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Abstract

Network-based infectious disease models have been highly effective in elucidating the role

of contact structure in the spread of infection. As such, pair- and neighbourhood-based

approximation models have played a key role in linking findings from network simulations to

standard (random-mixing) results. Recently, for SIR-type infections (that produce one epi-

demic in a closed population) on locally tree-like networks, these approximations have been

shown to be exact. However, network models are ideally suited for Sexually Transmitted

Infections (STIs) due to the greater level of detail available for sexual contact networks, and

these diseases often possess SIS-type dynamics. Here, we consider the accuracy of three

systematic approximations that can be applied to arbitrary disease dynamics, including SIS

behaviour. We focus in particular on low degree networks, in which the small number of

neighbours causes build-up of local correlations between the state of adjacent nodes that

are challenging to capture. By examining how and when these approximation models con-

verge to simulation results, we generate insights into the role of network structure in the

infection dynamics of SIS-type infections.

Author Summary

Networks are now widely used to model infectious diseases, but have posed significant

mathematical challenges. Recently analytic results have been obtained for ‘one-off’ net-

work epidemics that follow the SIR paradigm, but these results do not carry over to

other scenarios—most significantly to many sexually transmitted infections, where

accounting for network structure is vital. Here, we show that it is possible to obtain the

large-population dynamics of such diseases on networks through systematic approxima-

tions. We focus on a mathematically challenging case of SIS dynamics on networks with

low degree.
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Introduction

There is a strong and deep connection between networks and the spread of infectious diseases

[1–9]. Virtually all infections can be thought of as propagating through a network of (epidemi-

ologically-relevant) contacts between individuals in the population, with the structure of this

underlying network determining much of the infection dynamics. Therefore an understanding

of population-level transmission at the scale of individual hosts is closely linked to a study of

the properties of the underlying transmission network. Recent advances in network science

have highlighted how both local and global structure of the network are key in the dynamics of

infection [2, 10–13].

While networks are being increasingly used for airborne and close-contact infections (such

as influenza [14] and RSV [15]) which spread through social contacts, the epidemiological net-

work literature was originally formulated for sexually transmitted infections (STIs) where the

network is generally more clearly defined. Classic examples include homosexual contact net-

works from early HIV studies [1] and the Colorado-Springs study of sexual contacts in the

high-risk heterosexual population [16]. While a focus on STIs has substantial advantages in

terms of determining the network, it also places constraints on the epidemiological dynamics

that need to be considered. The overwhelming majority of STIs (e.g. chlamydia or gonorrhoea,

although not HIV) can be approximated using the Susceptible-Infected-Susceptible (SIS) para-

digm, where infected individuals are treated and recover to the susceptible state, and hence are

able to be re-infected multiple times. Although SIS models are inherently lower-dimensional

than their SIR (Susceptible-Infected-Recovered) counterparts, potential reinfection of the

same individual (multiple times) leads to more complex dynamical behaviour between neigh-

bouring nodes on a network and makes it more difficult to generate tractable results [17].

When details of the complete network are available, and we are dealing with a particular

applied problem, then the most straightforward approach is to simulate the dynamics of infec-

tion on the given network (e.g. [5, 16, 18]). However in anything but ideal circumstances simu-

lation may be problematic. For example, using simulations alone: it may be difficult to

understand sensitivity to elements in network structure or biases in the way the network con-

nections were sampled; it is computationally challenging to infer epidemiological parameters;

and it may be difficult to gain a robust understanding of the causal determinants of the

observed dynamics. Approximations that maintain the analytic tractability of traditional ODE

(Ordinary Differential Equation) models, but take account of elements of network structure

provide a possible solution. These have been quite successful for ‘one off’ epidemics that obey

the SIR paradigm, with notable advances including the ‘effective degree’ approach of Ball and

Neal [19], the probability-generating function approach of Volz [20] (and its reduction to a

single dynamical equation by Miller [21]) and the model of Lindquist et al. [22] (originally also

called ‘effective-degree’ model, but to which we refer throughout as ‘neighbourhood model’ to

avoid confusion with the earlier use of this terminology). Such models, together with pairwise

or related approximations [23, 24] discussed extensively in this paper, have been shown to be

exact methods of calculation of marginal probabilities for the stochastic SIR model for finite

explicitly known networks [25–28]. Such models can also reproduce the expected course of the

stochastic SIR model with constant infection and recovery rates on large configuration model

networks with with several recent asymptotic proofs of convergence published [29–32]. Much

work has also focussed on extending such methods to weighted [33] and dynamic [34] net-

works, as well as to models with arbitrary duration of the infectious period [35–37], with the

common denominator that on clustered networks results from all approaches are only

approximate.
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Despite all these successes concerning SIR models (or related models such as SEIR, which

includes an exposed period [17, 24]), the same is not generally true for infections without long-

lasting immunity, with realistic demographic turnover or with significant viral mutation [38, 39]

—i.e., the majority of pathogens of interest. Here we focus on STIs since the motivation for use

of a network is strong [40]. These diseases are of major public health importance and the appro-

priate modelling framework (the SIS model on a network, also called the ‘contact process’ and

frequently considered in theoretical studies) is the most challenging for approximation models

to capture. To fully predict the dynamics and hence the impact of control on a range of sexually

transmitted infections requires mathematical models that can account for both network struc-

ture of sexual partnership and the complications that arise from reinfection that is associated

with SIS-type behaviour [40]. Here we consider three distinct approaches to capture the dynamic

build-up of correlations between nearby individuals on the network—each approximation

methodology has an associated integer that can be increased to achieve greater levels of accuracy.

We stress, however, that our approach does not rely on special features of the SIS model but can

be applied to the full spectrum of disease-dynamics models used to inform applied epidemiology

and public health (including those with short-term immunity and hence SIRS-type dynamics).

Although the long-term aim is to utilise such approximation techniques to gain a clear

understanding of the dynamics of STIs (as well as other infections that confer short-duration

immunity) on realistic networks, we focus this paper on understanding when simple modelling

techniques fail. One occasion when simple approaches fail is in the case of extreme heterogene-

ity [41–44]. Although risk-structure (or heterogeneity in network structure) is a highly impor-

tant aspect of modelling STI—especially in terms of defining individual risk—we argue that

many studies have focussed on this aspect [45, 46] and that it is usually possible to capture epi-

demiological effects of population heterogeneity by modestly increasing the system’s dimen-

sion through the introduction of multiple risk-groups (e.g. low- and high-risk behaviour).

In contrast to the heterogeneous case, the impact of a limited number of contacts and the

build-up of dynamical correlations in the state of neighbouring nodes is a less studied issue

that presents deep conceptual challenges, especially for SIS dynamics. We therefore focus on

developing a better understanding of this problem by ignoring many realistic features of STIs

(we briefly comment on them in the discussion) and considering the idealised case of a homo-

geneous degree or ‘k-regular’ networks with low connectivity and hence greater importance of

the link with each contact (in particular k = 3 and k = 2). In these remarkably simple networks,

the effects of local correlations are at their strongest and are not masked by the impact of

degree heterogeneity. To illustrate this concept we compare simple risk-structured mean-field

(random-mixing) models (which account for degree heterogeneity within the network but not

correlations that develop due to contact structure) with results from stochastic network simu-

lations of SIS infection dynamics (Fig 1). This example demonstrates that when either the

mean degree or the variance in the degree distribution increases, so the standard risk-struc-

tured ODE model provides a better fit to the simulated dynamics. The agreement between

these simple models and simulations is worst for a homogeneous degree 3 network and hence

it is this test scenario we predominantly consider throughout this paper.

Methods

Discussion of models

In this work, simulation models and traditional mean-field approximation models (that ignore

network structure) represent two extremes in terms of analytic tractability and computational

efficiency. Two approximate models for SIS-dynamics (Materials and Methods) have been

developed that lie between these extremes: pairwise and neighbourhood approximations.
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Pairwise approximations [45, 48–50] consider the dynamic states of pairs of individuals that

are connected in the network and hence capture some of the build-up of local correlations

within the network. Neighbourhood approximations [22] have appeared more recently and

can be conceptualised as a more sophisticated, though higher-dimensional, extension to the

pairwise approximation. Neighbourhood approximations model the number of connected

individuals of each type around a central individual; for SIS dynamics this is simply the num-

ber of S and I connected to a central individual of a given state. This means that neighbour-

hood models capture higher-order correlations within the network, as they effectively model

multiple chains of three connected individuals sharing the same central node.

We consider methods to extend the pairwise and neighbourhood approaches; either

increasing the size of the subgraph considered (e.g. going from modelling pairs to modelling

triple motifs) or increasing the number of node states by counting infection events.

Subgraph or motif expansions to the pairwise models track the dynamics of the possible

states of increasingly larger motifs or subgraphs of m connected individuals within the net-

work. Clearly as m becomes large, we precisely account for the full dynamics on larger sections

of the network and hence expect our approximations to become more accurate. However with

increasing m comes increasing number of motifs and also higher dimension dynamics. For

degree k = 3 networks we consider motifs of size m = 1 (the standard mean-field model), m = 2

Fig 1. Comparison between risk-structured mean-field results and stochastic network simulations for

SIS infection dynamics. The error is the relative percentage error between the risk-structured mean-field

model (Supporting Information) and network simulation results for the mean prevalence of infection:

Error ¼ 100� k�IODE � �Inetworkk=�Inetwork. The degree distribution obeys P(k) = ρ exp(−α(k − K)2) for all k� 2,

where α and K are determined to give a desired mean and variance, and ρ is a normalising constant. Other

methods of generating degree distributions give similar results. We insist on k� 2 (for all nodes) as this

generally ensures that the majority of network form a single giant component. The network is formulated using

the Molly-Reed algorithm [47] with 100,000 nodes, but ensuring that there were no self-contacts and no

multiple connections between individuals. We assume the recovery rate of individuals γ is scaled to be one,

while the transmission rate across a contact scales with the mean number of contacts, t ¼ 2=�k . As such, the

mean prevalence in both simulation and ODE models lies between 30 and 50%.

doi:10.1371/journal.pcbi.1005296.g001
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(the traditional pairwise model) as well as m = 3 and m = 4; for the special case of degree k = 2

networks, we are able to consider larger motifs up to m = 16 due to the linear structure of all

k = 2 motifs (see Fig 2).

Similarly, it is feasible to expand the neighbourhood model, which we index by parameter

n. Again we consider n = 1 to be the standard mean-field model, while n = 2 accounts for the

states of all neighbours of a central individual, and expansions to neighbours of neighbours

(n = 3) is also possible although of very high dimensional for networks of k = 3 or above.

The reinfection counting extension explicitly tracks the number of times an individual has

been infected, effectively increasing the number of states for each individual (i.e. disease

state × number of times infected). To create a finite system, we track the infection times up to

a maximum of L (which now incorporates all those individuals infected L times or more). The

motivation for this extension derives from a failure in traditional SIS pairwise models to

account for the correlation between infected and newly recovered individuals. This extension

should therefore improve the performance of the approximation model during the early stages

of invasion when infection is rare. However, the long-term equilibrium dynamics when all

individuals have been infected L times or more (assuming the infection persists), will be identi-

cal to that of the pairwise model.

Although we take the simulation model as our gold-standard, deriving precise values for

particular quantities is often computationally intensive and naive methods can be improved.

For early epidemic growth rates, we generate a finite Cayley tree (thereby eliminating all clus-

tering) and study the dynamics until infection hits an outer leaf. For endemic prevalence it is

not possible to use a Cayley tree; any finite Cayley tree must have lower degree at the outer

leaves which would influence the dynamics. Instead, we generate large networks using the

Molloy-Reed (or configuration) algorithm [47], and ensure that self connections, multiple con-

nections between nodes and short loops (of five or less connections) are removed by randomly

shuffling connections. Moreover, far greater accuracy can be achieved when estimating quanti-

ties from simulation by realising that the expected rate of change of infection is determined by

the state of the network and is given exactly by mechanistic models (such as Eq 3) where the

variables are taken directly from the simulation. This allows us to remove some of the effects of

stochasticity from the calculation. We therefore use this expected rate of change to directly cal-

culate early growth rates, and use the long-term relationship between prevalence and expected

rate of change to find the endemic equilibrium prevalence (see S1 Text). Fig 3 shows the advan-

tage of this method, reducing the variance in our estimate of mean endemic prevalence and

hence improving the accuracy of any fixed duration simulation.

Mathematical definition of models

We now layout in some detail the different approximation models used within this paper:

mean-field; standard pairwise; reinfection counting; motif models; and neighbourhood mod-

els. The elements captured in each approximation are illustrated in Fig 4.

Full dynamics and notation. We consider individuals labelled with integers i, j, . . . 2

{1, . . ., N} connected on a network with adjacency matrix A = (Ai,j); where N is the number of

nodes in the network, and Ai,j is one if nodes i and j are connected or zero otherwise. The state

of individual i at time t is given by a Bernoulli random variable Xi(t) taking the value Si if i is

susceptible and Ii if i is infectious. The events and rates of the full underlying dynamics are

Si ! Ii at rate t
X

j

Ai;j1fXjðtÞ¼Ijg
;

Ii ! Si at rate g ;

ð1Þ

Systematic Approximations to Susceptible-Infectious-Susceptible Dynamics on Networks
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Fig 2. Subgraphs modelled by each approximation scheme. k denotes the (uniform) node degree and m or n indexing the size of

the subgraph expansions for motif and neighbourhood schemes, respectively. Nodes within the subgraphs are shown and joined

with solid lines; connections to other nodes (and hence where approximations are needed) are shown with dashed lines. The

dimension of the associated ODEs for approximating the SIS dynamics is also given, accounting for symmetry and conservation.

For degree k = 2 the dimension of the system can be calculated for a general m by considering the number of possible states with

Systematic Approximations to Susceptible-Infectious-Susceptible Dynamics on Networks
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where 1 is the indicator function. We use the pair-wise methodology and nomenclature devel-

oped by Keeling [23], where

½A� :¼ E
P

i1fXiðtÞ¼Aig

h i
;

½AB� :¼ E
P

i;j1fXiðtÞ¼Ai&XjðtÞ¼Bj&Ai;j¼1g

h i
;

ð2Þ

and similarly for larger structures.

Mean-field approximation. The following equations (and (Eq 5) below) can be shown to

follow from (Eq 1) for any network [51]:

d½S�
dt
¼ � t½SI� þ g½I� ;

d½I�
dt
¼ t½SI� � g½I� : ð3Þ

symmetries dim = 2m−1 + 2M−1 − 1 where M = b(m + 1)/2c. Note, in this case,the natural relationship between the motif and

neighbourhood models when m = 2n − 1.

doi:10.1371/journal.pcbi.1005296.g002

Fig 3. Variance about the true expected endemic level of prevalence. As calculated from very large

simulations for two methods of determining the endemic prevalence for an SIS model on a network. Grey

cross refer to taking the simple mean of the prevalence from time-series data, black circles are generated by

fitting to the expected rates of change. Both are calculated once the simulation is close to its endemic state.

Simulations are performed on a small network of 10,000 nodes for a relatively short time to highlight the

differences; k = 3, τ = 1, γ = 1.

doi:10.1371/journal.pcbi.1005296.g003
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Fig 4. Models’ states and transition rates for the systems obtained from the: A) Mean-field approximation (Eq 3) B) Standard pairwise

approximation (Eq 6); C) Mean-field approximation with reinfection counting (Eq 7) and D) Neighbourhood model with n = 2 (Eq 9). Curved

arrows represent transitions due to a force of infection coming from outside the single node or pair. Dashed arrows represent flows to and

from compartments the dynamics of which are tracked but that are not drawn explicitly.

doi:10.1371/journal.pcbi.1005296.g004
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The mean-field approximation for a k-regular network takes these together with the

assumption

½SI� � ðk=NÞ½S�½I� : ð4Þ

Standard pairwise approximation; m = 2. Here we take (Eq 3) together with

d½SS�
dt

¼ 2g½SI� � 2t½SSI� ;

d½SI�
dt

¼ g½II� þ t½SSI� � t½SI� � g½SI� � t½ISI� ;
ð5Þ

noting that [IS] = [SI] and [II] = kN − [SS] − 2[SI]. The standard pairwise approximation, typi-

cally attributed to Kirkwood [52], is

½ABC� �
k � 1

k
½AB�½BC�
½B�

: ð6Þ

Following the work of [25, 30, 31] and [53], the approximation in (Eq 6) is exact for tree-

like SIR epidemics when B = S, which is sufficient to guarantee the exactness of (Eq 5).

Systematic approximation 1: Reinfection counting. Here we count the number of times

p that an individual has been infected up to a maximum of L. Using a straightforward notation

(defined fully in S1 Text) the dynamics (Eq 3) become

d½Sp�

dt
¼ � t½SpI� þ g½Ip� ; 8p;

d½Ip�

dt
¼

t½Sp� 1I� � g½Ip� ; p < L ;

t½Sp� 1I� þ t½SpI� � g½Ip� ; p ¼ L ;

8
<

:

ð7Þ

where the subscript refers to the number of times an individual has been infected. Similarly,

the dynamics (Eq 5) become

d½SpSq�

dt
¼ gð½SpIq� þ ½IpSq�Þ � tð½SpSqI� þ ½ISpSq�Þ ; 8p; q ;

d½SpIq�

dt
¼ g½IpIq� þ t½SpSq� 1I� � t½SpIq�

� g½SpIq� � t½ISpIq� ; q < L; 8p ;

d½SpIL�

dt
¼ g½IpIL� þ t½SpSL� 1I� þ t½SpSLI� � t½SpIL�

� g½SpIL� � t½ISpIL� ; 8p :

ð8Þ

We close these using the triple approximation (Eq 6), with the added notation that lack of a

subscript refers to a sum over all possible infection counts (e.g. [Sp I] = ∑q[Sp Iq] or [Sp Sq I] =

∑r[Sp Sq Ir]).

Systematic approximation 2: Motif models. To carry out a motif-based expansion at

order m we write down the dynamics for the complete subgraphs of size m, whose rates of

change will be functions of the complete subgraphs of sizes m and m + 1; these m + 1 sub-

graphs are then approximated using the general form of the Kirkwood closure, where the size-

m motifs in the size-(m + 1) motif are multiplied, and divided through by the over-counted

size-(m − 1) motifs, then divided through by the over-counted m − 2 motifs and so on until the

Systematic Approximations to Susceptible-Infectious-Susceptible Dynamics on Networks
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size-1 motifs are reached. This involves a large amount of notational development that is given

in full for m = 3 in [54], and for the special case of k = 2 in S1 Text.

Systematic approximation 3: Neighbourhood model, n = 2. Suppose we write [Ay] for

the expected number of nodes in state A with y infectious neighbours, then the dynamics that

follow from (Eq 1) are

d½Sy�

dt
¼ g½Iy� þ lSðkþ 1 � yÞ½Sy� 1� þ gðy þ 1Þ½Syþ1�

� ty½Sy� � lSðk � yÞ½Sy� � gy½Sy� ;

d½Iy�

dt
¼ ty½Sy� þ lIðkþ 1 � yÞ½Iy� 1� þ gðy þ 1Þ½Iyþ1�

� g½Iy� � lIðk � yÞ½Iy� � gy½Iy� :

ð9Þ

Where the forces of infection (λS and λI) refer to the rate of infection acting on a (susceptible)

neighbour of the central node (in state S or I respectively). We then approximate the forces of

infection by making the susceptible neighbour the centre of a new neighbourhood and looking

for the distribution of consistent neighbourhoods:

lS � t

Pk
y¼0
ðk � yÞy½Sy�

Pk
y¼0
ðk � yÞ½Sy�

; lI � t

Pk
y¼0

y2½Sy�
Pk

y¼0
y½Sy�

ð10Þ

This approach can be extended to order n> 2 by considering the dynamics in two parts:

firstly the dynamics internal to each extended neighbourhood; secondly the force of infection

on any susceptible individual at the edge of the extended neighbourhood. Again these forces of

infection are found by considering consistent overlaps of the neighbourhoods centred on the

susceptible neighbour under consideration.

Results

We begin by comparing the growth rates from four approximation models (mean-field, pair-

wise (motif m = 2), pairwise with reinfection counting (L = 50) and neighbourhood (n = 2),

see S1 Text) with those from stochastic simulations on a Cayley tree, for different values of the

transmission rate τ substantially above the critical value that permits successful invasion (Fig

5A, 5C and 5E). Unsurprisingly, the standard ODE model that ignores all elements of network

structure (and hence ignores the negative S-I correlations that build-up and reduce transmis-

sion within a network) vastly over-estimates the early growth rate. Including some element of

local structure, such as that captured by the pairwise (motif m = 2) model substantially

improves the prediction of the growth rate but still overestimates compared to the simulated

value. Finally, adding additional structure, either in terms of the reinfection counting or neigh-

bourhood expansion enhances the accuracy. On closer inspection (Fig 5C and 5E) we observe

that away from the critical invasion point, the reinfection counting model provides a highly

accurate prediction of the early growth rate, outperforming all other approximation methods.

In addition, as indicated by Fig 1, we find that for higher degree networks (k = 6, Fig 5E) all

models, even the standard mean-field ODE model, provide a more accurate estimate of the

true behaviour.

Turning our attention to the prevalence of infection (Fig 5B, 5D and 5F), it is clear that all

approximation models (even the standard mean-field model) perform reasonably well when

comparing their equilibrium values with the numerical estimates of the expected prevalence.

As mentioned before, we also note that the standard pairwise model (m = 2) and reinfection

counting pairwise model (for any L) have the same equilibrium prevalence—in the reinfection

Systematic Approximations to Susceptible-Infectious-Susceptible Dynamics on Networks
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counting model all individuals will eventually be infected more than L times, thereby reaching

the upper limit. However, even taking L very large, the same quasi-equilibrium prevalence is

reached even before a significant fraction of individuals hit the upper reinfection counting

limit L. This is related to the loss of local correlation structure as the network becomes satu-

rated with infection and paths of infection meet through medium and long loops within the

network.

Fig 5. Growth rate (left column) and prevalence (right column) from a range of approximation models.

Standard SIS model (Eq 3), m = n = L = 1); pairwise (motif) model (Eq 5, m = 2); neighbourhood model (Eq 9,

n = 2); and reinfection counting (Eqs 7 and 8, L = 50). These are compared to findings from direct numerical

simulation (Eq 1, black dots) for an SIS infection on a simple k-regular network. The upper panels show the

absolute value of (A) the growth rate and (B) the prevalence as the transmission rate across a link (τ) is varied,

for k = 3. The lower four panels show the difference between the approximations and the results from

stochastic simulation (C and D: k = 3; E and F: k = 6). For k = 6 (panels E and F) additional smaller τ values

(joined with dotted lines) are considered as the critical value that allows persistence is reduced compared to

k = 3. Numerical simulations are performed on a 100,000 node network and run for sufficiently long that

confidence intervals are negligible. A recovery rate γ = 1 is assumed throughout.

doi:10.1371/journal.pcbi.1005296.g005
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Comparing more closely results from the approximation models against simulated preva-

lence (Fig 5D and 5F) shows that the neighbourhood model (n = 2) outperforms the pairwise

models (m = 2). This is to be expected as the neighbourhood model captures higher-order spa-

tial structure within the network, effectively capturing the status of k + 1 connected individu-

als. However, all approximation models perform worse as the expected prevalence drops and

the critical transmission rate is approached.

This comparison raises the question of how the motif and neighbourhood approximations

perform as m and n are increased, incorporating more of the local network. We consider two

cases. Firstly, k = 3 where only limited extensions of the models are feasible (m = 3, m = 4 and

n = 3) as the dimension of the systems rapidly becomes large and the mathematical formula-

tions are unwieldy. Secondly k = 2 (which we note is a special case [55, 56]) where neighbour-

hood and motif models are equivalent for m = 2n − 1, and where we can readily extend the

approximation methods to extremely high orders (S1 Text). Fig 6 demonstrates the impact of

taking these higher order approximations. Considering the k = 2 case (when the network is a

linear system), increasing the order (m = 1 to m = 16) leads to a drop in endemic prevalence

and convergence of the critical transmission rate to the estimated value (vertical line). At the

Fig 6. Endemic prevalence of infection for an SIS model for successively higher-order

approximations. The focus is on the the value of the transmission rate near the critical point (shown as

vertical dashed line), when k = 2 (A and B) and k = 3 (C, D). The errors at the critical point for the k = 2 degree

network (B) show very slow convergence in the order of the approximation m; neighbourhood and motif model

results coincide when m = 2n − 1 and are not reported. For k = 3 degree network, the errors at the estimated

critical point (D) show rapid convergence as the models are extended to higher order (increasing m and n).

The error in the motif model scales like O(m−2.71) while for the much higher dimensional neighbourhood model

the error scale like O(n−3.24).

doi:10.1371/journal.pcbi.1005296.g006
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critical transmission value (estimated as τC� 1.6489 [57]) the error scales extremely slowly

with the order of the model (approximately O(m−0.271)), Fig 6B). When returning to the case

k = 3 that has been the main focus of this work (where we estimate τC = 0.544 from numerous

large scale simulations) both the approximation methods behave far better (motif error

*O(m−2.7); neighbourhood error *O(n−3.2)), and offer reliable predictions of endemic preva-

lence even quite close to the critical point as the order of the approximations increases.

Discussion

Moment closure approximations for the spread of infections on networks can be highly

informative, especially when uncertainty in the underlying network structure precludes

detailed simulation of a specific case. By generating relatively simple, tractable models (in the

form of ODEs), an intuitive understanding can be developed for the spread of infection that

does not rely on precise measurement of network structure. This approach has been highly

successful for infections with SIR-type dynamics [23–25], where recovery leads to lifelong

protection; however, for infections that obey the SIS paradigm and can therefore be con-

tracted multiple times this closure approach does not have the same level of precision [40,

45, 48, 49]. Most sexually transmitted infections are well approximated by SIS-type dynam-

ics, and modelling sexually transmitted infections requires an appreciation of the dynamic

implications of the sexual contact network, due to the relatively low numbers of sexual con-

tacts at any time. Therefore, although closure approximations for SIS-type infections on net-

works is highly challenging, it is nevertheless an area of considerable applied importance.

Several other recent studies have considered the behaviour of SIS models on networks [42,

45, 49–51, 54, 58–61] showing that this is a field of active research where there are substantial

challenges in establishing rigorous analytical results and in matching approximations, simu-

lations and real data.

In this paper we have mainly focussed on homogeneous random networks where each indi-

vidual has exactly k = 3 contacts, and all contacts are considered bi-directional. This restricts

our attention to the highly challenging case of small and homogeneous degree, as higher mean

degree or greater heterogeneity leads to infection prevalences that are closer to mean-field pre-

dictions that ignore the local correlations that arise from network structure. For homogeneous

random networks of this type we show that, as expected, pairwise approximations (that con-

sider the state of two connected individuals) outperform standard models (that ignore any cor-

relations within the network), while neighbourhood-based models (originally called ‘effective

degree models’ [22]—that consider the state of all neighbours around a central individual) out-

perform pairwise models (Fig 5A and 5B), and in turn extended neighbourhood models (that

consider neighbours of neighbourhoods) are even more accurate (Fig 6C). This is unsurprising

since closing the approximation at higher orders, and therefore essentially modelling more of

the underlying local behaviour, is always likely to provide a more accurate description of the

population-scale dynamics.

We also investigated extensions to the standard closure models, including a count of the

number of times an individual has been infected. This removes some of the inaccuracies that

pairwise (and other) approximation models suffer from when trying to capture the early stages

of infection in a largely susceptible population. The results of this improvement to the pairwise

model generates far better predictions for the early growth-rate of infection, offering a substan-

tial improvement over both standard pairwise models and neighbourhood models (Fig 5). It

would therefore seem prudent, although dimensionally-challenging, to combine reinfection

counting with closure models that operate at the whole neighbourhood scale (or even larger)

thereby enabling an approximation to both the early and endemic dynamics. However, it may
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be far simpler to use the model most appropriate to the setting, depending on whether it is

early growth or endemic prevalence that is required.

With moment closure models there is always the temptation to include higher order terms

in the approximation and close at one order higher. We considered higher-order approxima-

tions to SIS dynamics on both k = 3 and k = 2 networks, noting that the SIS model on k = 2 is

identical to classic 1-dimensional contact process [55, 56]. For the 1-dimensional k = 2 case,

we are able to extend the modelling approach to much higher orders, but find that these clo-

sures still overestimate the prevalence near to the critical point. For the k = 3 network, we are

only able to extend the neighbourhood model one additional step (considering neighbours of

neighbours). However, as we capture the status of more contacts around the central individual,

this extended neighbourhood model provides a very accurate approximation to the SIS behav-

iour, although it is complex to construct and relatively high-dimensional.

Throughout we have focused on expanding our approximations to ever higher orders, but

the upper bounds to what can be achieved differ between methods. For the reinfection count-

ing model (where dimension of the system is 2L2 − 1 and hence grows relatively slowly with L)

taking L past 50 had very little effect, so further expansion was irrelevant. For degree k = 2 net-

works, where motif and neighbourhood expansions are equivalent, the limiting factor was the

dimension of the system. The ODEs were simulated up to m = 16 at which point the dimension

is 2m−1 + 2M−1 − 1 = 32,895 (where M = d(m + 1)/2e = 8). For degree k = 3 the main limitation

is not the dimension of the system but the complexity of closure approximations which utilise

the probabilities of overlapping subgraphs; considering approximation higher than m = 4 or

n = 3 is possible, but the gains in accuracy may not be worth the considerable effort.

Finally, we consider the fact that sexual networks are highly heterogeneous (with some indi-

viduals having many more life-time partners than others [3, 62]). This risk heterogeneity is

important for understanding who becomes infected, but the action of this heterogeneity is

readily captured by traditional risk-structured mean-field models [63, 64] that ignore network

correlations (Fig 1). Extending all the models discussed in this paper to capture degree hetero-

geneity is possible although one needs to specify, in addition to the degree distribution, a

degree correlation matrix—the choice of which can have a dramatic impact on the disease

dynamics [9]. Furthermore, the dimensionality of the system can rapidly exceed currently

available computational resources due to the combinatorial number of possible configurations,

especially for the neighbourhood model. For example, considering neighbourhood models

n = 2: 5 equations are needed for k = 2 networks and 7 equations for k = 3 networks; however

when the degree is heterogeneous far more equations are required, in a network where all

nodes are degree 1 or 2 then 27 equations are needed but if nodes can be degree 1, 2 or 3 then

the number of equations rises to 165. For neighbourhood models approximated at the next

order (n = 3) the effect is even more dramatic; a heterogeneous networks where nodes can be

degree 1, 2 or 3 requires 65,015 equations. We note, however, realistic sexual networks may

have a large proportion of population with relatively few connections and where infections

spread poorly; this leads us to believe that large sections of sexual networks may behave more

like the low degree (k = 2 or k = 3) situations considered here where there is a strong need to

accurately capture network correlations. As heterogeneity increases, pairwise models, which

do not suffer such a pathological growth in dimensionality, become relatively accurate and, as

was illustrated in Fig 1, even simple ODE models can be highly effective at capturing the aggre-

gate prevalence in highly heterogeneous populations. Depending on the applied problem, we

argue that a combination of the systematic approximations here can be used as a trade-off

between accuracy and computational complexity.

Even if degree heterogeneity is captured by models, the network structure and infection

dynamics used here are extreme simplifications of real-world behaviour: in particular, sexual
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networks are dynamic (with most individuals practising serial monogamy [45]), and the natu-

ral history of infection is often far from the Markovian process with only two states (S and I)

discussed here. In reality, for most STIs, there is likely to be a latent period following infection;

detection, treatment and recovery will follow (non-Markovian) processes; and treatment is

likely to offer some limited protection. These facets will act to prevent rapid reinfection of indi-

viduals, which, like heterogeneity, should improve the accuracy of approximation models.

Future work should clearly focus on developing more sophisticated and realistic network-

based simulation models for STIs and comparing these to a range of approximation methods;

however, we believe that the careful exploration of the accuracy of approximate models per-

formed here is a key step in this process.

Supporting Information

S1 Text. Technical model definitions and methods. This Supplementary Material contains

further technical model definitions and methods. Equations are numbered in continuation

from the main text. Figures references and citations refer to the main text.

(PDF)
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36. Karrer B, Newman MEJ, Zdeborová L. Percolation on sparse networks. Physical Review Letters. 2014;

113(20):208702. doi: 10.1103/PhysRevLett.113.208702 PMID: 25432059

37. Wilkinson RR, Sharkey KJ. Message passing and moment closure for susceptible-infected-recovered

epidemics on finite networks. Physical Review E. 2014; 89(2):022808. doi: 10.1103/PhysRevE.89.

022808 PMID: 25353535

38. Kamp C. Untangling the Interplay between Epidemic Spread and Transmission Network Dynamics.

PLoS Computational Biology. 2010; 6(11):1–9. doi: 10.1371/journal.pcbi.1000984

39. Leung KY, Diekmann O. Dangerous connections: on binding site models of infectious disease dynam-

ics. Journal of Mathematical Biology. 2016;. doi: 10.1007/s00285-016-1037-x PMID: 27324477

40. Ferguson NM, P GG. More realistic models of sexually transmitted disease transmission dynamics—

Sexual partnership networks, pair models, and moment closure. Sexually Transmitted Diseases. 2000;

27:600–609. PMID: 11099075

41. Berger N, Borgs C, Chayes JT, Saberi A. On the spread of viruses on the internet. In: Proceedings of

the 16th Symposium on Discrete Algorithms; 2005.

42. Durrett R. Random Graph Dynamics. Cambridge University Press; 2007. doi: 10.1017/

CBO9780511546594

43. Chatterjee S, Durrett R. Contact processes on random graphs with power law degree distributions have

critical value 0. The Annals of Probability. 2009; 37(6):2332–2356. doi: 10.1214/09-AOP471

44. Durrett R. Some features of the spread of epidemics and information on a random graph. Proceedings

of the National Academy of Sciences. 2010; 107(10):4491–4498. doi: 10.1073/pnas.0914402107

PMID: 20167800

45. Eames KTD, Keeling MJ. Modeling dynamic and network heterogeneities in the spread of sexually

transmitted diseases. Proceedings of the National Academy of Sciences. 2002; 99(20):13330–13335.

doi: 10.1073/pnas.202244299 PMID: 12271127

46. Edwards R, Kim S, van den Driessche P. A multigroup model for a heterosexually transmitted disease.

Mathematical Biosciences. 2010; 224(2):87–94. doi: 10.1016/j.mbs.2009.12.008 PMID: 20043928

47. Molloy M, Reed B. A Critical-Point for Random Graphs with a Given Degree Sequence. In: Random

Structures & Algorithms. vol. 6. Wiley Online Library; 1995. p. 161–179. doi: 10.1002/rsa.3240060204

48. Bauch CT. A versatile ODE approximation to a network model for the spread of sexually transmitted dis-

eases. Journal of Mathematical Biology. 2002; 45:375–395. doi: 10.1007/s002850200153 PMID:

12424529

49. Taylor M, Simon PL, Green DM, House T, Kiss IZ. From Markovian to pairwise epidemic models and

the performance of moment closure approximations. Journal of Mathematical Biology. 2012; 64:1021–

1042. doi: 10.1007/s00285-011-0443-3 PMID: 21671029

50. Taylor TJ, Kiss IZ. Interdependency and hierarchy of exact and approximate epidemic models on net-

works. Journal of Mathematical Biology. 2014; 69:183–211. doi: 10.1007/s00285-013-0699-x PMID:

23739839

51. Simon PL, Taylor M, Kiss IZ. Exact epidemic models on graphs using graph-automorphism driven lump-

ing. Journal of Mathematical Biology. 2011; 62(4):479–508. doi: 10.1007/s00285-010-0344-x PMID:

20425114

52. Kirkwood JG. Statistical Mechanics of Fluid Mixtures. Journal Chemical Physics. 1935; 3:300. doi: 10.

1063/1.1749657

53. Miller JC, Kiss IZ. Epidemic Spread in Networks: Existing Methods and Current Challenges. Mathemati-

cal Modelling of Natural Phenomena. 2014; 9(2):4–42. doi: 10.1051/mmnp/20149202 PMID: 25580063

54. House T, Davies G, Danon L, Keeling MJ. A motif-based approach to network epidemics. Bulletin of

Mathematical Biology. 2009; 71(7):1693–1706. doi: 10.1007/s11538-009-9420-z PMID: 19396497

55. Durrett R. On the Growth of One Dimensional Contact Processes. The Annales of Probability. 1980;

8:890–907. doi: 10.1214/aop/1176994619

Systematic Approximations to Susceptible-Infectious-Susceptible Dynamics on Networks

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005296 December 20, 2016 17 / 18

http://dx.doi.org/10.1214/EJP.v18-2557
http://dx.doi.org/10.1002/rsa.20575
http://dx.doi.org/10.1371/journal.pcbi.1003352
http://dx.doi.org/10.1098/rsif.2011.0403
http://www.ncbi.nlm.nih.gov/pubmed/21976638
http://dx.doi.org/10.1103/PhysRevE.82.016101
http://www.ncbi.nlm.nih.gov/pubmed/20866683
http://dx.doi.org/10.1103/PhysRevLett.113.208702
http://www.ncbi.nlm.nih.gov/pubmed/25432059
http://dx.doi.org/10.1103/PhysRevE.89.022808
http://dx.doi.org/10.1103/PhysRevE.89.022808
http://www.ncbi.nlm.nih.gov/pubmed/25353535
http://dx.doi.org/10.1371/journal.pcbi.1000984
http://dx.doi.org/10.1007/s00285-016-1037-x
http://www.ncbi.nlm.nih.gov/pubmed/27324477
http://www.ncbi.nlm.nih.gov/pubmed/11099075
http://dx.doi.org/10.1017/CBO9780511546594
http://dx.doi.org/10.1017/CBO9780511546594
http://dx.doi.org/10.1214/09-AOP471
http://dx.doi.org/10.1073/pnas.0914402107
http://www.ncbi.nlm.nih.gov/pubmed/20167800
http://dx.doi.org/10.1073/pnas.202244299
http://www.ncbi.nlm.nih.gov/pubmed/12271127
http://dx.doi.org/10.1016/j.mbs.2009.12.008
http://www.ncbi.nlm.nih.gov/pubmed/20043928
http://dx.doi.org/10.1002/rsa.3240060204
http://dx.doi.org/10.1007/s002850200153
http://www.ncbi.nlm.nih.gov/pubmed/12424529
http://dx.doi.org/10.1007/s00285-011-0443-3
http://www.ncbi.nlm.nih.gov/pubmed/21671029
http://dx.doi.org/10.1007/s00285-013-0699-x
http://www.ncbi.nlm.nih.gov/pubmed/23739839
http://dx.doi.org/10.1007/s00285-010-0344-x
http://www.ncbi.nlm.nih.gov/pubmed/20425114
http://dx.doi.org/10.1063/1.1749657
http://dx.doi.org/10.1063/1.1749657
http://dx.doi.org/10.1051/mmnp/20149202
http://www.ncbi.nlm.nih.gov/pubmed/25580063
http://dx.doi.org/10.1007/s11538-009-9420-z
http://www.ncbi.nlm.nih.gov/pubmed/19396497
http://dx.doi.org/10.1214/aop/1176994619


56. Griffeath D. The basic contact processes. Stochastic Processes & their Applications. 1981; 11:151–

185. doi: 10.1016/0304-4149(81)90002-8

57. de Mendonca J. Precise critical exponents for the basic contact process. J Phys A: Math Gen. 1999; 32:

L467–L473.

58. Floyd W, Kay L, Shapiro M. A Covering-Graph Approach to Epidemics on SIS and SIS-Like Networks.

Bulletin of Mathematical Biology. 2012; 74(1):175–189. doi: 10.1007/s11538-011-9684-y PMID:

21989564

59. Lee HK, Shim PS, Noh JD. Epidemic threshold of the susceptible-infected-susceptible model on com-

plex networks. Physical Review E. 2013; 87:062812. doi: 10.1103/PhysRevE.87.062812 PMID:

23848734

60. Wilkinson RR, Sharkey KJ. An Exact Relationship Between Invasion Probability and Endemic Preva-

lence for Markovian SIS Dynamics on Networks. PLoS ONE. 2013; 8(7):1–8. doi: 10.1371/journal.

pone.0069028 PMID: 23935916

61. Simon PL, Kiss IZ. Super compact pairwise model for SIS epidemic on heterogeneous networks. Jour-

nal of Complex Networks. 2016; 4:187–200. doi: 10.1093/comnet/cnv018

62. Gupta S, Anderson RM, May RM, et al. Networks of sexual contacts: implications for the pattern of

spread of HIV. AIDS. 1989; 3(12):807. PMID: 2517202

63. Anderson RM, May RM. Infectious diseases of humans. Oxford University Press; 1992.

64. Keeling MJ, Rohani P. Modeling Infectious Diseases in Humans and Animals. Princeton University

Press; 2008.

Systematic Approximations to Susceptible-Infectious-Susceptible Dynamics on Networks

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005296 December 20, 2016 18 / 18

http://dx.doi.org/10.1016/0304-4149(81)90002-8
http://dx.doi.org/10.1007/s11538-011-9684-y
http://www.ncbi.nlm.nih.gov/pubmed/21989564
http://dx.doi.org/10.1103/PhysRevE.87.062812
http://www.ncbi.nlm.nih.gov/pubmed/23848734
http://dx.doi.org/10.1371/journal.pone.0069028
http://dx.doi.org/10.1371/journal.pone.0069028
http://www.ncbi.nlm.nih.gov/pubmed/23935916
http://dx.doi.org/10.1093/comnet/cnv018
http://www.ncbi.nlm.nih.gov/pubmed/2517202

