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A B S T R A C T

Multispectral optoacoustic tomography (MSOT) is an emerging imaging modality, which is able to capture data
at high spatiotemporal resolution using rapid tuning of the excitation laser wavelength. However, owing to the
necessity of imaging one wavelength at a time to the exclusion of others, forming a complete multispectral image
requires multiple excitations over time, which may introduce aliasing due to underlying spectral dynamics or
noise in the data. In order to mitigate this limitation, we have applied kinematic and filters to multispectral
time series, providing an estimate of the underlying multispectral image at every point in time throughout data
acquisition. We demonstrate the efficacy of these methods in suppressing the inter-frame noise present in dy-
namic multispectral image time courses using a multispectral Shepp-Logan phantom and mice bearing distinct
renal cell carcinoma tumors. The gains in signal to noise ratio provided by these filters enable higher-fidelity
downstream analysis such as spectral unmixing and improved hypothesis testing in quantifying the onset of
signal changes during an oxygen gas challenge.

1. Introduction

Imaging has become a powerful tool in diverse fields such as med-
ical diagnostics, high-throughput screening, and remote sensing [1–11].
The imaging toolkit is becoming progressively more sophisticated,
moving beyond spatial discrimination with additional dimensions:
Spectral imaging allows the capture of multiple imaging channels, in
the hope of using the spectral fingerprints of underlying components to
learn more about the system under study [1,7–10,12–19]; and dynamic
imaging captures many single images over time in order to resolve
changes in the observed system [12,13,20–24]. Imaging methods are
subject to inherent trade-offs between spatial, spectral, and temporal
resolution, as well as the discrimination of signal versus noise. The
quality of data is fixed once the data have been acquired by instrument
hardware, but it is possible to take advantage of the inherent coherence
and structure within a dataset in order to mitigate the effects of noise
and finite sampling.

Multispectral optoacoustic tomography (MSOT) is an imaging mod-
ality, characterized by the use of optical excitation and ultrasonic detec-
tion, which is able to capture spectral images at high spatial and temporal
resolution [7,17,20,22]. MSOT intrinsically acquires data based on se-
quential wavelength excitation such that images are captured one channel
at a time. There may therefore be substantial spectral distortion due to

aliasing in imaging scenarios where the rate of spectral dynamics is
comparable to the multispectral sampling rate. Further exacerbating
aliasing is the presence of noise, which may vary spatially, temporally, and
spectrally, resulting in the reduction of measurement fidelity.

One experimental motif which exemplifies these difficulties is the
gas-breathing challenge, wherein the inhaled gas of a subject under
observation is varied in order to induce a change in the subject’s blood
oxygen saturation (SO2) [25,26]. In order to determine or estimate the
oxygen saturation by MSOT, images must be acquired at multiple wa-
velengths and spectrally unmixed to provide oxy- and deoxy-he-
moglobin images, whereupon the ratio of oxy-hemoglobin to total he-
moglobin provides an estimate of the oxygen saturation of blood. The
propagation of image noise through this process can result in extremely
noisy SO2 estimates, limiting the amount of useful information which
can be extracted from noisy data.

It is therefore desirable to devise a scheme to mitigate the cor-
rupting effects of noise while still accurately capturing dynamic phe-
nomena. Similarly, it is desirable to be able to perform such filtering in
an online manner, as data are acquired, such that the filtering may be
implemented for real-time imaging or efficient post-acquisition ana-
lysis. This last criterion imposes a strong restriction on the complexity
of any algorithm, since many photoacoustic imaging systems gather
data at rates exceeding 10 Hz ( <t 0.1 s).
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We briefly establish general notation for equations throughout this
work: k is the current time index, x refers to the states of interest, here
the pixel values for the spectral image; zk is the acquired data at time k,
xk k| 1 is the estimate of x at time k considering all data up to and in-
cluding the data at time k 1, rk is the so-called prior residual, and xk k|
is the estimate of x after integration of the data acquired at time point k.

A simple, efficient approach to recursively estimating the state of a
multispectral image is to perform online averaging on a per-channel
basis according to the following update equations:

=r z xk k k k| 1 (1)

= +x x
k

r1
k k k k k| | 1 (2)

For stationary distributions, online averaging performs exactly as
the usual average, converging to the true mean as O N( ), i.e., the
variance of sampling noise is proportional to the square root of the
number of samples averaged [27]. For non-stationary distributions such
as those encountered in dynamic imaging, xk k| will not, in general,
converge to the true mean even after acquisition of an infinite number
of samples. In the context of a gas challenge, xk k| will be heavily biased
towards the initially acquired data and will not effectively follow dy-
namics.

To accommodate nonstationary distributions, the
k
1 term may be

replaced with a constant [0,1]. This gives the averaging process a
time-invariant form which may be analyzed as a recursive filter, often
referred to as the exponentially weighted moving average or filter:

= +x x rk k k k k| | 1 (3)

Observation indicates that varying between 0 and 1 biases the
estimate of x towards the previous estimate and the new data, respec-
tively. 0 converges to the same structure as the online average as
the sampling time tends to infinity. Conversely, 1 ignores all pre-
vious data in favor of the new data, but without any noise rejection.
This trade-off between noise rejection and dynamical sensitivity is ir-
relevant if there are no underlying dynamics, but for values of < 1 the
estimate will always lag the true mean of dynamic systems [28]. The
limiting case of = 1 results in the filter taking on the form of a sliding-
window (SW) filter, where old data is entirely overwritten by new data
as it is acquired:

=x zk k k| (4)

Clearly, a simple filter is unable to fully accommodate nonsta-
tionary data and is therefore generally inappropriate for dynamic
imaging. Many more sophisticated algorithms such as the broad class of
Bayesian filters can incorporate large amounts of prior knowledge, in-
cluding the presence of dynamics, and have exceptional performance in
tracking the state of dynamical systems [28,29]. However, Bayesian
filters can require large amounts of data to undergo computationally
intensive processing and are particularly challenging to apply to spec-
tral images due to the large size of associated datasets.

Though full Bayesian filters are computationally prohibitive, they
may be simplified by assuming Gaussian noise statistics and linear
dynamics. These so-called Kalman filters operate in a two-stage pre-
diction-correction cycle, wherein the prediction phase propagates the
state estimate in time according to the dynamical model and the cor-
rection phase incorporates new data observations into the state esti-
mate. Kalman filters have been shown to be useful in integrating multi-
domain measurements, including multi-channel images, due to their
inherently dynamical nature [30–34]. Nevertheless, the size of the
covariance matrices necessary for the operation of Kalman filters re-
quires offline processing or substantial computing resources.

If the assumption is made that the Kalman filter is operating at
steady state, it degenerates to a form which is temporally invariant.
Further assumption that the state of interest has a known second-order
process variance (i.e., that the process noise is in the acceleration term
of a Newtonian kinematic model) yields a family of recursive filters

indexed by the order of their Taylor series expansion, with associated
constant coefficients [35,36]. Here, we describe the form of the 1st and
2nd order filters, the former of which is the previously-described filter
and the latter correspondingly named the filter.

As before, the state of interest is denoted by x , with first temporal
derivative given by x . The measurement noise variance, describing the
‘noisiness’ of each measurement, is denoted by ,n with units de-
termined by the measurement device (here arbitrary units a.u.), and the
process noise variance, describing the volatility of the underlying dy-
namics, as w with units (a.u./s2). We assume that each pixel evolves
independently and thus the filter is applied to each pixel of the acquired
image separately.

The filter coefficients may be optimally found using prior knowl-
edge of t , n, and w via a single scalar parameter, the tracking index:

= t( )w

n

2

(5)

We assume that the values of t , n, and w are homogenous across
the entire image such that each image has a single tracking index. In
practice, these parameters may vary between channels and over time,
which we address in Section 4.

The filtering equations for an filter are identical to the ex-
ponentially weighted moving average described in Eqs. 1 and 3. As the
filter tracks only position information, the prediction step is degen-

erate and only the correction phase updates the state estimate:
Prediction

=x xk k k k| 1 1| 1 (6)

Correction

= +x x rk k k k k k| | 1 (7)

The filtering equations for an filter propagate the state estimate
over time by assuming constant-velocity dynamics and are:

Prediction

= +x x x tk k k k k k| 1 1| 1 1| 1 (8)

=x xk k k k| 1 1| 1 (9)

Correction

= +x x rk k k k k k| | 1 (10)

= +x x
t

rk k k k
k

k| | 1 (11)

The tracking index formalism enables analytic determination of the
and coefficients (Appendix A) in an optimal manner, and requires

knowledge of only three parameters t , n, and w, which may them-
selves be determined from prior knowledge of the system, or updated
recursively by examining the prior and posterior residuals of the fil-
tering process [37]. In environments where the sampling rate is in-
homogeneous, such as when oversampling each channel before sam-
pling another, t is variable. This requires that the tracking index and
thus the and coefficients must be updated at each time point.

We compare the and filters against the sliding window (SW)
filter equivalent to = 1: A circular buffer of data is maintained and
updated on a per-channel per-time-point basis as data are acquired,
following a ‘sample and hold’ pattern. There is thus no incorporation of
previous data into the current estimate, nor is there any accommoda-
tion for dynamic evolution of the state.

2. Methods

2.1. Numerical phantom

We developed a dynamic, multispectral numerical phantom to act as
a known ground-truth for testing the ability of the various filters to
track spectral changes while rejecting noise. The full process of creating
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the phantom is described in Appendix B and illustrated in Fig. 1. Briefly,
a Shepp-Logan phantom [38] was modified to include time-varying
concentrations of endmembers with known spectra. Sampling the
phantom image at specific wavelengths at each point in time provided a
sample train to emulate the acquisition of one channel at a time. We
directly sampled the phantom, rather than simulating the photoacoustic
imaging process, to limit the possibility of introducing implementation
and modeling errors. After sampling, zero-mean white Gaussian noise
with standard deviation = a u500 . . was added to each image, corre-
sponding to an SNR of approximately 20. The dynamics of the phantom
were designed to mimic a gas challenge due to the variety of states and
rates of change which can be present in a single time course.

2.2. Experimental data

Three mice from ongoing studies were used for in vivo validation,
with all data acquired using an MSOT InVision 256-TF photoacoustic
imaging system [39] (iThera Medical GmbH, Munich, Germany). The
water bath used for imaging was maintained at a temperature of 35° C
for all experiments. All animal work was conducted in accordance with
the UT Southwestern Institutional Animal Care and Use Committee
guidelines as well as all superseding federal guidelines. Two distinct
wavelength sampling patterns were used to demonstrate the applic-
ability of the filters to general acquisition conditions.

The first mouse was a female BALB/c mouse (UT Southwestern Animal
Breeding Core) with a RENCA-luc [40] mouse kidney tumor implanted in
the right kidney following published protocols [41], with data acquired 28
days after implantation. Prior to imaging, the mouse was shaved and any
remaining hair was removed from the animal using depilation cream. Five
wavelengths were sampled [λ=700, 730, 756, 800, 850 nm] to corre-
spond with major features of the hemoglobin spectrum, including local
spectral peaks and the isosbestic point. Each wavelength was oversampled
5 times and averaged prior to image reconstruction, leading to an overall
acquisition time of 2.5 s per multispectral sampling cycle. All images were
acquired at the same axial cross-section. During imaging, the anesthetized
mouse underwent a gas challenge from air-oxygen-air, with 10.5min on
air, 10min on oxygen, followed by another 5min on air, while breathing
2.0 % isoflurane at a rate of 2 L/min.

The remaining two mice were female Hsd:Athymic Nude-Foxn1nu mice
(Envigo) with XP373 human renal cell carcinoma tumor xenografts [42]
implanted in the right kidney following published protocols [41], with two
imaging sessions acquired for Mouse #1 at 31 and 36 days, and one ses-
sion at for Mouse #2 at 31 days after tumor implantation. Prior to ima-
ging, hair was removed from the animal using depilation cream. Seven
wavelengths were sampled sequentially [λ=680, 734, 757, 798, 850,
922, 980 nm] to correspond with major features of the hemoglobin spec-
trum, including local spectral peaks and the isosbestic point. Each wave-
length was sequentially oversampled 3 times and averaged prior to image

Fig. 1. Workflow for creating numerical phantom. A) A Shepp-Logan phantom was created with ellipses defined by various constant values for total hemoglobin
[Hbtot] and time-varying SO2. The time-varying images of [Hb] and [HbO2] were then calculated (B) and their spectra used to create time-varying spectral images
(C). The spectral image was then sampled at predetermined wavelengths to create a time course of single-wavelength images (D), which were used as input for the
filtering methods described in this work.
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reconstruction, leading to an overall acquisition time of 2.1 s per multi-
spectral sampling cycle. All images were acquired at the same axial cross-
section. During imaging, each anesthetized mouse underwent a gas
breathing challenge from air-oxygen-air, with 5min on each gas, while
breathing 2.0 % isoflurane at a rate of 2 L/min.

2.3. Image reconstruction

After acquisition, each single-wavelength image was preprocessed by
correcting for laser power variation and deconvolving the signal impulse
response using Wiener deconvolution with a regularization constant of
0.001. Each image was then reconstructed using a curve-driven model
matrix as a forward model [43] and a non-negative accelerated projected
conjugate gradient method as the inverse solver [44].

2.4. Multispectral state filtering

All analysis was performed using code developed in MATLAB
2017b, with production code available at https://git.biohpc.swmed.
edu/PIRL/kalata-filters-matlab. Archived version is available at
https://doi.org/10.5281/zenodo.3836682.

The single-wavelength images from the numerical and experimental
datasets were used as input to each of the SW, , and filters. For each
method, an × ×N N Ny x c multispectral image with ×N Ny x pixels per
channel and Nc channels was maintained, to store each filter’s estimate
of the multispectral image. At each point in time, all channels of the

entire multispectral image were updated according to the prediction
step for each method, using either Eq. 6 for the SW and filters, or Eqs.
8 and 9 for the filter. Following the prediction step, a single-channel
image, acquired at wavelength k, was loaded into memory, corre-
sponding to zk in Eq. 1. This image was used to update channel k in
each filter’s multispectral state estimate, using either Eq. 7 for the SW
and filters or Eqs. 10 and 11 for the filter.

The numerical phantom data were filtered using = 300w
a u

s
. .
2 ,

= a u700 . .n , the RENCA-luc data with = 2w
a u

s
. .
2 , = a u70 . .n , and

the XP373 data with = 1w
a u

s
. .
2 , = a u120 . .n

2.5. Post-processing

At each time point, the multispectral images estimated by each fil-
tering method were spectrally unmixed using an unconstrained linear
model to yield images of oxy- and deoxy-hemoglobin. The total he-
moglobin and oxygen saturation in each pixel were estimated as:

= =
+

SO HbO
Hb

HbO
Hb HbO

[ ]
[ ]

[ ]
[ ] [ ]

MSOT
MSOT

tot
MSOT

MSOT

MSOT MSOT2
2 2

2 (12)

We note that the resultant values are estimates, and are thus in-
dicated by the superscript MSOT as used by others [26]; truly quanti-
tative measures of endmember concentration would require additional
processing using, e.g., fluence correction [18,19,45,46] or Bayesian
methods [47]. In general, the filtering methods presented here cannot
correct for errors in quantitation due to modelling errors.

Fig. 2. Effect of each filter on dynamic images in numerical phantom. A) Single-wavelength images (left) and their differences (right) from the known ground truth
image (left, top) at the final time point of the simulated gas challenge. A clear reduction in noise is seen for both the and filters when compared to the SW filter.
The filter suffers from a visible artifact due to its intrinsic time lag, as indicated by the yellow arrow. B) Image showing ROI for signal intensity calculation in C. C)
Mean signal intensity over the yellow ROI in B for each time point during challenge. Conspicuous lag is visible in the filtered data. Red: SW, blue: , green: ,
black: Ground truth. D)Mean squared error of entire multispectral image at each point in time. Degradation of filter performance is clearly seen accompanying gas
challenge changes. E) Structural similarity of entire multispectral image at each point in time, matching D.
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2.6. Quantification methods

2.6.1. Image quality
The deviation of each estimated multispectral image from the

known ground truth image was calculated using two metrics: the mean-
squared error (MSE) and the structural similarity index (SSIM).

The MSE was used to examine the effects of each approach on noise
rejection, but includes some deviation due to differences in the image
mean. It is calculated as:

=
ˆ

MSE
x x

N

( )
i j ij ij

pixels

,
2

(13)

The SSIM was used to examine images on a holistic basis, ac-
counting for structure, noise, and constant value offsets. It is calculated
as:

=
+ +

+ + + +ˆ ˆ ˆ
ˆ ˆ

SSIM
µ µ C C

µ µ C C
(2 )(2 )

( )( )xx
x x xx

x x x x

1 2
2 2

1
2 2 2 (14)

where µx and ˆµ x represent the mean of each image, x
2 and x̂

2 represent
the variance of each image, and x̂x represents the covariance between
the two images. C1 and C2 are positive constants chosen to improve
numerical stability and are related to the dynamic range of the images.

2.6.2. ROI analysis
For the phantom data, a 5× 5 region of interest (ROI) was defined

in the same location for all images within ellipse (e) (Appendix B, Table
B1), and the average value within that region determined for all time
points for each channel. This was performed for all filtering methods,
for each channel of the multispectral image, as well as for each of the
[Hb]MSOT, [HbO2]MSOT, [Hbtot]MSOT, and SO2 MSOT images, to yield time
courses of each parameter.

Fig. 3. Effect of each filter on time courses of derived parameters. A) Derived images from filtered data for each filter. The effects of noise in the multispectral images
are magnified in the unmixed data. Filtering prevents noise from being propagated to this stage of analysis, leading to qualitatively clearer images for both the and

filters. B) Difference of each derived parameter image from the corresponding ground truth (A, top row). Both and demonstrate decreased noise relative to
SW, but the filter’s lag has resulted in an inaccurate unmixing result, overestimating [HbO2] and underestimating [Hb] as indicated by yellow arrows. C) Time
courses of each parameter for different filters. Red: SW, blue: , green: , black: Ground truth. Though dynamic changes cause the filter to deviate from ground
truth, it has excellent performance in filtering the constant [Hbtot] channel.
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Manually selected ROIs were defined over the tumor and spine for
each mouse and used as the ROIs for both single-channel data and the
unmixed parameters. Within each ROI, for each filter, for each para-
meter, at each time point, a histogram was calculated using 256
equally-spaced bins, with lower and upper limits defined by the 0.1st
and 99.9th percentile of the values for that parameter in that ROI for all
time points. Each one-dimensional histogram was then used as a
column of pixels in a dynamic histogram image. Three time points for
each tumor type were chosen prior to, during, and after the transition
period from air to oxygen. For each condition, the histograms from 11
time points centered on those selected time points were averaged to-
gether and used as representative time slices of the dynamic histogram
image to improve visualization.

Further analysis was performed on each filter to compare the sta-
tistical effects of each, and this is described in Appendix C.

3. Results

3.1. Phantom data

When applied to the simulated data, both and filters effectively
suppressed noise in the multispectral images as compared to the SW
filter. As seen in Fig. 2, the filter rejected a large amount of noise from
the signal, but failed to follow the rapid dynamics of the simulated gas
challenge, causing visible artifacts (Fig. 2A, bottom right). By com-
parison, the filter both rejected noise and accurately tracked

Fig. 4. Image quality metrics over time for unmixed parameter images in phantom. Red: sliding window filter, green: , blue: . As in the multispectral case, the
filter achieves excellent noise reduction in steady-state contexts, such as the initial baseline or the entirety of the [Hbtot] time course. Overall performance of each
filter in the unmixed data is similar to that seen in the multispectral case (Fig. 2).
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dynamic changes throughout the image. The relative performance of
each of the filtering methods can be seen in the single-channel ROI time
course and quality metric time courses. Overall, the filter performed
extremely well unless challenged by sudden dynamic changes. Due to
the filter’s intrinsic time lag, there was a substantial resettling time
before it returned to pre-challenge performance. The properties of each
filter are retained upon spectral unmixing of the multispectral images,
and still further when calculating the derived [Hbtot]MSOT and SO2MSOT

images as seen in Fig. 3. The filter demonstrated superior perfor-
mance on the unchanging [Hbtot]MSOT channel, but once again suffered
from a time lag following dynamic changes. These observations are
validated by the time courses of error metrics in Fig. 4. Notably, the
unmixed images using the SW were extremely noisy, with the
[HbO2]MSOT SSIM dropping below 0.8 towards the end of the challenge.
The filter is able to achieve excellent noise rejection at baseline,
yielding small MSE and SSIM very close to 1, but during transitions its
performance fell below that of the SW.

3.2. Experimental data

The αβ filter effectively captured transient spectral dynamics while
rejecting noise in both tumor models (Fig. 5). This is in contrast to the
SW’s lack of noise rejection, illustrated by the highly variable baseline
signal, and the α’s lack of dynamic sensitivity, seen in the rounding-off
of the gas challenge transition in the 700 nm channel (Fig. 5B, D: green
line).

The dynamic performance of each filter for the RENCA-luc data is
shown in Figs. 6 and 7: Whereas the sliding window data are extremely
noisy, preventing straightforward characterization of the response to
gas challenge, the α filter clearly separated distinct subpopulation time
courses within each ROI. However, the α filter introduced a substantial
response time, taking minutes to reach steady state after each gas
change, and consequently destroying quantitative information re-
garding the rate constant of the transition, as well as the transition time
itself. In comparison, the αβ filter revealed conspicuous differences in

Fig. 5. Time courses of MSOT spine signal for representative channels in RENCA-luc mouse. A) Sum image of all channels at final time point, with ROIs used for
analysis indicated. T: tumor, S: spine. B, C, D) Time courses of signal in selected channels based on respective filters. B) 700 nm, C) 800 nm, D) 850 nm. Red: sliding
window filter, green: , blue: . The filter removed a substantial proportion of the noise from the dynamic signal while still accurately following the gas
challenge. All channels are shown in Supp. Figures S1 (image comparisons) and S2 (time courses).
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both the rates and degree of response to gas challenge across both si-
mulated and experimental data. These effects are more obvious in the
transition region highlighted in Fig. 7: There was a dramatic decrease in
the amount of noise in both the α and αβ filtered data, but only the
filter preserved the rate and degree of response at each time point.

When applied to the XP373 tumor (Figs. 8 and 9), the filter re-
veals heterogenous response to the gas challenge which is not visible in
the sliding window data. Indeed, it is clear in the upper-left panel of
Fig. 9 that there are both responsive and nonresponsive subpopulations
of pixels within the spine ROI. The αβ filter also performed well on
relatively constant data such as the [HbO2]MSOT channel in the tumor
ROI, delineating a bimodal distribution which was obscured by noise in
the SW filter. These general between-filter patterns are sustained when
applying the filters to additional XP373 gas challenge datasets, as seen
in Supplementary Figs. S3–5.

Both the and filters provided improved statistical performance
in assessing whether an oxygen-induced change is significantly dif-
ferent from the air baseline, in both spatial and temporal dimensions
(Fig. 10, Table 1). Areas where the signal to noise ratio is low are
deemed as insignificant changes under analysis of the SW-filtered data,
but both the and filters resolve those same areas as significant
(Supplementary Fig. S6). In examining the transition over time from
insignificant to significant, fitting of a logistic function to the binary
classification time course yields an effective transition time. The ana-
lysis provided by the SW filter provided inconsistent fits for transition
times, which were highly variable depending on the SNR of the local
region. Though the filter provided a much sharper transition from

non-significant to significant, it occurred at a substantial delay from the
known switching time of 10.5 min. The filter yields consistent and
sensible transition times between all ROIs.

4. Discussion

The filter provides an effective balance between fidelity to
spectral dynamics and noise rejection in a wide variety of contexts and
under different spectral sampling patterns. Notably, the filter is robust
to variations in the parameters w and n, and thus requires little tuning
in order to achieve substantially improved results.

In scenarios where no appreciable change is expected, or where the
dynamics are very slow relative to the sampling rate, the filter pro-
vides superior performance over the filter due to its effective noise-
suppression. This may be used to accommodate piecewise-stationary
statistics wherein large changes in the underlying signal occur in be-
tween periods of steady-state behavior, or when the noise power is large
relative to the true signal variation.

Accommodating high-noise, low-variation environments may be
accomplished by setting the measurement noise variance high relative
to a lower process noise variance. This causes the filters to bias them-
selves towards previous estimates, providing benefits for such contexts
as measuring hemodynamic cycling. Other dynamic imaging modalities
such as real-time functional MRI [48,49] or calcium imaging [50] may
benefit from the use of these filters as well, as experimental motifs such
as neurofeedback require reduced data noise without incurring sub-
stantial analysis delays [51].

Fig. 6. Dynamic histogram images and selected histograms for each parameter-filter combination in RENCA-luc tumor-bearing mouse. ROIs defined in Fig. 5A. Upper
panels: spine ROI. Lower panels: Tumor ROI. Each panel: Dynamic histogram images (left column) and corresponding histograms at selected time points (right
column) for sliding window (top), (middle), and (bottom) filters. For all parameters, the use of either the or filters reduced the noise in the dynamic
histograms, but the filter lagged behind across the entire ROI, as seen by the misalignment in the red and green histograms highlighted by the black arrows.
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Due to the ability of the and filters to incorporate information
from previous samples, it may be desirable to choose sampling patterns
which acquire one image at each wavelength, rather than oversampling
each wavelength sequentially. Although the latter case enables aver-
aging to improve signal to noise ratio, it inherently degrades time re-
solution and can introduce substantial blurring due to motion [24].
Further, this work only explores the application of these filters to re-
constructed images – it is probable that image quality itself could be
improved by applying the methods to raw photoacoustic data, in order
to better condition the reconstruction process itself, and we will in-
vestigate this matter in a forthcoming publication.

Motion may present a challenge for these filters due to their

recursive structure. As the and filters are infinite impulse response
(IIR) filters, an arbitrarily extreme observation or outlier will affect the
output data at any later time. Rejection of spurious data could be ac-
complished by identifying frames which are misregistered and down-
weighting the associated residuals. This identification process may be
accomplished via a number of methods, ranging from simple differ-
ences of sequential frames for online analysis [24] to sophisticated
clustering methods when post-processing is an option [52–54].

The work presented here assumes that w, ,n and t are constant
through time, as well as being homogeneous throughout the image and
across channels. As measurement noise may vary between imaging
channels and across a field of view, and different regions may have

Fig. 7. Expanded time courses of air-oxygen transition in RENCA-luc tumor-bearing mouse. ROIs defined in Fig. 5A. Upper panels: Spine ROI. Lower panels: Tumor
ROI. Left panels: [HbO2]MSOT. Right panels: [SO2]MSOT. A conspicuous reduction in noise is seen between the sliding window (each panel, top) and (each panel,
bottom) time courses, allowing one to resolve the distinct evolution of different subpopulations within the ROI.
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distinct dynamics, a single global tracking index may not be optimal.
The filter performs well even with the use of global parameters, but
it may nevertheless be desirable to enable these parameters to vary
throughout the temporal, spatial, and spectral dimensions.

Although other methods such as Bayesian or Kalman filters might
provide better quantitative and qualitative results, the filters described
here are very efficient both in terms of computational complexity and
required storage, and can be readily implemented in any processing or
acquisition pipeline with minimal performance impact. Indeed, the SW
and filters each require only a single copy of the spectral image, while
the filter only requires the additional storage occupied by the x
image for substantially improved performance.

As these filters are extremely efficient, it is possible to simulta-
neously maintain several filters with different parameters, using the
data likelihood for each in order to provide an improved estimate of the
state [28,29]. This, in turn, may be used to modify the parameters for
each filter, giving an efficient adaptive update scheme.

Table 2 shows the time complexities and storage requirements for
each of the presented methods, as well as comparisons against the full
Kalman filter (KF). We assume an overall multispectral image size of N
pixels over M channels, a measured image size of N, and the use of
global parameters for both and filters. For the KF, we assume non-
sparse matrices and no control inputs. Timing for the various filters was
performed using a single thread on an Intel Xeon E5-2680 v3 processor
operating at 2.5 GHz. The algorithm-specific memory footprint was less
than 5 MB for all filters tested.

The SW retains only the copy of the multispectral image, and
overwrites the values in a given imaging channel with the measured
values. It therefore has a time complexity of O(N) and a storage re-
quirement of N*M. The filter retains a copy of the multispectral image
as well as a single floating-point value to store the tracking index, or

three values to represent the w, n, and t values. The calculations are
performed elementwise, and so the calculation has a time complexity of
O(N), and a storage of N*M + 3. The filter retains a copy of the
multispectral image as well as the dx image, giving it a storage re-
quirement of 2*N*M + 3. The calculations still operate using basic
arithmetic, and so the overall cost of an iteration is O(N).

The Kalman filter requires the storage of a N*M x N*M state-tran-
sition matrix F, a N*M x N*M covariance matrix P, a N*M x N*M
process noise covariance matrix Q, measurement matrices H for each
channel, yielding M * (N x N*M), a measurement noise covariance
matrix R, of size N*N, the innovation covariance S, of size N*N, and
must have storage for the Kalman gain matrix of size N*M x N. There
must also be storage for the previous estimate, the measurement itself,
and the innovation residuals, adding another M*N+2*N elements. The
time complexity is dominated by matrix multiplications and the finding
of a matrix inverse, and exceeds O(N3M3). Various optimizations may
be performed in order to limit the complexity of the KF, but many in-
duce their own overhead and do not lower the complexity to the linear
time seen in these filters [55].

5. Conclusion

The and filters, originally developed for target tracking and
now applied to spectral imaging, are able to effectively preserve the
spatial, spectral, and temporal structure of MSOT data while improving
the signal to noise ratio, and are able to do so in a highly efficient,
online fashion. These filters are simple and easily implemented, theo-
retically optimal, and practically effective. The resultant increases in
image quality enable new capabilities and better insight into highly
dynamic biological systems, allowing improved hypothesis testing and
decision making.

Fig. 8. Dynamic histogram images and selected histograms for each parameter-filter combination in XP373 tumor-bearing Mouse #1. ROIs defined in Supp. Fig. 3A.
Upper panels: Spine ROI. Lower panels: Tumor ROI. For all derived parameters, the use of either the or filters reduced the amount of noise in the dynamic
histograms, though the filter lagged behind across the entire ROI, as seen by the misalignment in the red and green histograms highlighted by the black arrows.
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Fig. 9. Expanded time courses of air-oxygen transition in XP373 tumor-bearing mouse (Fig. 8). Upper panels: Spine ROI. Lower panels: Tumor ROI. Left panels:
[HbO2]MSOT. Right panels: [SO2]MSOT. A conspicuous reduction in noise can be seen between the sliding window (each panel, top) and (each panel, bottom) time
courses, allowing one to resolve the distinct evolution of different subpopulations within the ROI.

Fig. 10. Significance testing of HbO2MSOT change due to gas challenge in RENCA-luc tumor-bearing mouse. Left: 4-pixel ROIs used. ROIs 1 and 2 are significant via
the pixel-wise analysis for all filters, while ROI 3 is not significant for the SW filter (Table 1, Supplementary Fig. S2). Center: log10(p) values over time for each filter
in each ROI. Right: Binary classification of change as significant (s.) or not (n.s.), as well as logistic curve fit and indicated switching time. The SW filter is
conspicuously noisy throughout time for all ROIs, but particularly so in ROI 3, causing an unreasonable fit of the switching time. The filter denoises effectively and
has a very sharp transition from non-significant to significant, but incurs a 0.5min delay in the switching time. The filter denoises effectively while preserving the
dynamic transition, giving a consistent switching time for all ROIs (see Table 1).
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Appendix A

Calculation of coefficients for and filters

The calculation of the and coefficients for the tracking filters depends on the order of the filter; the calculated for a 1st order filter ( filter)
is different from that calculated for a 2nd order filter ( filter). The equations here were derived in the paper by Kalata [36].

In each case, the value of the tracking index is the same and is calculated using Eq. 5.

(A.1) Filter

= + + 16
8

2 4 2

(A.1)

(A.2) Filter

= + +R 4 8
4

2

(A.2)

= R1 2 (A.3)

= 2(2 ) 4 1 (A.4)

Table 1
Comparison of filter performance based on spatial and temporal analyses. The spatial analysis refers to the significance of the [HbO2]MSOT difference before and after
the gas challenge transition within each ROI in Fig. 10. The temporal analysis refers to the significance of the difference between a single [HbO2]MSOT image at a
particular time point before the gas challenge transition and each successive [HbO2]MSOT image during the gas challenge transition.

ROI Filter Spatial analysis Temporal analysis

p-value Scaled p-value Significant Mean p-value of t t:1695 1700 tswitch (min)

1 SW ×1.3 10 8 ×7.8 10 4 Yes ×7.1 10 6 11.53

×5.6 10 24 ×3.5 10 19 Yes ×2.2 10 6 11.95

×3.9 10 13 ×2.4 10 8 Yes ×1.6 10 6 11.41
2 SW ×5.2 10 9 ×3.2 10 4 Yes ×1.1 10 6 11.77

×2.2 10 26 ×1.4 10 21 Yes ×1.9 10 6 12.07

×1.6 10 14 ×9.9 10 10 Yes ×8.5 10 7 11.66
3 SW ×2.1 10 6 0.13 No ×5.2 10 6 13.05

×1.6 10 20 ×1.0 10 15 Yes ×9.3 10 7 12.03

×9.4 10 11 ×5.9 10 6 Yes ×3.5 10 7 11.45

Table 2
Comparison of filter performance for various filtering methods.

Time Complexity Storage Requirement Time/frame (s)

SW O(N) N*M 8.41 (± 9.54) x 10−5

O(N) N*M + 3 6.83 (±2.26) x 10−4
O(N) 2*N*M + 3 1.3 (± 0.42) x 10−−3

Kalman O(N3M3) 4N2M2 + N2M + 2N2 +NM+2N Not tested
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Appendix B

Dynamic Spectral Phantom

In order to provide a test bench for quantifying the efficacy of the filters, we created well-defined datasets with specific properties to present
challenges for filtering in spatial, spectral, and temporal dimensions.

We used a modified form of the Shepp-Logan phantom with all-positive entries, built up from the sum of non-negative parts. This is done as
imaging is usually concerned with measuring quantities that are strictly positive. Each of the ellipses which comprise the phantom was given its own
time course of spectral components. This allowed us to test the effects of multiple basis elements j present in a given pixel, all of which may follow
different dynamics.

=S t C t µ( , ) ( ) ( )
j

j a j,
(B.1)

To test the dynamics, C t( ) was created as a pair of step functions convolved with a particular exponential kernel for each ellipse.

= +c t c c H t t c H t t( ) ( ) ( )0 1 1 2 2 (B.2)

=K t kt( ) exp( ) (B.3)

=C t c t K t( ) ( ) ( ) (B.4)

Where denotes convolution and H is the Heaviside step function. For this work, t1 and t2 were defined to be 1/3 and 2/3 of the total simulation
time, respectively.

Definition of oxy-deoxy hemoglobin time courses was performed by first defining the time courses of total hemoglobin (Hbtot) and oxygen
saturation (SO2) and then multiplying each concentration time course by the corresponding absorption spectrum as in Eq. B.1

=C x y t C x y t SO x y t( , , ) ( , , )*(1 ( , , ))Hb THb 2 (B.5)

=C x y t C x y t SO x y t( , , ) ( , , )* ( , , )HbO THb 22 (B.6)

Total hemoglobin concentration was defined to be constant within each ellipse for all time.
Based on the ground-truth multispectral images, one single-wavelength image was sampled at each point in time to provide a sampled multi-

spectral phantom. The phantom created for this paper used the parameters in Table B1.

Appendix C

Statistical Comparisons of Different Filtering Approaches

In order to compare the efficacy of the different filtering approaches, we considered the onset of the air-oxygen gas challenge and the quanti-
fication of the significance of a given change on both a pixel-wise basis and on an ROI-wise basis. Both analyses were done using the [HbO2]MSOT

image time courses from the RENCA-luc mouse data; the XP373 data was analyzed using the pixel-wise approach only.

Pixel-wise comparison
Two image populations from the RENCA-luc mouse image time-series were considered for each filter: P1, consisting of the [HbO2]MSOT images

from filtered frames 1297–1303, such that =N 71 ; and P2, consisting of the [HbO2]MSOT images from filtered frames 1697–1703. These time points
were chosen to correspond with the blue and green histograms considered in Figs. 6 and 7, and assuming that the dynamic changes over each
population’s time range are small relative to the level of noise.

For each pixel x y( , )i i , we performed a one-tailed T-test with a null hypothesis H0 that the difference in the means of P x y( , )i i2 and P x y( , )i i1 is
positive: >H µ x y µ x y: ( , ) ( , ) 0i i i i0 2 1 . This test was chosen as we expect the level of oxy-hemoglobin to increase when transitioning from air to
oxygen. We assume that issues of spectral coloring are negligible. As the test is repeated across every pixel in the ×250 250 RENCA tumor images, the
number of hypotheses tested = × =M 250 250 62500H . The Bonferroni-corrected significance threshold space is thus = = ×8 100.05

62500
7. Repeating

this analysis for each pixel results in p-value maps which are used to assign a binary classification of significant if the p-value laid below space, and
non-significant otherwise. Results are depicted in Supplementary Fig. S6.

Table B1
Parameters for dynamic multispectral phantom.

Ellipse Center (x,y) Major Axis Minor Axis Theta Hbtot c0 c1 c2 kresponse

a (0,0) 0.69 0.92 0 1 0.4 0.6 0.4 0.2
b (0, −0.0184) 0.6624 0.874 0 0.8 1.0 0.5 0.0 0.3
c (0.22,0) 0.11 0.31 −18° 0.2 0.2 0.5 0.1 0.02
d (−0.22, 0) 0.16 0.41 18° 0.2 0.5 0.5 0.6 0.04
e (0, 0.35) 0.21 0.25 0 0.1 0.2 0.9 0.2 0.2
f (0, 0.1) 0.046 0.046 0 0.1 0.1 0.1 0.9 0.1
g (0, −0.1) 0.046 0.046 0 0.1 0.9 0.8 0.7 0.05
h (−0.08, −0.605) 0.046 0.023 0 0.1 1.0 1.0 1.0 0.4
i (0, −0.605) 0.023 0.023 0 0.1 0.7 0.6 0.2 0.2
j (0.06, −0.605) 0.023 0.046 0 0.1 0.9 0.2 0.9 0.1
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For each of ROI1, ROI2, and ROI3 as described below, the median significance classification and mean p-value were calculated and used as figures
of merit for each filtering method.

The same approach was repeated for each of the XP373 mice, with P1 consisting of the [HbO2]MSOT images from filtered frames 2597–2603, such
that =N 71 ; and P2, consisting of the [HbO2]MSOT images from filtered frames 3997–4003. Results are depicted in Panel A of Supplementary Figs.
S3–S5.

ROI-wise comparison
Three ROI populations within each image were considered for each filter: ROI1 was chosen to lie in the spine, in a set of pixels whose change was

deemed significant for all methods by the pixel-wise comparison. ROI2 was chosen to lie in the tumor bulk, in a set of pixels whose change was
significant for all methods by the spatial comparison. ROI2 was chosen to lie in the tumor bulk, in a set of pixels deemed significant by the spatial
analysis using both the and filters, but was non-significant using the SW filter. ROI1 consisted of the pixels x y x y( , : [125,126], [175,176])i i ,
ROI2 consisted of the pixels x y x y( , : [170,171], [150,151])i i , and ROI3 consisted of the pixels x y x y( , : [150,151], [120,121])i i .

For each ROI and each time-point tk between 1300 and 1700, we performed a one-tailed T-test with a null hypothesis H0 that the difference in the
means of R t( )k and R t( )1300 is positive: >H µ t µ t: ( ) ( ) 0R k R0 1300 . As the test is repeated for every time-point between 1300 and 1700, the number of
hypotheses tested =M 400H . The Bonferroni-corrected significance threshold is thus = = ×1.25 100.05

400
4.

The classification of the difference in means for each ROI was assigned a value of 1 if the null hypothesis was rejected, and 0 if it was not. This
yielded a time course of binary classification for each method for each ROI. A logistic function was then fit to these classification time courses using
the equation

=
+

H t
c t t

( ) 1
1 exp( ( ))switch

and tswitch, the time coordinate of the half-max of the logistic function, used as the indicated switching time.
The mean p-value of the last 6 time points was used to report the degree of significance revealed by each of the filtering methods.

Appendix D. Supplementary data

Supplementary material related to this article can be found, in the online version, at doi:10.1016/j.pacs.2020.100184.

References

[1] R. Roger, J. Arnold, Reliably estimating the noise in AVIRIS hyperspectral images,
Int. J. Remote Sens. 17 (1996) 1951–1962.

[2] B.S. Sorg, B.J. Moeller, O. Donovan, Y. Cao, M.W. Dewhirst, Hyperspectral imaging
of hemoglobin saturation in tumor microvasculature and tumor hypoxia develop-
ment, J. Biomed. Opt. 10 (2005) 044004.

[3] C. Lutzweiler, R. Meier, E. Rummeny, V. Ntziachristos, D. Razansky, Real-time
optoacoustic tomography of indocyanine green perfusion and oxygenation para-
meters in human finger vasculature, Opt. Lett. 39 (2014) 4061–4064, https://doi.
org/10.1364/OL.39.004061.

[4] A.A. Oraevsky, A. Buehler, L.V. Wang, E. Herzog, D. Razansky, V. Ntziachristos,
Visualization of mouse kidney perfusion with multispectral optoacoustic tomo-
graphy (MSOT) at video rate, Proc. SPIE 7899, Photons Plus Ultrasound: Imaging
and Sensing 789914 (2011) 2011, https://doi.org/10.1117/12.875248.

[5] X.L. Dean-Ben, A. Ozbek, D. Razansky, Volumetric real-time tracking of peripheral
human vasculature with GPU-accelerated three-dimensional optoacoustic tomo-
graphy, IEEE Trans. Med. Imaging 32 (2013) 2050–2055, https://doi.org/10.1109/
tmi.2013.2272079.

[6] H.C. Hendargo, Y. Zhao, T. Allenby, G.M. Palmer, Snap-shot multispectral imaging
of vascular dynamics in a mouse window-chamber model, Opt. Lett. 40 (2015)
3292–3295.

[7] S. Mallidi, T. Larson, J. Aaron, K. Sokolov, S. Emelianov, Molecular specific op-
toacoustic imaging with plasmonic nanoparticles, Opt. Express 15 (2007)
6583–6588.

[8] A.C. Silva, B.G. Morse, A.K. Hara, R.G. Paden, N. Hongo, W. Pavlicek, Dual-energy
(Spectral) CT: applications in abdominal imaging, RadioGraphics 31 (2011)
1031–1046, https://doi.org/10.1148/rg.314105159.

[9] D. Novo, G. Gregori, B. Rajwa, Generalized unmixing model for multispectral flow
cytometry utilizing nonsquare compensation matrices, Cytometry A. 83 (2013)
508–520, https://doi.org/10.1002/cyto.a.22272.

[10] D.C. Heinz, I.C. Chein, Fully constrained least squares linear spectral mixture
analysis method for material quantification in hyperspectral imagery, IEEE Trans.
Geosci. Remote. Sens. 39 (2001) 529–545, https://doi.org/10.1109/36.911111.

[11] R. Heylen, D. Burazerovic, P. Scheunders, Fully constrained least squares spectral
unmixing by simplex projection, IEEE Trans. Geosci. Remote. Sens. 49 (2011)
4112–4122, https://doi.org/10.1109/TGRS.2011.2155070.

[12] X. Luís Deán-Ben, D. Razansky, Adding fifth dimension to optoacoustic imaging:
volumetric time-resolved spectrally enriched tomography, Light: Sci. Appl. 3 (2014)
e137, https://doi.org/10.1038/lsa.2014.18 https://www.nature.com/articles/
lsa201418#supplementary-information.

[13] W. Song, Z. Tang, D. Zhang, N. Burton, W. Driessen, X. Chen, Comprehensive stu-
dies of pharmacokinetics and biodistribution of indocyanine green and liposomal
indocyanine green by multispectral optoacoustic tomography, RSC Adv. 5 (2015)
3807–3813, https://doi.org/10.1039/c4ra09735a.

[14] V. Ntziachristos, X.L. Deán-Ben, A. Buehler, V. Ntziachristos, D. Razansky, C.P. Lin,
Optical Attenuation Correction in Multispectral Optoacoustic Tomography with

Logarithm Unmixing 8800 (2013), p. 88000H, https://doi.org/10.1117/12.
2033351.

[15] M. Wankhede, N. Agarwal, R. Fraga-Silva, M. Raizada, S.P. Oh, B.S. Sorg, Spectral
imaging reveals microvessel physiology and function from anastomoses to throm-
boses, J. Biomed. Opt. 15 (2010) 011111.

[16] R.R. Schultz, R.L. Stevenson, Stochastic modeling and estimation of multispectral
image data, IEEE Trans. Image Process. 4 (1995) 1109–1119.

[17] P. Beard, Biomedical photoacoustic imaging, Interface Focus 1 (2011) 602–631.
[18] B.T. Cox, S.R. Arridge, P.C. Beard, Estimating chromophore distributions from

multiwavelength photoacoustic images, J. Opt. Soc. Am. A Opt. Image Sci. Vis. 26
(2009) 443–455.

[19] B.T. Cox, J.G. Laufer, P.C. Beard, S.R. Arridge, Quantitative spectroscopic photo-
acoustic imaging: a review, J. Biomed. Opt. 17 (2012) 061202.

[20] A. Taruttis, S. Morscher, N.C. Burton, D. Razansky, V. Ntziachristos, Fast multi-
spectral optoacoustic tomography (MSOT) for dynamic imaging of pharmacoki-
netics and biodistribution in multiple organs, PLoS One 7 (2012) e30491, https://
doi.org/10.1371/journal.pone.0030491.

[21] X.L. Deán-Ben, E. Bay, D. Razansky, Functional optoacoustic imaging of moving
objects using microsecond-delay acquisition of multispectral three-dimensional
tomographic data, Sci. Rep. 4 (2014) 5878, https://doi.org/10.1038/srep05878.

[22] C.W. Hupple, S. Morscher, N.C. Burton, M.D. Pagel, L.R. McNally, J. Cárdenas-
Rodríguez, A light-fluence-independent method for the quantitative analysis of
dynamic contrast-enhanced multispectral optoacoustic tomography (DCE MSOT),
Photoacoustics 10 (2018) 54–64.

[23] A. Buehler, M. Kacprowicz, A. Taruttis, V. Ntziachristos, Real-time handheld mul-
tispectral optoacoustic imaging, Opt. Lett. 38 (2013) 1404–1406, https://doi.org/
10.1364/OL.38.001404.

[24] D. O’Kelly, H. Zhou, R.P. Mason, Tomographic breathing detection: a method to
noninvasively assess in situ respiratory dynamics, J. Biomed. Opt. 23 (2018) 1–6,
https://doi.org/10.1117/1.jbo.23.5.056011.

[25] R.R. Hallac, H. Zhou, R. Pidikiti, K. Song, S. Stojadinovic, D. Zhao, T. Solberg,
P. Peschke, R.P. Mason, Correlations of noninvasive BOLD and TOLD MRI with pO2
and relevance to tumor radiation response, Magn. Reson. Med. 71 (2014)
1863–1873.

[26] M.R. Tomaszewski, I.Q. Gonzalez, J.P.B. O’Connor, O. Abeyakoon, G.J.M. Parker,
K.J. Williams, F.J. Gilbert, S.E. Bohndiek, Oxygen enhanced optoacoustic tomo-
graphy (OE-OT) reveals vascular dynamics in murine models of prostate cancer,
Theranostics 7 (2017) 2900–2913, https://doi.org/10.7150/thno.19841.

[27] J.L. Prince, J.M. Links, Medical Imaging Signals and Systems, Pearson Prentice Hall,
Upper Saddle River, 2006.

[28] R. Labbe, Kalman and Bayesian Filters in Python, (2018) (Accessed 13 September
2019, https://github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python.

[29] A. Gelman, J.B. Carlin, H.S. Stern, D.B. Dunson, A. Vehtari, D.B. Rubin, Bayesian
Data Analysis, Chapman and Hall/CRC, 2013.

[30] J.D. Beezley, J. Mandel, Morphing ensemble Kalman filters, Tellus A 60 (2008)
131–140.

[31] N.P. Galatsanos, R.T. Chin, Restoration of color images by multichannel Kalman
filtering, IEEE Trans. Signal Process. 39 (1991) 2237–2252.

D. O’Kelly, et al. Photoacoustics 19 (2020) 100184

14

http://doi.org/10.1016/j.pacs.2020.100184
http://refhub.elsevier.com/S2213-5979(20)30024-0/sbref0005
http://refhub.elsevier.com/S2213-5979(20)30024-0/sbref0005
http://refhub.elsevier.com/S2213-5979(20)30024-0/sbref0010
http://refhub.elsevier.com/S2213-5979(20)30024-0/sbref0010
http://refhub.elsevier.com/S2213-5979(20)30024-0/sbref0010
https://doi.org/10.1364/OL.39.004061
https://doi.org/10.1364/OL.39.004061
https://doi.org/10.1117/12.875248
https://doi.org/10.1109/tmi.2013.2272079
https://doi.org/10.1109/tmi.2013.2272079
http://refhub.elsevier.com/S2213-5979(20)30024-0/sbref0030
http://refhub.elsevier.com/S2213-5979(20)30024-0/sbref0030
http://refhub.elsevier.com/S2213-5979(20)30024-0/sbref0030
http://refhub.elsevier.com/S2213-5979(20)30024-0/sbref0035
http://refhub.elsevier.com/S2213-5979(20)30024-0/sbref0035
http://refhub.elsevier.com/S2213-5979(20)30024-0/sbref0035
https://doi.org/10.1148/rg.314105159
https://doi.org/10.1002/cyto.a.22272
https://doi.org/10.1109/36.911111
https://doi.org/10.1109/TGRS.2011.2155070
https://doi.org/10.1038/lsa.2014.18
https://www.nature.com/articles/lsa201418#supplementary-information
https://doi.org/10.1039/c4ra09735a
https://doi.org/10.1117/12.2033351
https://doi.org/10.1117/12.2033351
http://refhub.elsevier.com/S2213-5979(20)30024-0/sbref0075
http://refhub.elsevier.com/S2213-5979(20)30024-0/sbref0075
http://refhub.elsevier.com/S2213-5979(20)30024-0/sbref0075
http://refhub.elsevier.com/S2213-5979(20)30024-0/sbref0080
http://refhub.elsevier.com/S2213-5979(20)30024-0/sbref0080
http://refhub.elsevier.com/S2213-5979(20)30024-0/sbref0085
http://refhub.elsevier.com/S2213-5979(20)30024-0/sbref0090
http://refhub.elsevier.com/S2213-5979(20)30024-0/sbref0090
http://refhub.elsevier.com/S2213-5979(20)30024-0/sbref0090
http://refhub.elsevier.com/S2213-5979(20)30024-0/sbref0095
http://refhub.elsevier.com/S2213-5979(20)30024-0/sbref0095
https://doi.org/10.1371/journal.pone.0030491
https://doi.org/10.1371/journal.pone.0030491
https://doi.org/10.1038/srep05878
http://refhub.elsevier.com/S2213-5979(20)30024-0/sbref0110
http://refhub.elsevier.com/S2213-5979(20)30024-0/sbref0110
http://refhub.elsevier.com/S2213-5979(20)30024-0/sbref0110
http://refhub.elsevier.com/S2213-5979(20)30024-0/sbref0110
https://doi.org/10.1364/OL.38.001404
https://doi.org/10.1364/OL.38.001404
https://doi.org/10.1117/1.jbo.23.5.056011
http://refhub.elsevier.com/S2213-5979(20)30024-0/sbref0125
http://refhub.elsevier.com/S2213-5979(20)30024-0/sbref0125
http://refhub.elsevier.com/S2213-5979(20)30024-0/sbref0125
http://refhub.elsevier.com/S2213-5979(20)30024-0/sbref0125
https://doi.org/10.7150/thno.19841
http://refhub.elsevier.com/S2213-5979(20)30024-0/sbref0135
http://refhub.elsevier.com/S2213-5979(20)30024-0/sbref0135
https://github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python
http://refhub.elsevier.com/S2213-5979(20)30024-0/sbref0145
http://refhub.elsevier.com/S2213-5979(20)30024-0/sbref0145
http://refhub.elsevier.com/S2213-5979(20)30024-0/sbref0150
http://refhub.elsevier.com/S2213-5979(20)30024-0/sbref0150
http://refhub.elsevier.com/S2213-5979(20)30024-0/sbref0155
http://refhub.elsevier.com/S2213-5979(20)30024-0/sbref0155


[32] K. Kim, B. Kim, M. Kim, Y. Lee, M. Vauhkonen, Image reconstruction in time-
varying electrical impedance tomography based on the extended Kalman filter,
Meas. Sci. Technol. 12 (2001) 1032.

[33] J. Mandel, Efficient Implementation of the Ensemble Kalman Filter, University of
Colorado at Denver and Health Sciences Center, Center for Computational
Mathematics Reports, 2006.

[34] E. Ott, B.R. Hunt, I. Szunyogh, A.V. Zimin, E.J. Kostelich, M. Corazza, E. Kalnay,
D. Patil, J.A. Yorke, A local ensemble Kalman filter for atmospheric data assim-
ilation, Tellus A 56 (2004) 415–428.

[35] W. Blair, Fixed-gain two-stage estimators for tracking maneuvering targets, IEEE
Trans. Aerosp. Electron. Syst. 29 (1993) 1004–1014.

[36] P.R. Kalata, The tracking index: a generalized parameter for α-β and α-β-γ target
trackers, IEEE Trans. Aerosp. Electron. Syst. (1984) 174–182.

[37] S. Akhlaghi, N. Zhou, Z. Huang, Adaptive adjustment of noise covariance in Kalman
filter for dynamic state estimation, 2017 IEEE Power & Energy Society General
Meeting (2017) 1–5.

[38] L.A. Shepp, B.F. Logan, The Fourier reconstruction of a head section, IEEE Trans.
Nucl. Sci. 21 (1974) 21–43.

[39] A. Dima, N.C. Burton, V. Ntziachristos, Multispectral optoacoustic tomography at
64, 128, and 256 channels, J. Biomed. Opt. 19 (2014) 36021, https://doi.org/10.
1117/1.jbo.19.3.036021.

[40] L. Ellis, P. Shah, H. Hammers, K. Lehet, P. Sotomayor, G. Azabdaftari, M. Seshadri,
R. Pili, Vascular disruption in combination with mTOR inhibition in renal cell
carcinoma, Mol. Cancer Ther. 11 (2012) 383–392, https://doi.org/10.1158/1535-
7163.mct-11-0748.

[41] A. Pavía-Jiménez, V.T. Tcheuyap, J. Brugarolas, Establishing a human renal cell
carcinoma tumorgraft platform for preclinical drug testing, Nat. Protoc. 9 (2014)
1848.

[42] W. Chen, H. Hill, A. Christie, M.S. Kim, E. Holloman, A. Pavia-Jimenez,
F. Homayoun, Y. Ma, N. Patel, P. Yell, G. Hao, Q. Yousuf, A. Joyce, I. Pedrosa,
H. Geiger, H. Zhang, J. Chang, K.H. Gardner, R.K. Bruick, C. Reeves, T.H. Hwang,
K. Courtney, E. Frenkel, X. Sun, N. Zojwalla, T. Wong, J.P. Rizzi, E.M. Wallace,
J.A. Josey, Y. Xie, X.J. Xie, P. Kapur, R.M. McKay, J. Brugarolas, Targeting renal cell
carcinoma with a HIF-2 antagonist, Nature 539 (2016) 112–117, https://doi.org/
10.1038/nature19796.

[43] H. Liu, K. Wang, D. Peng, H. Li, Y. Zhu, S. Zhang, M. Liu, J. Tian, Curve-driven-
Based acoustic inversion for photoacoustic tomography, IEEE Trans. Med. Imaging
35 (2016) 2546–2557, https://doi.org/10.1109/TMI.2016.2584120.

[44] L. Ding, X. Luis Dean-Ben, C. Lutzweiler, D. Razansky, V. Ntziachristos, Efficient
non-negative constrained model-based inversion in optoacoustic tomography, Phys.
Med. Biol. 60 (2015) 6733–6750, https://doi.org/10.1088/0031-9155/60/17/
6733.

[45] T. Mitcham, H. Taghavi, J. Long, C. Wood, D. Fuentes, W. Stefan, J. Ward,
R. Bouchard, Photoacoustic-based sO(2) estimation through excised bovine prostate
tissue with interstitial light delivery, Photoacoustics 7 (2017) 47–56, https://doi.
org/10.1016/j.pacs.2017.06.004.

[46] F.M. Brochu, J. Brunker, J. Joseph, M.R. Tomaszewski, S. Morscher, S.E. Bohndiek,
Towards quantitative evaluation of tissue absorption coefficients using light fluence
correction in optoacoustic tomography, IEEE Trans. Med. Imaging 36 (2017)
322–331, https://doi.org/10.1109/TMI.2016.2607199.

[47] I. Olefir, S. Tzoumas, H. Yang, V. Ntziachristos, A bayesian approach to eigen-
spectra optoacoustic tomography, IEEE Trans. Med. Imaging 37 (2018) 2070–2079,
https://doi.org/10.1109/tmi.2018.2815760.

[48] M.E. Kelly, C.W. Blau, K.M. Griffin, O.L. Gobbo, J.F. Jones, C.M. Kerskens,
Quantitative functional magnetic resonance imaging of brain activity using bolus-
tracking arterial spin labeling, J. Cereb. Blood Flow Metab. 30 (2010) 913–922,
https://doi.org/10.1038/jcbfm.2009.284.

[49] D.J. Lurie, D. Kessler, D.S. Bassett, R.F. Betzel, M. Breakspear, S. Kheilholz,
A. Kucyi, R. Liégeois, M.A. Lindquist, A.R. McIntosh, Questions and controversies in
the study of time-varying functional connectivity in resting fMRI, Netw. Neurosci. 4
(2020) 30–69.

[50] M.C. Murphy, K.C. Chan, S.-G. Kim, A.L. Vazquez, Macroscale variation in resting-
state neuronal activity and connectivity assessed by simultaneous calcium imaging,

hemodynamic imaging and electrophysiology, Neuroimage 169 (2018) 352–362.
[51] J. Sulzer, S. Haller, F. Scharnowski, N. Weiskopf, N. Birbaumer, M.L. Blefari,

A.B. Bruehl, L.G. Cohen, R.C. DeCharms, R. Gassert, Real-time fMRI neurofeedback:
progress and challenges, Neuroimage 76 (2013) 386–399.

[52] A. Taruttis, J. Claussen, D. Razansky, V. Ntziachristos, Motion clustering for de-
blurring multispectral optoacoustic tomography images of the mouse heart, J.
Biomed. Opt. 17 (2012) 016009, , https://doi.org/10.1117/1.jbo.17.1.016009.

[53] M. Schwarz, N. Garzorz-Stark, K. Eyerich, J. Aguirre, V. Ntziachristos, Motion
correction in optoacoustic mesoscopy, Sci. Rep. 7 (2017), https://doi.org/10.1038/
s41598-017-11277-y.

[54] J. Chung, L. Nguyen, Motion estimation and correction in photoacoustic tomo-
graphic reconstruction, SIAM J. Imaging Sci. 10 (2017) 216–242, https://doi.org/
10.1137/16m1082901.

[55] M. Raitoharju, R. Piché, On computational complexity reduction methods for
Kalman filter extensions, Ieee Aerosp. Electron. Syst. Mag. 34 (2019) 2–19.

Devin O’Kelly is currently a PhD student at the University
of Texas Southwestern Medical Center (UTSW) pursuing a
degree in Biomedical and Molecular Imaging as well as
Computational and Systems Biology. He received his B.S. in
Biomedical Engineering with high honors from the
University of Texas at Austin. His major research interest is
the development and application of experimental techni-
ques and numerical methods in order to probe complex
biological systems using high-information imaging. He is a
Biomedical High-Performance Computing Fellow at the
UTSW BioHPC, developing computational frameworks to
enable scalable analyses of massive imaging datasets.

Dr. Yihang Guo is currently a visiting fellow of the Small
Animal Imaging Resource at the University of Texas
Southwestern Medical Center (UTSW), as well as a surgical
doctor of the Department of Gastrointestinal Surgery at The
Third XiangYa Hospital of Central South University in
China. He received his M.D and Ph.D in Clinical Medicine
from Central South University. His major research interest
is the development and application of molecular animal
imaging for predicting optimal cancer therapy and asses-
sing early response to treatment. He has extensive experi-
ence with building multiple animal orthotopic tumor
models in kidney, lung, colon, pancreas and tibia.

Dr. Ralph Mason, a chemist by training, has over 25 years’
experience in cancer imaging, therapy, and tumor patho-
physiology. He is Professor of Radiology and directs the
Small Animal Imaging Resource. His primary research in-
terest is prognostic radiology - developing and im-
plementing methods for predicting optimal cancer therapy
and assessing early response to treatment ("precision med-
icine"). Dr. Mason has experience with diverse imaging
modalities and has published extensively regarding tech-
nology development and applications to assessing hypoxia,
radiation therapy and the effects of vascular disrupting
agents.

D. O’Kelly, et al. Photoacoustics 19 (2020) 100184

15

http://refhub.elsevier.com/S2213-5979(20)30024-0/sbref0160
http://refhub.elsevier.com/S2213-5979(20)30024-0/sbref0160
http://refhub.elsevier.com/S2213-5979(20)30024-0/sbref0160
http://refhub.elsevier.com/S2213-5979(20)30024-0/sbref0165
http://refhub.elsevier.com/S2213-5979(20)30024-0/sbref0165
http://refhub.elsevier.com/S2213-5979(20)30024-0/sbref0165
http://refhub.elsevier.com/S2213-5979(20)30024-0/sbref0170
http://refhub.elsevier.com/S2213-5979(20)30024-0/sbref0170
http://refhub.elsevier.com/S2213-5979(20)30024-0/sbref0170
http://refhub.elsevier.com/S2213-5979(20)30024-0/sbref0175
http://refhub.elsevier.com/S2213-5979(20)30024-0/sbref0175
http://refhub.elsevier.com/S2213-5979(20)30024-0/sbref0180
http://refhub.elsevier.com/S2213-5979(20)30024-0/sbref0180
http://refhub.elsevier.com/S2213-5979(20)30024-0/sbref0185
http://refhub.elsevier.com/S2213-5979(20)30024-0/sbref0185
http://refhub.elsevier.com/S2213-5979(20)30024-0/sbref0185
http://refhub.elsevier.com/S2213-5979(20)30024-0/sbref0190
http://refhub.elsevier.com/S2213-5979(20)30024-0/sbref0190
https://doi.org/10.1117/1.jbo.19.3.036021
https://doi.org/10.1117/1.jbo.19.3.036021
https://doi.org/10.1158/1535-7163.mct-11-0748
https://doi.org/10.1158/1535-7163.mct-11-0748
http://refhub.elsevier.com/S2213-5979(20)30024-0/sbref0205
http://refhub.elsevier.com/S2213-5979(20)30024-0/sbref0205
http://refhub.elsevier.com/S2213-5979(20)30024-0/sbref0205
https://doi.org/10.1038/nature19796
https://doi.org/10.1038/nature19796
https://doi.org/10.1109/TMI.2016.2584120
https://doi.org/10.1088/0031-9155/60/17/6733
https://doi.org/10.1088/0031-9155/60/17/6733
https://doi.org/10.1016/j.pacs.2017.06.004
https://doi.org/10.1016/j.pacs.2017.06.004
https://doi.org/10.1109/TMI.2016.2607199
https://doi.org/10.1109/tmi.2018.2815760
https://doi.org/10.1038/jcbfm.2009.284
http://refhub.elsevier.com/S2213-5979(20)30024-0/sbref0245
http://refhub.elsevier.com/S2213-5979(20)30024-0/sbref0245
http://refhub.elsevier.com/S2213-5979(20)30024-0/sbref0245
http://refhub.elsevier.com/S2213-5979(20)30024-0/sbref0245
http://refhub.elsevier.com/S2213-5979(20)30024-0/sbref0250
http://refhub.elsevier.com/S2213-5979(20)30024-0/sbref0250
http://refhub.elsevier.com/S2213-5979(20)30024-0/sbref0250
http://refhub.elsevier.com/S2213-5979(20)30024-0/sbref0255
http://refhub.elsevier.com/S2213-5979(20)30024-0/sbref0255
http://refhub.elsevier.com/S2213-5979(20)30024-0/sbref0255
https://doi.org/10.1117/1.jbo.17.1.016009
https://doi.org/10.1038/s41598-017-11277-y
https://doi.org/10.1038/s41598-017-11277-y
https://doi.org/10.1137/16m1082901
https://doi.org/10.1137/16m1082901
http://refhub.elsevier.com/S2213-5979(20)30024-0/sbref0275
http://refhub.elsevier.com/S2213-5979(20)30024-0/sbref0275

	Evaluating online filtering algorithms to enhance dynamic multispectral optoacoustic tomography
	Introduction
	Methods
	Numerical phantom
	Experimental data
	Image reconstruction
	Multispectral state filtering
	Post-processing
	Quantification methods
	Image quality
	ROI analysis


	Results
	Phantom data
	Experimental data

	Discussion
	Conclusion
	Declaration of Competing Interest
	Acknowledgments
	Appendix A
	Calculation of coefficients for α and αβ filters
	(A.1) α Filter
	(A.2) αβ Filter


	Appendix B
	Dynamic Spectral Phantom

	Appendix C
	Statistical Comparisons of Different Filtering Approaches
	Pixel-wise comparison
	ROI-wise comparison


	Supplementary data
	References




