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Abstract In ancient Greek medicine the concept of a distinct
syndrome (going together) was used to label ‘a group of signs
and symptoms’ that occur together and ‘characterize a partic-
ular abnormality and condition’. The (dys)metabolic syn-
drome is a common cluster of five pre-morbid metabolic-vas-
cular risk factors or diseases associated with increased cardio-
vascular morbidity, fatty liver disease and risk of cancer. The
risk for major complications such as cardiovascular diseases,
NASH and some cancers develops along a continuum of risk
factors into clinical diseases. Therefore we still include hyper-
glycemia, visceral obesity, dyslipidemia and hypertension as
diagnostic traits in the definition according to the term ‘deadly
quartet’. From the beginning elevated blood pressure and hy-
perglycemia were core traits of the metabolic syndrome asso-
ciated with endothelial dysfunction and increased risk of car-
diovascular disease. Thus metabolic and vascular abnormali-
ties are in extricable linked. Therefore it seems reasonable to
extend the term to metabolic-vascular syndrome (MVS) to
signal the clinical relevance and related risk of multimorbidity.
This has important implications for integrated diagnostics and

therapeutic approach. According to the definition of a syn-
drome the rapid global rise in the prevalence of all traits and
comorbidities of the MVS is mainly caused by rapid changes
in life-style and sociocultural transition resp. with over- and
malnutrition, low physical activity and social stress as a com-
mon soil.
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1 Introduction - the beginning

The coincidence of diabetes, hypertension and gout as a syn-
drome has first been described in the early twenties of the last
century [1, 2]. After world war II. J. Vague [3] was the first to
investigate the links between android (visceral) obesity, dys-
lipidemia, glucose intolerance, hyperuricemia and cardiovas-
cular disease - a condition that was later called plurimetabolic
syndrome by Avogaro and Crepaldi [4]. The Bsecond
Industrial Revolution^ in the mid-19th century with changes
in socioeconomic structure, food supply sources and dramatic
decrease in physical activity resulted in a pandemic of obesity
[5]. Therefore obesity was recognized as a driving force to
development of the metabolic syndrome with insulin resis-
tance and impaired lipolysis of adipose tissue as central path-
ophysiology [6]. A close link of diseases of the metabolic
syndrome to non-alcoholic fatty liver (NAFLD) was first rec-
ognized in the sixties [7, 8] when the Menghini technique was
widely used for liver biopsies. Based on these comprehensive
investigations we further worked out the concept of the met-
abolic syndrome as an integrated approach for diagnostic and
therapy of this cluster of diseases: BThe metabolic syndrome
represents the common prevalence of obesity, hyper- and dys-
lipoproteinaemia, maturity onset diabetes (type 2), gout and
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hypertension associated with increased incidence of atheroscle-
rotic vascular disease, fatty liver and gallstones that develops on
the basis of genetic susceptibility combined with over-nutrition
and physical inactivity. If this working hypothesis can be con-
firmed it provides the basis for integrated diagnostics and pre-
vention of this cluster of diseases which is of central importance
for health care.^ [9]. In a vicious cycle this develops to type 2
diabetes and atherosclerotic vascular disease (Fig. 1).

Insulin resistance as a major underlying pathophysiology
for a common type of diabetes has first been described by
Himsworth in 1936 [10]. In 1979 de Fronzo et al. introduced
the glucose clamp technique to measure insulin-resistance in
vivo [11]. With this new technique it could be shown that the 5
traits of the MS and atherosclerotic vascular disease are asso-
ciated with hyperinsulinemia and insulin resistance [12]. In
his Banting lecture G. Reaven defined therefore the insulin
resistance syndrome – syndrome X – as the association of
insulin resistance/hyperinsulinemia, glucose intolerance, dys-
lipidemia and hypertension [13].

With the pandemic of diseases of the metabolic syndrome
and a plethora of studies on the syndrome X or metabolic
syndrome after de Fronzo’s, Ferrannini’s and Reaven’s publi-
cations a working group of the WHO published a definition
and for the first time with cut-off limits for the traits of the
metabolic syndrome under the guidance of K.G. Alberti [14].
This definition and diagnosis worked out by diabetologists
was primarily based on insulin resistance syndrome as the
central pathophysiology (Table 1). During the following years
thousands of papers have been published on links to and risk
of cardiovascular disease related to the metabolic syndrome
[17–19]. Based on this plethora of epidemiological investiga-
tions the AHA and ADA developed a further definition with

modified cut-off limits and with the aim to have a simple
guide for clinicians to diagnose people at high risk for cardio-
vascular disease and type 2 diabetes (Table 1) [15]. However
different phenotypes of MS have not the same significance as
cardiovascular risk factors [17]. Thus, traits of the metabolic
syndrome cannot be used to replace established risk engines
such as Framingham, PROCAM or UK-PDS risk score [20,
21]. Furthermore other definitions, changes in cut-off limits of
traits and regional and ethnic differences in diagnosis of obe-
sity made it difficult to evaluate risk for cardiovascular disease
and type 2 diabetes associated with single traits, combinations
or overall metabolic syndrome. Therefore, in a critical apprais-
al some leading diabetologists suggested: that insulin resis-
tance is not the only unifying causal factor, the CV-risk asso-
ciated with the overall metabolic syndrome is not greater than
the sum of single components and not at least cut-off limits of
traits are arbitrary [22]. Thus, they concluded that ‘the medical
value of diagnosing the syndrome is unclear’. Since the au-
thors of this harsh critical appraisal did not consider the very
simple concept of a syndrome to have a practical guide for an
integrated approach of diagnosis and treatment ‘of signs and
symptoms that occur together with a particular abnormality
and conditions’ the syndrome survived and still is widely used
in daily practice. In 2009 a unified worldwide definition has
been accepted and published by the IDF [15]. As a matter of
fact in 2014 6090 and in 2015 5524 papers have been pub-
lished related to the metabolic vascular syndrome and its co-
morbidities.

2 Pathophysiology: common soil and links to diabetes
and cardiovascular disease

The metabolic syndrome rose to increased clinical consider-
ation and scrutiny together with the worldwide epidemic of
obesity and diabetes mellitus. However, the pathophysiologi-
cal mechanisms leading to cluster of metabolic diseases and
eventually cardiovascular damage are not completely under-
stood [23]. Although insulin resistance is a core abnormality
of individuals with metabolic syndrome [24], there is no suf-
ficient evidence for a causal link between the two [25]. The
most promising hypothesis for a causal link between the de-
velopment of the different traits of the metabolic syndrome
and atherosclerosis is chronic low grade inflammation, partic-
ularly in dysfunctional adipose tissue [26]. The onset of ab-
dominal obesity is central to the alteration of normal adipose
tissue function with decreased glucose uptake, increased stor-
age of fat as well as increased release of non esterified fatty
acids (FFA) into the circulation. In obesity adipose tissue is
infiltrated by macrophages which influence its cytokine pro-
duction. There is an increased release of interleukin 6, tumour
necrosis factor α (TNFα), monocyte chemo-attractant protein
1 (MCP1) or C-reactive protein (CRP) whereas release of anti-Fig. 1 Historic vicious cycle of the metabolic syndrome [9]
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inflammatory cytokines i.e. adiponectine or interleukin 10 is
decreased. Whether the inflammatory response of the visceral
adipose tissue is primarily induced by intracellular fat accu-
mulation or by infiltration of activated macrophages is still a
matter of debate [27]. However, recent studies in animals and
cell cultures demonstrated an intensive cross talk between
immune cells, macrophages and adipocytes in the generation
of an inflammatory response [28, 29]. Thus, the impact of
changes in visceral adipose tissue can be summarized as a
state of systemic lipotoxicity and low grade inflammation.
Inflammatory cytokines are involved in the induction of en-
dothelial dysfunction and insulin resistance [30]. Furthermore
the insulin resistant state of obesity is characterised by in-
creased plasma levels of free fatty acids that have cardiotoxic
effects and impair the production of endothelial vasodilators
[31, 32].

In addition to these systemic effects of visceral obesity
there is a local impairment of cardiac and vascular function
by dysfunctional perivascular adipose tissue (PVAT) [33].
Under normal conditions PVAT produces different cytokines
and hormones which contribute to vascular relaxation. In the
obese state PVATmass, like visceral adipose mass is increased
and its vasodilating effects are diminished. Therefore PVAT in
obesity may contribute to endothelial dysfunction and hence
atherosclerosis and plays a key role in the development of
vascular insulin resistance [34, 35].

A common hypothesis describes metabolic susceptibility
as central factor for the development of the metabolic syn-
drome. This metabolic susceptibility is determined by
polygenic variability of individuals [36] but also gene-
environment interactions [30, 37]. Once a sedentary lifestyle
with decreased physical activity and high caloric diet leads to
the acquisition of body fat and to development of overweight
and obesity, a susceptible individual is at high risk to develop
the metabolic syndrome and cardiovascular consequences.
Genome wide association studies have identified a lot of po-
tential genetic variants that may contribute to development of
metabolic syndrome. However, the complexity of its different
single traits with their own genetic determinants is a major

challenge for genetic studies [38]. Despite this complex path-
ophysiology as soil for the metabolic syndrome and associated
diseases, we also have to keep in mind the strong impact of
lifestyle and environment which lead to epigenetic regulation
such as the methylation of DNA nucleotides and the modifi-
cation of histone proteins surrounding the DNA double helix.
These mechanisms as key regulators of gene expression can
explain inter-individual variation of phenotypes [39]. Recent
studies demonstrated a close relationship between intrauterine
growth retardation and metabolic disease in adulthood. Low
birth weight has also been associated with hypertension and
susceptibility to cardiovascular disease [40]. In addition to
heritable regulation of the epigenome, there is also evidence
of lifestyle-related modification of genes in adulthood [41].

As a conclusion, there are several genetic and environmen-
tal factors which contribute to the development of both meta-
bolic disorders which are summarized as metabolic syndrome
and cardiovascular disease. It is conceivable that metabolic
and cardiovascular disorders develop in parallel and can influ-
ence each other. Therefore the term metabolic-vascular syn-
drome might be the most comprehensive description of this
cluster of disease (Fig. 2).

3 Individualized treatment of single components
of the metabolic syndrome as prerequisite
for the improvement of cardiovascular outcome

3.1 Lifestyle intervention

From a clinical point of view type 2 diabetes and cardiovas-
cular disease such as coronary heart disease, cerebrovascular
disease and peripheral arterial disease can be considered as
end-stage diseases developing on the complex prodiabetic
and proatherogenic soil of the metabolic vascular syndrome.
This concept is the essential basis for lifestyle intervention and
improving socio-economic conditions, avoiding stress expo-
sure with its hormonal derangements, and regulation of food
production and trade [42–44].

Table 1 Definitions of the metabolic syndrome [14–16]

AHA/NCEP III IDF Consensus statement

Central obesity/waist >102 cm (m)
>88 cm (w)

≥94 cm (m, European)
≥90 cm (m, Asian)
≥80 cm (w)

Population and county specific
increased waist circumference

Blood pressure (mmHg) ≥130/85 or treated for hypertension ≥130/85 or treated for hypertension ≥130/85 or treated for hypertension

Triglycerides (mmol/l) (mg/dl) ≥1.7 (150) ≥1.7 (150) or treatment ≥1.7 (150) or treatment

HDL-cholesterol (mmol/l)/(mg/dl) <1.04 (40) (m), <1.29 (50) (w) <1.04 (40) (m), <1.29 (50) (w)
or treatment

<1.03 (40) (m), <1.29 (50) (w)
or treatment

Fasting plasma glucose
(mmol/l)/(mg/dl)

≥6.1 (110) ≥5.6 (100) or diagnosed with
diabetes mellitus

≥5.6 (100) or drug treatment for
elevated glucose

m men, w women
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So far best evidence for modifiable risk factors for preven-
tion of the metabolic syndrome is available for changes in
nutrition to reduce overweight and insulin resistance and in-
creased physical activity. There exists now a bulk of evidence
that with effective lifestyle intervention incidence of type
2 diabetes can be reduced by about 50 % [45, 46]. Life
style intervention with similar integrated approach some
of them also including psychosomatic treatment tools -
have also successfully been performed for the preven-
tion of cardiovascular diseases [47, 48]. The basic prin-
ciples of life style intervention are - according to the com-
mon soil hypothesis - identical for all traits of the metabolic
vascular syndrome.

3.2 Antihypertensive drugs

International guidelines recommend systolic blood pressure
control to a level < 140 mmHg and diastolic blood pressure
control to <90 mmHg depending on age, individual risk and
co-morbidities with focus on kidney disease [49]. These blood
pressure goals might be challenged by a recent trial in patients
with increased cardiovascular risk but without diabetes which
demonstrated that a systolic blood pressure target of 120
mmHg was associated with fewer cardiovascular end points
than a the widely recommended target of 140 mmHg [50].
Most of these patients fulfilled the definition of meta-
bolic syndrome.

To reach the treatment goals 4 classes of antihypertensive
drugs are recommended as first line treatment by the European
Society of Hypertension/European Society of Cardiology
(ESH/ESC) guidelines: ACE-inhibitor/ARB, calcium channel
blockers, betablockers and diuretics. While blood pressure
lowering effect and cardiovascular benefit is similar for these

for classes of antihypertensive agents there are some differ-
ences in metabolic effects which should be considered in pa-
tients with the metabolic syndrome. Betablocker can increase
body weight and – in combination with diuretics - the inci-
dence of type 2 diabetes [51, 52]. However, newer betablocker
e.g. nebivolol and carvedilol did not affect insulin sensitivity
and should therefore be preferred in patients with the meta-
bolic syndrome [53, 54]. The Avoiding cardiovascular events
in combination therapy in patients living with systolic hyper-
tension (ACCOMPLISH) trial demonstrated a higher rate of
cardiovascular events in patients receiving a combination ther-
apy of a thiazide diuretic and an ACE inhibitor compared to
patients with an ACE inhibitor/calcium channel blocker [55]
but no other randomized trials demonstrated this superiority of
calcium channel blocker over a diuretic treatment [49]. The
use of thiazide diuretics can induce hypokalemia which may
worsen glucose tolerance and provoke cardiac arrhythmias
[56]. Due to their unfavourable metabolic effects betablockers
and diuretics should only be considered as additional blood
pressure lowering drugs in metabolic syndrome. If thia-
zide diuretics are used the addition of an potassium
sparing diuretic agents could reduce the risk of hypokalemia
[57].

ACE-inhibitor or ARB and calcium channel blockers
should be preferred for the treatment of hypertension in pa-
tients with the metabolic syndrome because they did not in-
fluence insulin sensitivity or body weight. ACE-inhibitors/
ARB are most effective in reducing proteinuria and preventing
the progression of diabetic nephropathy whereas calcium
channel blockers are the best choice for the prevention of
stroke [58, 59]. There is no evidence of an additional benefit
of the newer ARB compared to ACE-inhibitors in patients
with the metabolic syndrome.

Fig. 2 Causes and diseases of the
metabolic syndrome today
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In the ONTARGET study ARB telmisartan was associated
with a significantly higher incidence of diabetes while no ef-
fect on primary objectives – major cardiovascular events was
achieved [60]. In the HOPE study, however, with ACE inhib-
itor ramipril less patients were diagnosed with diabetes at the
end of the study as in the placebo group [61]. This could not be
confirmed in the DREAM trial in people with impaired glu-
cose tolerance where ramipril had no effect on the incidence of
diabetes as a primary objective [62]. The same applies for
ARB valsartan in the NAVIGATOR trial - a prospective pri-
mary prevention study with cardiovascular complications as
primary objective and diabetes as secondary objective [63].

To achieve blood pressure goals most patients need a com-
bination therapy of 2 or more antihypertensive drugs. As re-
cently recommended by the ESH/ESC Guidelines the initia-
tion of a combination therapy instead of a monotherapy
should be considered in patients with a blood pressure
> 160mmHg systolic and/or >100mmHg diastolic because of
the prompter response in a larger number of patients the great-
er probability of achieving target blood pressure and a higher
adherence of patients to the therapy [49]. In conclusion na-
tional and international guidelines recommend in patients with
the metabolic syndrome an individualized approach consider-
ing age, co-morbidities and presence or absence of end stage
diseases to guide decision making.

3.3 Antidiabetic drugs

Evidence with antidiabetic drugs for the prevention of type 2
diabetes in people with abnormal glucose tolerance is avail-
able only for metformin [64], acarbose [65] and
thiazolidinediones [66, 67] and the combination of metformin
plus rosiglitazone [68].

Metformin has consistent evidence to prevent progression
of IGT/IFG to type 2 Diabetes. In the DPP Study the reduction
in incidence of diabetes was 31 % vs. life style intervention
alone [64]. The reduction of newly diagnosed diabetes in the
STOP NIDDM with α glucosidase inhibitor acarbose was in
the same range if diagnostic criteria were used as in the DPP
[65]. Despite glitazones were very effective to reduce inci-
dence of newly diagnosed diabetes and had pleiotropic effects
on blood pressure, biomarkers of inflammation and endothe-
lial dysfunction [69–72] they cannot be recommended be-
cause of serious adverse events such as edema, congestive
heart failure and bone fractures for primary prevention of dis-
eases of the metabolic syndrome [73]. Orlistat, a weight re-
ducing intestinal lipase inhibitor reduced incidence of diabetes
in obese subjects with abnormal glucose tolerance by ~31 %
[74]. Metformin in addition had beneficial effects on weight
and minor effects on blood lipids, but did not affect blood
pressure in the DPP [75] and BIGPRO trial [76]. However,
none of the primary prevention trials with metformin has
shown an effect on major cardiovascular events also in the

long term follow-up after termination of the studies with a
duration of ~3 years. Acarbose so far is the only antidiabetic
drug with a significant pleiotropic effect on elevated blood
pressure [77]. It significantly reduces body weight, postpran-
dial hyperinsulinemia, biomarkers of inflammation and
hypertriglyceridemia [78, 79]. Predefined cardiovascular
events were secondary objectives in the STOP-NIDDM trial.
In this trial a significant reduction in the incidence of myocar-
dial infarction and of cardiovascular events was registered
[77]. Furthermore 36 % less newly diagnosed cases of hyper-
tension were observed. Of notice stable IGT or remission to
NGT was associated with a lower incidence of hypertension
compared to progression to type 2 diabetes [80]. Intervention
with basal insulin glargine in prediabetic subjects was evalu-
ated in the ORIGIN trial. Reduction of newly diagnosed dia-
betes 3 months after stopping insulin treatment was 20 %.
There was, however, no effect on major cardiovascular events
achieved [81].

3.4 Lipid lowering drugs

Dyslipidemia with hypertriglyceridemia and low HDL is in
the majority of cases associated with an increase in small
dense LDL a lipoprotein fraction with high atherogenic poten-
tial which is intricately connected with insulin resistance and
low grade inflammation [82]. This lipid triad together with
high cardiovascular risk provides a rational pathophysiologi-
cal basis for the use of statins as first line drug [83–86]. As
shown in a meta-analysis of data from 170,000 participants
with intensive statin treatment reduction of cardiovascular
events was mainly due to LDL-cholesterol lowering efficacy
[87]. Beneficial effects on the lipid triad in patients with the
metabolic syndrome have been documented for atorvastatin
and rosuvastatin [88, 89]. However, in long term studies some
of the more potent statins increased the risk of newly diag-
nosed diabetes [90]. This is far outweighed by the cardiovas-
cular benefit. In a meta-analysis intensive dose statin therapy
had a number needed to harm for one case of new onset dia-
betes of 498 versus a number needed to prevent one case of
major cardiovascular events of 155 per year [90]. In addition
statin treatment has a small but significant beneficial effect on
blood pressure [91].

Fibrates have been shown to reduce cardiovascular events
in patients with the metabolic syndrome and type 2 diabetes
when added to a statin therapy [92, 93]. However, fibrates in
combination with statins can increase the rate of myopathy
and risk of rhabdomyolysis [94]. The concept to increase
HDL-cholesterol to protect the vessel wall was not supported
by recently stopped trials with nicotinic acid [95] and CETP
inhibitors [96, 97] showing increased rates of serious adverse
events. Therefore ESC Guidelines no longer support drug in-
terventions to increase HDL-cholesterol [98]. Newer
drugs such as ezetimibe - an inhibitor of the intestinal
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cholesterol absorption that may also improve traits of
the metabolic syndrome [99] - or the humanized antibody
against proproteinconvertase subtilisin/kexin type 9
(PCSK9) can significantly reduce LDL-cholesterol in combi-
nation with statins. However, an improvement of cardiovas-
cular end points with ezetimibe was restricted to patients with
an acute coronary syndrome [100] and there is still a lack of
results regarding cardiovascular end points from studies with
PCSK9 inhibitors.

3.5 Anticoagulant therapy

Patients with a metabolic syndrome have a complex patho-
physiology of cellular and humoral coagulation with activated
platelet aggregation, impaired fibrinolysis and elevated factors
of the coagulation cascade as major components. This is par-
ticularly critical in patients with type 2 diabetes [101–103].
Subjects with diabetes have a higher rate of major cardiovas-
cular events but lower efficacy of intervention after acute cor-
onary syndrome [104]. This can be at least partially explained
by harmful alterations in the coagulation associated with the
metabolic syndrome. According to this critical weight of
atherothrombogenic risk factors randomised trials and meta-
analysis revealed a greater benefit of anticoagulatory preven-
tion for patients with diabetes and metabolic syndrome.

Acetyl salicylic acid (aspirin) is widely used for primary
and secondary prevention in type 2 diabetes. Recently pub-
lished meta-analysis, however, reveal no significant impact on
mortality while bleeding episodes are significantly increased
[105, 106]. No data on primary prevention are available for
the new platelet aggregation inhibitors such as clopidogrel,
prasugrel and ticagrelor. The benefit of low dose aspirin
(75–100 mg/d) for secondary prevention is well documented
for patients with type 2 diabetes [105]. In the CAPRIE study
clopidogrel 74 mg was significantly more effective in patients
with type 2 diabetes compared to ASS [107]. Incidence of
MACE with clopidogrel was 5.32 %, with aspirin 5.83 %
(RR 8.7 %, p = 0.043). Benefit of clopidogrel was even higher
in patients with peripheral arterial disease. Therefore, the
ADA recommends clopidogrel in very high risk groups with
type 2 diabetes. This could be applied in general for type 2
diabetes and metabolic syndrome. New platelet aggregation
inhibitors prasugrel and ticogrelor have shown a significantly
higher benefit in acute coronary syndrome versus clopidogrel
[108]. However, large outcome trials in patients with stable
atherosclerotic disease are not yet published. Diabetes is an
independent risk factor for atrial fibrillation and thrombolic
complications. Therefore risk scores for stroke and systemic
embolism result in an indication for anticoagulant therapy
with vitamin K antagonists (cumarins) or direct-acting oral
anticoagulants (apixaban, dabigatran, rivaroxaban). No data
from controlled prospective trials are available in diabetes
comparing old and new anticoagulants.

3.6 Bariatric surgery

Abdominal obesity is the most common single trait of the
metabolic syndrome [17] and central in the pathogenesis of
cardiovascular events and type 2 diabetes. However, a durable
sufficient weight loss is uncommon with medical or lifestyle
approaches and adequate glycemic control often remains elu-
sive [109]. Therefore, bariatric surgery also regarded as
Bmetabolic^ surgery due to its favourable effects on the met-
abolic syndrome is now increasingly used to achieve a
sustained weight loss and a regression of type 2 diabetes
[110, 111]. Further effects after bariatric surgery were lower-
ing of systolic and diastolic blood pressure and improvement
of the lipid profile. The detailed description of different oper-
ation techniques is beyond the scope of this review however,
there are also data about resolution of the metabolic syndrome
after bariatric surgery: Batsis and co-worker described a de-
crease of the prevalence of the metabolic syndrome from 87 to
29 % before vs. 3.4 years after gastric bypass whereas the
prevalence in the control group treated with lifestyle interven-
tion decreased from 85 to 75 % within the same time period
[112]. The remission rate of the metabolic syndrome was
significantly higher after malabsorptive surgery i.e. gas-
tric bypass or biliopancreatic diversion compared to
techniques which mainly restrict energy intake (gastric
banding or sleeve gastrectomy) [113]. The profound resolu-
tion of metabolic deteriorations and the resulting reduction of
mortality at least in patients with type 2 diabetes [114] lead to
the extension of the indication of bariatric surgery over time:
most recently even adolescents (mean age 17 ± 1.6 years) with
obesity stage 3 (mean BMI 54 kg/m2) underwent gastric by-
pass or sleeve gastrectomy with favourable effects regarding
weight, dyslipidemia, blood glucose and blood pressure con-
trol [115]. Nevertheless these invasive techniques are not free
of adverse events which include the need for supplementation
of micronutrients or the risk of additional operative proce-
dures. Before surgery, physiological maturation (puberty)
and adequate psychological maturity should be documented
[116].

4 Emerging concepts in the pathophysiology
of the metabolic vascular syndrome

4.1 Substrate flux

Novel concepts link adipose tissue macrophage infiltration
with substrate flux to the liver, resulting in hyperglycemia,
hyperinsulinemia and dyslipemia. The fast suppression of he-
patic glucose production after meals within minutes seems not
to be mediated by a direct transcriptional effect of insulin in
the liver [117]. Recent studies suggested that insulin action in
white adipose tissue rather is the rate limiting step, lowering
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fatty acid and glycerol mobilization resulting in reduced he-
patic acetyl-CoA content, which is an allosteric activator of
pyruvate carboxylase and thus, hepatic glucose production
[118]. In the setting of obesity and the metabolic vascular
syndrome, macrophage infiltration into white adipose tissue
(WAT) leads to increased lipolysis via cytokines, such as in-
terleukin-6, routing fatty acids and glycerol to the liver. Here,
these substrates promote fasting and postprandial hyperglyce-
mia by augmenting hepatic acetyl- CoA content, activating
pyruvate carboxylase and eventually resulting in increased
glycerol conversion to glucose. [118, 119]. Moreover, in-
creased adipose tissue lipolysis stimulates hepatic triglyceride
synthesis and hyperlipidemia due to increased fatty acid ester-
ification. These mechanisms foster an environment of exces-
sive postprandial hyperglycemia and dyslipidemia, the corner-
stones of the metabolic vascular syndrome. Therapies that
decrease ectopic lipid storage [120] and diminish macrophage
induced WAT lipolysis [118] will be able to reverse some of
the root causes of type 2 diabetes and the metabolic syndrome.

4.2 Gut mircobiota

Obesity and type 2 diabetes are characterized by reduced fecal
microbial diversity which is linked to increased inflammation
and decreased insulin sensitivity [121, 122]. Moreover, recent
studies demonstrated that the consumption of high fat diets,
artificial sweeteners and other dietary interventions alter the
gut microbiota, resulting in intestinal inflammation and devel-
opment of the metabolic syndrome [123, 124]. These findings
suggest that our modern lifestyle alters the gut microbiota, and
via this mechanism contributes to the complex pathophys-
iology of the metabolic vascular syndrome. In favor of this
notion, societies with traditional lifestyles are characterized
by high microbial diversity [125] and lower rates of meta-
bolic disease. The therapeutic potential of fecal transplan-
tation from lean donors to patients with the metabolic vas-
cular syndrome has been examined in a pilot study.
Allogenic, but not autologous, infusion of gut microbiota
from lean donors into patients improved insulin sensitivity
of recipients as measured with the hyperinsulinemic
euglycemic clamp technique [126]. These data demonstrate
that the gut microbiota is involved in the pathophysiology
of the metabolic vascular syndrome. In addition, interven-
tions helping to keep the gut microbiota healthy seem to
have an effect on insulin sensitivity, and likely other com-
ponents of the metabolic vascular syndrome. However, this
notion still needs to be formally tested.

4.3 Brown adipose tissue

Several research groups independently demonstrated that
adults have metabolically active brown adipose tissue [127].
Its capacity to oxidize fatty acids and glucose without ATP

production contributes to energy expenditure and glucose
homoeostasis. In addition to classical brown adipose tissue,
specific depots of inducible brown adipocytes have been iden-
tified within the white adipose depot, which are termed beige
or bright adipocytes [128]. Beige cells can be induced by cold
and a broad spectrum of hormones. A role of beige adipose
tissue in human obesity has recently been demonstrated in
elegant studies from Claussnitzer etl al. [129]. The authors
show that a variant (rs1421085) in the FTO gene region,
which houses one of the strongest genetic associations with
obesity in genome wide association studies, dynamically
modulates mitochondrial activity of human white adipose tis-
sue, leading to reduced activation of beige adipocytes, a cel-
lular phenotype consistent with obesity. These data raise the
possibility of thermogenesis in adipose tissue as a therapeutic
target for the treatment of metabolic diseases. However, an
unsolved problem with the induction of beige and brown ad-
ipose tissue is the generation of heat, which can have harmful
effects [130].

4.4 Future emerging treatment strategies

4.4.1 Antidiabetic drugs

Large cardiovascular outcome trials testing newer anti-
diabetic drugs in patients with the metabolic vascular
syndrome were conducted to provide evidence that
modern therapies are as secure as classical antidiabetic
therapies, i .e. metformin, sulphonylureas, insulin,
thiazolidinediones and alpha-glucosidase inhibitors.
Although studies with DPP-IV inhibitors [131–133] and
GLP-1 receptor agonists [134] were able to provide this evi-
dence, they failed to show superiority in terms of survival as
well as macro- and microvascular complications compared to
standard therapy. Recent studies with the SGLT2 inhibitor
empagliflozin changed this paradigm. In the EMPA-REG out-
come trial, empagliflozin 10 or 25 mg were given on top of
standard therapy (including state of the art antihypertensive
and lipid lowering therapy) and compared to placebo in dia-
betic patients with a mean waist circumference of 105 cm
(BMI 30,1 Kg/m2) [135]. In this setting, the inhibition of
SGLT2 after a median follow up of 3.1 years, resulted in
superiority of empagliflozin in regards to the primary compos-
ite cardiovascular endpoint (HR = 0.86; 95 % CI 0.74-0.99; P
= 0.04), hospitalization for heart failure (−35 %), cardiovas-
cular mortality (−38%) and all-cause mortality (−32%, each p
< 0.001). The reduction in mortality occurred rapidly (<4–
6 months) and was similarly distributed in all subgroups.
This reduction inmortality does not seem to be fully explained
by the concomitant slight reductions in HbA1c, body weight,
waist circumference and blood pressure in the empagliflozin
groups versus the placebo group. It is tempting to speculate
that the reduction of glucotoxicity by the pure excretion of
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glucose, in contrast to cellular uptake of glucose into cells,
might contribute to the effect. The safety profile of
empagliflozin was reasonably good. However, the FDA is
currently carefully examining cases of ketoacidosis reported
with SGLT2 inhibition. Future data will show if this is a con-
cern which can be better understood and prevented when spe-
cific precaution is taken, comparable to lactic acidosis seen in
rare cases with metformin. Moreover, future studies will need
to show if SGLT2 inhibition is able to also prevent or delay the
onset of the metabolic vascular syndrome and if it is also
effective in primary prevention from micro- and
macrovascular disease in type 2 diabetes. So far, the data pro-
vided by the EMPA-REG study are promising and show for
the first time that a modern antidiabetic agent with effects on at
least three components of the metabolic syndrome - hypergly-
cemia, elevated blood pressure and obesity - was able to pro-
vide superiority over standard therapy in terms of survival in a
cardiovascular outcome trial [135].

4.4.2 Anti-obesity drugs

Glucagon-like peptide-1 (GLP-1) analogs are in clinical use
for the treatment of type 2 diabetes. Since some of them also
lead to substantial weight loss, specific GLP-1 receptor ago-
nists (GLP-1 RA), such as liraglutide 3 mg, are now also
approved in some countries for the treatment of obesity in
non-diabetic patients[136]. Interestingly, in a very recent
study, liraglutide 1.8 mg was also able to improve biopsy
proven non alcoholic steatohepatitis [137]. So far, it is not
entirely clear whether this effect is independent of body
weight reduction. However, medications treating at the
same time type 2 diabetes, obesity and non-alcoholic
fatty liver disease, cornerstones of the metabolic vascular
syndrome, appear to be attractive.

Newer attempts also aim to combine GLP-1 RAs with ad-
ditional hormones. GLP-1/glucagon receptor co-agonists are
currently in phase 1/2 studies for the treatment of type 2 dia-
betes. However, preclinical data and first clinical studies indi-
cate a strong effect on body weight as well. Glucagon has
positive effects on energy balance, body fat, and nutrient in-
take in rodents and humans. Oxyntomodulin, a combined
GLP-1/glucagon- receptor co-agonist, reduces body weight
compared with placebo and with GLP-1 agonism in obese
and overweight individuals [138, 139]. Additionally, it was
proven to reduce food intake after an ad libitum test meal
and increase energy expenditure in humans [138]. Increased
energy expenditure cannot be explained by GLP-1 RA.
Additionally, co-agonists of the glucagon and GLP-1 receptor
reduce cholesterol, improve insulin sensitivity and improve
blood glucose levels. The effect seems to be independent of
the appetite suppressing and body weight lowering effect in
diet-induced obese mice [140].

Another incretin based combination is the GLP-1/GIP co-
agonist. GIP shares a 37 % amino acid sequence identity with
GLP-1. Because of the similarity of interaction sites, con-
structing single peptides with activity of both incretin hor-
mone receptors is possible, which could result in a more pro-
nounced antidiabetic effect. Preclinical data for GLP-1/GIP
receptor agonists showed stronger reductions of blood glucose
and body weight in diet-induced obese mice compared to
once-daily treatment with liraglutide. However, GIP might
also have negative effects on hepatic lipid content in preclin-
ical studies [141]. More studies are needed to get a broader
view on all facets of metabolic effects.

4.4.3 Lipid lowering therapy

Ideally, newer classes of lipid lowering drugs should not only
treat hyperlipidemia, but also positively affect glucose metab-
olism in patients with the metabolic vascular syndrome, spe-
cifically because statin therapy carries a small but increased
risk for type 2 diabetes. Inhibition of ATP–citrate lyase (ACL)
with concomitant activation of adenosine monophosphate–ac-
tivated protein kinase (AMPK) might be able to fill this med-
ical need [142]. In type 2 diabetic patients, the ACL inhibitor
bempedoic acid (ETC-1002), which in high doses can also
activate AMPK, reduced LDL-C by 43 % without significant
changes in triglyceride or high-density lipoprotein cholesterol.
Moreover, bempedoic acid (ETC-1002) reduced high sensi-
tivity C reactive protein (hsCRP) values by 41%, possibly due
to an immune modulating action [143]. Bempedoic acid
(ETC-1002) did not affect fasting or postprandial glucose
levels as measured with continuous glucose monitoring.
However, in an obese subgroup of type 2 diabetic patients, it
reduced daily peak and postprandial glucose levels [142].
These preliminary findings are interesting. While they do
not allow to conclude that bempedoic acid (ETC-1002) has a
clinically useful antihyperglycemic effect on glucose me-
tabolism in diabetic patients at this time, it is reassuring
that newer lipid lowering drugs do not aggravate glu-
cose intolerance while clearly reducing LDL-C levels.
Moreover, preclinical studies suggest that inhibition of
ACL also improves non alcoholic fatty liver disease
(NAFLD) [143]. It will be very interesting to see whether
or not such an effect can be observed with bempedoic acid
(ETC-1002) in patients with NAFLD/NASH.

4.4.4 Heart failure therapy

Individuals with diabetes and the metabolic vascular syn-
drome are not only at high risk of developing heart failure
but are also at increased risk of dying from it. Type 2 diabetes
mellitus is associated with a more than 2-fold greater risk of
developing heart failure, and a 60 %–80 % greater probability
of death in those with established heart failure [144].
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Moreover, there has been some concern that hypoglycemic
agents might contribute to a poor effect on heart failure.
Therefore, strategies able to treat both conditions simulta-
neously are a clinical need. The cardiac hormones natriuretic
peptides (NP) have been shown to have positive effects
on blood pressure and cardiac function, but also to have
beneficial metabolic effects, including the activation of
lipolysis and energy expenditure in clinical studies and
insulin sensitization and body fat reduction in preclini-
cal studies [145–148]. Novel treatment strategies focus
on inhibiting neprilysin, the neutral endopeptidase re-
sponsible for cleaving NP as well as other vasoactive
hormones. This approach has been combined with the
blockade of angiotensin receptors (ARB) to form
LCZ696 (sacubitril/valsartan), which has recently been
approved for the treatment of heart failure in some
countries. LCZ696 (sacubitril/valsartan) was superior to
enalapril in reducing the risk of death and of hospitali-
zation for heart failure in the PARADIGM-HF trial
[149]. Moreover, LCZ696 (sacubitril/valsartan) was also
beneficial compared with enalapril in patients with type
2 diabetes and heart failure with reduced ejection frac-
tion, irrespective of glycemic status [150]. Studies on
the metabolic effects of this compound in patients with
the metabolic syndrome but without heart failure are
currently ongoing. Time will tell if combined ARB
and neprilysin inhibition (ARNI) will be able to treat
multiple components of the metabolic vascular syndrome
[151].

5 Conclusion

After 90 years of the first publications on close association of
diabetes, hypertension and gout as a syndrome, the metabolic
syndrome has been established and is widely used as a simple
guide for integrated, rational diagnostics and treatment of a
common cluster of metabolic vascular diseases. Over the last 5
decades the metabolic syndrome has experienced many
changes in definition with a metamorphosis from a syndrome
to a cluster of premorbid risk factors of cardiovascular disease
and type 2 diabetes as described in the consensus statement of
the IDF. According to the philosophy behind the concept of a
syndrome we still see obesity, dyslipidemia, diabetes and hy-
pertension as core components of the metabolic vascular syn-
drome along the continuum of prestages of these diseases.
Despite critical appraisals about the pathophysiological link
between its single traits, the concept of the metabolic syn-
drome has been proven as valuable guide for clinical decisions
regarding a more precise, individualized treatment of its com-
ponents and to stimulate clinical research to develop new ther-
apies with pleiotrophic effects which target the whole cluster
of associated diseases.
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