal recordings, the mean transit
time (i.e., baseline CBV/baseline CBF)—which scales the CBV
and deoxyhemoglobin changes in the hemodynamic model—
could be directly calculated. Other strategies for modifying the
hemodynamic model are discussed in the last paragraph of the
next section on IPS-DCM parameters.

Moreover, caution is necessary when interpreting results
if the model includes regions or networks in which effective
connectivity may be modulated by anesthetics. Regions most
affected by anesthetics are: (1) fronto-parietal (Ku et al., 2011;
Boly et al., 2012; Kim et al., 2017); (2) sensory-motor (i.e., S1 to

M1, SMA to M1, auditory cortical regions) (White and Alkire,
2003; Gómez et al., 2013); and (3) thalamocortical networks
specifically involving somatosensory and motor function (White
and Alkire, 2003; Kang et al., 2016). Since effective drive of these
networks are reduced or abolished by anesthetics, it may result in
underestimation of the effect of interventions (e.g., medications,
brain stimulation) on connectivity within and between affected
networks. It may also result in the overestimation of the
modulatory effects of different interventions if aimed at
reducing hyperconnectivity.

Additionally, anesthetics can modulate neural dynamics by
altering inhibitory drive, neural refractory period, and cortical
adaptation (Masamoto et al., 2007; Moran et al., 2011). These
artifacts can be addressed by using an adaptive two-state neural
connectivity model (Havlicek et al., 2015). This and other
strategies for applying DCM in NHP under anesthesia are
discussed in the succeeding section.

INTEGRATED PHYSIOLOGIC-STOCHASTIC
DCM: MODELING EFFECTIVE
CONNECTIVITY UNDER ANESTHESIA

IPS-DCM Parameters
An important factor to consider upon implementing DCM in
the anesthetized NHP is the type of DCM to use. Anesthetics
can decrease BOLD signal-to-noise ratio and artificially lower
spontaneous fluctuations and activity correlations (Hutchison
et al., 2014). In addition to dose-dependent linear decrease in
glutamatergic excitatory postsynaptic potentials (EPSPs) together
with non-linear increase (saturating) in GABAergic inhibitory
postsynaptic potentials (IPSPs) (increasing local inhibitory drive)
(Moran et al., 2011), anesthetics modulate the neural refractory
period and cortical adaptation with varying degrees depending
on anesthetic type and dose (Masamoto et al., 2007). To
overcome these limitations, we propose the combined use of
two DCM extensions: stochastic DCM (Li et al., 2011) and
physiologically-informed DCM (P-DCM) which has an adaptive
two-state neural connectivity equation (Havlicek et al., 2015).

Stochastic DCM models fluctuations in hidden states (e.g.,
neuronal or hemodynamic states) that are due to endogenous
(autonomous) dynamics, not exogenous experimental inputs
(Li et al., 2011). By accounting for noise in the model
using stochastic DCM, the risk of under-estimating effective
connectivity parameters can be reduced (Gómez et al., 2013).
Additionally, stochastic DCM is more useful when there are
non-linear interactions among hidden states, such as the non-
linear increase in GABAergic inhibitory drive (Moran et al., 2011;
Daunizeau et al., 2012). Finally, Li et al. (2011) demonstrated that
stochastic DCM using the generalized filtering (GF) inversion
method showed higher sensitivity in detecting group differences
compared to the variational Bayesian (VB) algorithm (Friston
et al., 2007) of standard deterministic DCM.

Two-state (Marreiros et al., 2008) and adaptive two-state
(Havlicek et al., 2015) neural equations model both excitatory
(glutamatergic) and inhibitory (GABAergic) connections within
each region, which makes it a more physiological representation
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of neural population dynamics. In contrast to the two-state
model, the adaptive two-state model includes parameters which
allow for adaptation and refractory effects of the neuronal
response (Havlicek et al., 2015). This extension is relevant since
anesthetics induce changes to the neural refractory period and
cortical adaptation (Ogawa et al., 1992; Masamoto et al., 2007).
Furthermore, explicitly modeling both excitatory and inhibitory
signals may help capture the potentiation of GABAergic
inhibition under anesthetics (Moran et al., 2011). This may be
elucidated in the dynamics of the inhibitory subpopulation or
the interaction between excitatory and inhibitory subpopulations
(Gómez et al., 2013).

The adaptive two-state DCM is the neuronal connectivity
component of P-DCM developed by Havlicek et al. (2015). The
parameters that incorporate adaptation and refractory effects
to neuronal response are: (1) the inhibitory gain factor λ,
which modulates the amplitude and temporal smoothness of
the inhibitory activity in relation to the excitatory drive, and
(2) the inhibitory–excitatory connection µ which reflects the
temporary imbalance in temporal smoothness between excitatory
and inhibitory activity that can result in neuronal adaptation.

The second modification in P-DCM involves the
hemodynamic model. The changes are 2-fold: (1) modeling
feedforward neurovascular coupling (vs. feedback NVC in
classical DCM); and (2) incorporating a viscoelastic effect
in the Balloon model. Experiments by Lindauer et al. (2010)
and Powers et al. (1996) show that manipulating oxygen and
glucose levels in the blood do not regulate blood flow as per
negative feedback hypotheses (Attwell et al., 2010; Havlicek et al.,
2015). Additionally, hypercapnia experiments demonstrated
that higher baseline CBF has minimal impact on the absolute
stimulus-induced CBF change (while relative CBF became
smaller) (Li et al., 2000; Brown et al., 2003; Zappe et al., 2008).
This latter point is pertinent to DCM application in NHP since
isoflurane—the most commonly used anesthetic in animal
experiments—is a potent vasodilator and causes higher baseline
CBF that may be uncoupled from cerebral energy metabolism
(Van Aken and van Hemelrijck, 1991). Thus, feedforward
neurovascular coupling is more relevant in NHP image analysis,
particularly under anesthesia. On the other hand, the viscoelastic
component in the hemodynamic model was added to account
for transient responses (i.e., BOLD post-stimulus undershoot
and overshoot) outside of the steady-state relationship between
CBF and CBV, described by the power law where α = 0.38
(Grubb et al., 1974). The duration of the transient adjustment
period is regulated by viscoelastic time constant τ –which allows
for variations in outflow curve during balloon inflation and
deflation, corresponding to BOLD response overshoot and
undershoot (Buxton et al., 1998, 2004). The BOLD transients
are then presumed to reflect both neuronal post-stimulus
deactivation and vascular uncoupling related to slow recovery of
venous CBV (Havlicek et al., 2015).

Lastly, the BOLD signal change equation was modified to
accommodate different magnetic field strengths. k1, k2, and k3
are parameters that reflect baseline physiological properties of
brain tissue and acquisition parameters and have been adjusted
to depend on different magnetic field strengths. Moreover, they

also suggest revised values for ε (ratio of intra—and extravascular
signal) and r0 (regression slope of changes in intra-vascular signal
relaxation rate with changes in oxygen saturation) depending on
acquisition sequence (gradient echo vs. spin echo) (Uludag et al.,
2009; Havlicek et al., 2015).

As stated above, we propose to combine P-DCM with
stochastic DCM. Since stochastic DCMuses the same biophysical
forward model as classical DCM, the changes in biophysical
parameters in P-DCM can be integrated in the stochastic
extension (Havlicek et al., 2015). Thus, in this application
of DCM on NHP fMRI, we suggest estimating the full
forward model using the biophysical parameters of P-DCM
applying the generalized filtering (GF) inversion method of
stochastic DCM (Li et al., 2011). A schematic of IPS-DCM
is illustrated in Figure 1. A salient consideration here is
that stochastic DCM tends to emphasize neuronal dynamics
over hemodynamics (Reviewer 2 comment). Nonetheless, as
aforementioned, stochastic DCM is a more accurate model
when there are non-linear interactions among hidden states,
such as the non-linear increase in GABAergic inhibitory drive
(Moran et al., 2011; Daunizeau et al., 2012) which is relevant
when imaging under anesthesia. For NHP neuroimaging under
anesthesia, this is useful for task-based imaging with simple
visual/ auditory experiments, and even more so for resting state
studies. Therefore, in order to more accurately estimate both
neuronal and hemodynamic changes, future extensions of P-
DCM (which is so far formulated and applied as a deterministic
model) to fully stochastic or partially stochastic (stochastic
neuronal model and deterministic hemodynamic model) may
be relevant.

With this integrated physiologic-stochastic DCM, one can
examine anesthetic impact on effective connectivity in NHP. This
can be done by first building generative models of fMRI done pre
and post anesthesia. Then, Bayesian model comparison allows
one to examine whichmodel best explains the changes in effective
connectivity between awake and anesthetized states.

An important consideration here is that anesthetics such as
isoflurane and ketamine increase baseline CBF due to increased
vasodilation (Van Aken and van Hemelrijck, 1991; Långsjö et al.,
2005; Slupe and Kirsch, 2018). It is also a common observation
that increased baseline CBF results in smaller relative CBF
change (Li et al., 2000; Cohen et al., 2002; Zappe et al., 2008).
While current DCMs model relative CBF changes (Friston et al.,
2003; Havlicek et al., 2015), the baseline CBF is not directly
expressed. Thus, in order to account for the effect that anesthetics
have on relative change in CBF, the equation modeling CBF
change in DCM models could be further modified to reflect also
baseline CBF values. It would be then also beneficial to consider
multi-modal data that measure both CBF and BOLD signals
(Havlicek et al., 2017). Even if CBF is not measured directly,
it is helpful to have baseline CBF as a parameter. Additionally,
as mentioned above, anesthesia can the increase latency of CBF
response (also later reflected in BOLD response), e.g., from ∼2
to ∼4 s (Martin et al., 2006). Latency of CBF response can
be controlled in DCM models. For example, Havlicek et al.
(2017) accounted for differences between latency of positive
and negative CBF responses measured in anesthesized NHP
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FIGURE 1 | Schematic of integrated physiologic-stochastic DCM (IPS-DCM). After identifying and extracting the time series from regions of interest, model

parameters are then estimated using P-DCM equations (Havlicek et al., 2015). P-DCM incorporates: (1) an adaptive two-state neuronal model that allows adaptation

and refractory effects to neuronal response; (2) a hemodynamic model that implements feedforward neurovascular coupling and a viscoelastic effect on the Balloon

model; (3) a BOLD signal change equation that accounts for magnetic field differences. The model inversion is done using generalized filtering (stochastic DCM) (Li

et al., 2011). Lastly, one proceeds to model comparison and selection of the winning model.

by optimizing parameter χ in the feedforward neurovascular
coupling of the P-DCM, while other parameters (φ, ϕ)
could remain fixed. These considerations could permit more
physiologically accurate evaluation of the effect of pre- and post-
anesthesia on effective connectivity, as modeled using IPS-DCM.

Comparison With Other DCM Applications
Under Anesthesia
DCM has been applied in two other studies examining
connectivity changes under propofol-induced loss of
consciousness in fronto-parietal (Boly et al., 2012) and auditory
(Gómez et al., 2013) networks. Boly et al. (2012) applied DCM
for steady-state responses (SSR) and used neural mass models
for each region of the fronto-parietal network (plus thalamic
source)—three subpopulations in cortical regions (one excitatory
and two inhibitor) and two for the thalamic source (excitatory
relay cells and inhibitory reticular cells). On the other hand,
Gómez et al. (2013) utilized combined stochastic (Daunizeau
et al., 2009) and two-state (Marreiros et al., 2008) DCM to model
one frontal and two temporal (auditory) cortical regions. In this
section, we discuss the main caveats of both studies and how
IPS-DCMmay address said limitations.

The main weakness of both studies is the steady-state
assumption of both DCMs which may not hold under anesthesia.

Boly et al. (2012) found in initial increase in beta and gamma
rhythms while delta to alpha frequencies continually increased
as loss of consciousness emerged and acknowledge that this may
reflect neuronal up and down states. Gómez et al. (2013) asserts
that they maintained steady-state by keeping the anesthetic
dose fixed after Ramsay evaluation during fMRI recordings.
However, Yeom et al. (2017) demonstrated that even when
patient-controlled anesthetic levels (propofol and midazolam)
were unchanged once consciousness was lost, over time, there
was gradually increasing power in frequencies <15Hz together
with decreasing power at >15Hz. Increased delta and alpha
power were most evident in frontal and parieto-occipital regions.
Thus, the steady-state assumption of both DCMs may not hold
in both studies with anesthetics.

The combined use of the adaptive two-state DCM by
Havlicek et al. (2015) and stochastic DCM by Li et al. (2011)
offers a number of advantages over the previous two DCM
applications. Li et al. (2011) demonstrated that the generalized
filtering inversion method in this DCM extension provides
better effective connectivity estimates and higher sensitivity to
detecting group differences than the expectation maximization
(EM) or dynamic expectation maximization (DEM) of classical
and variational Bayes stochastic DCM (i.e., it detected two
additional connections exhibiting group differences).
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As for the neuronal model, Havlicek et al. (2015) performed
simulations comparing standard two-state DCM and P-DCM
(adaptive two-state) and showed time courses of responses to
either 1 s or 30 s stimulation in one region, as well as connectivity
dynamics of a three-region network in response to a 30 s
stimulation. They demonstrated that with standard two-state
DCM, varying the neuronal post-stimulus deactivation does not
translate to the BOLD undershoot, while P-DCM accurately
models post-stimulus neuronal deactivation, both in response to
1 s or 30 s stimulation. This ability also holds even when CBV
and CBF are uncoupled—the BOLD post-stimulus undershoot is
stronger than the CBF response which resembles experimental
results (Chen and Pike, 2009).

Pertaining to the connectivity dynamics of the simulated
neuronal network, standard two-state DCM was unable to
capture decreased neuronal activity below baseline—which
suggests poor signal variance when both activations and
deactivations are in the measured BOLD data. Meanwhile, P-
DCM effectively expresses transients in neuronal and BOLD
responses during faster and slower neuronal dynamics. This
holds in both positive and negative responses (activation
and deactivation).

CONCLUSION

In summary, the most important factors to consider when
applying DCM in NHP under anesthesia are cerebrovascular
physiology as well as anesthetic-induced changes in neural
and BOLD response dynamics. Moreover, caution is necessary
when interpreting results if the model includes regions or
networks in which effective connectivity may be modulated
by anesthetics such as: (1) fronto-parietal; (2) sensory-motor
(i.e., S1–M1, SMA–M1, auditory cortical regions); and (3)
thalamocortical networks specifically involving somatosensory
and motor function.

The integrated P-DCM (Havlicek et al., 2015) and stochastic
DCM (Li et al., 2011) (IPS-DCM) aims to address themodulatory
effects of anesthetics on neural activity and the BOLD response

such as changes in inhibitory drive, neural refractory period, and
cortical adaptation (Masamoto et al., 2007; Moran et al., 2011).
This is accomplished through: (1) an adaptive two-state neuronal
model that incorporates adaptation and refractory effects to
neuronal response; (2) a hemodynamic model that incorporates
feedforward neurovascular coupling and a viscoelastic effect
on the Balloon model; (3) a BOLD signal change equation
that accounts for magnetic field differences; and (4) stochastic
(generalized filtering) model inversion that addresses non-linear
interactions among hidden states, such as the non-linear increase
in GABAergic inhibitory drive (Moran et al., 2011; Daunizeau
et al., 2012) under anesthesia.

This paper presents the motivations for applying DCM to
NHP fMRI and potential strategies for addressing anesthetic
effects on neuronal activity and BOLD response, which is
pertinent in primate neuroimaging under anesthesia. Clearly, a
number of challenges remain. For example, the validity of this
physiologic-stochastic DCM integration needs to be established.
Additionally, its applicability to resting state data is also an
interesting consideration. Stochastic DCM has been validated
in resting-state fMRI (Razi et al., 2015); however, P-DCM has
only been applied to task-based recordings (Havlicek et al.,
2017). Future investigations are needed to examine the face and
construct validity of IPS-DCM, as well as its applicability to
resting-state data.
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