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Abstract
Background: In binary high-throughput screening projects where the goal is the identification of
low-frequency events, beyond the obvious issue of efficiency, false positives and false negatives are
a major concern. Pooling constitutes a natural solution: it reduces the number of tests, while
providing critical duplication of the individual experiments, thereby correcting for experimental
noise. The main difficulty consists in designing the pools in a manner that is both efficient and
robust: few pools should be necessary to correct the errors and identify the positives, yet the
experiment should not be too vulnerable to biological shakiness. For example, some information
should still be obtained even if there are slightly more positives or errors than expected. This is
known as the group testing problem, or pooling problem.

Results: In this paper, we present a new non-adaptive combinatorial pooling design: the "shifted
transversal design" (STD). It relies on arithmetics, and rests on two intuitive ideas: minimizing the
co-occurrence of objects, and constructing pools of constant-sized intersections. We prove that it
allows unambiguous decoding of noisy experimental observations. This design is highly flexible, and
can be tailored to function robustly in a wide range of experimental settings (i.e., numbers of
objects, fractions of positives, and expected error-rates). Furthermore, we show that our design
compares favorably, in terms of efficiency, to the previously described non-adaptive combinatorial
pooling designs.

Conclusion: This method is currently being validated by field-testing in the context of yeast-two-
hybrid interactome mapping, in collaboration with Marc Vidal's lab at the Dana Farber Cancer
Institute. Many similar projects could benefit from using the Shifted Transversal Design.

Background
With the availability of complete genome sequences, biol-
ogy has entered a new era. Relying on the sequencing data
of genomes, transcriptomes or proteomes, scientists have
been developing high-throughput screening assays and
undertaking a variety of large scale functional genomics
projects. While some projects involve quantitative meas-
urements, others consist in applying a basic yes-or-no test

to a large collection of samples or "objects", – be they
individuals, clones, cells, drugs, nucleic acid fragments,
proteins, peptides... A large class of these binary tests aims
at identifying relatively rare events. The main goal is of
course to obtain information as efficiently and as reliably
as possible. Typically, this is achieved by minimizing the
cost of the basic assay in terms of time and money, and
automating and parallelizing the experiments as much as
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possible. A major difficulty stems from the fact that high-
throughput biological assays are usually somewhat noisy:
reproducibility is a known problem of microarray analy-
ses, and both false positive and false negative observations
are to be expected in binary type experiments. These
experimental artifacts should be identified and properly
treated. A clean way to deal with the issue consists in
repeating all tests several times, but this is usually prohib-
itively expensive and time-consuming. A more practical
approach, in the case of binary tests, consists in retesting
all positive results obtained in a first round. This strategy
identifies most of the false positives at a reduced cost, but
is powerless with regard to false negatives, leaving us in
need of a better solution.

In the case of binary experiments testing for rare events, an
intuitively appealing strategy consists in pooling the sam-
ples to minimize the number of tests. It requires three
conditions. First, the objects under scrutiny must be avail-
able individually, in a tagged form. For example, a cDNA
library in bulk is not exploitable, but a collection of cDNA
clones or of cloned coding regions, such as the one pro-
duced by the C. elegans ORFeome project [1], is fine. Sec-
ond, it must be possible to test a pool of objects in a single
assay and obtain a positive readout if at least one of the
objects is positive. For example, this is the case when
searching for a specific DNA sequence by PCR in a mixture
of molecules: a product will be amplified if at least one of
the pooled molecules contains the target sequence. Third,
pooling is especially desirable and efficient when the frac-
tion of expected positives is small (at most a few percent).
Under these conditions, pooling strategies can be applied,
and the difficulty then consists in choosing a "good" set of
pools. This being an intuitive but rather vague goal, it
must be formalized. A simple formulation, known as the
group testing problem (or pooling problem), is the fol-
lowing. Consider a set of n events which can be true or
false, represented by n Boolean variables. Let us call
"pool" a subset of variables. We define the value of a pool
as the disjunction (i.e., the logical OR operator) of the var-
iables that it contains. Let us assume that at most t varia-
bles are true. The goal is to build a set of v pools, where v
is small compared to n, such that by testing the values of
the v pools, one can unambiguously determine the values
of the n variables.

If the pools must be specified in a single step, rather than
incrementally by building on the results of previous tests,
the problem is called "non-adaptive". Although adaptive
designs can require fewer tests, non-adaptive pooling
designs are often better suited to high-throughput screen-
ing projects because they allow parallelization and facili-
tate automation of the experiments, and also because the
same pools can be used for all targets, thereby reducing
the total project cost.

The ability to deal with noisy observations is an important
added benefit to using a pooling system, compared to the
classical individual testing strategy. Indeed, noise detec-
tion and correction capabilities are inherent in any pool-
ing system, because each variable is present in several
pools, hence tested many times. Depending on the
expected noise level, the redundancy can be chosen at
will, and simply testing a few more pools than would be
necessary in the absence of noise results in robust error-
correction. It should be noted that minimization of the
number of pools and noise correction are two conflicting
goals: increasing noise tolerance generally requires testing
more pools. Designing a set of pools requires balancing
these two objectives, and finding the right compromise to
suit the application.

Other application-dependent constraints may be
imposed. In particular, the pool sizes are often limited by
the experimental setting. For example, in the context of
the C. elegans protein interaction mapping project led by
Marc Vidal [2,3], it is estimated that, using their high-
throughput two-hybrid protocol, reliable readouts can be
obtained with pools containing 400 AD-Y clones, or per-
haps up to 1000 by tweaking the assay (Marc Vidal, per-
sonal communication).

Many groups have used with some success variants of the
simple "grid" design, which consists in arraying the
objects on a grid and pooling the rows and columns [e.g.
[4-6]]. However, although it is better than no pooling, this
rudimentary design is vulnerable to noise and behaves
poorly when several objects are positive, in addition to
being far from optimal in terms of numbers of tests.

In answer to its shortcomings, more sophisticated error-
correcting pooling designs have been proposed. Some of
these designs are very efficient in terms of numbers of
tests, but lack the robustness and flexibility that most real
biological applications require. Others are more adapta-
ble and noise-tolerant at the expense of performance. In
this paper, we present a new pooling algorithm: the
"shifted transversal design" (STD). This design is highly
flexible: it can be tailored to allow the identification of
any number of positive objects and to deal with important
noise levels. Yet it is extremely efficient in terms of
number of tests, and we show that it compares favorably
to the previously described pooling designs.

The paper is organized as follows. After providing a formal
definition STD, we show that it constitutes an error-cor-
recting solution to the pooling problem. The theoretical
performance of STD is then evaluated and compared with
the main previously described deterministic pooling
designs. Finally, we summarize our results and discuss
future directions.
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Results (1): the Shifted Transversal Design
Preliminaries
The following notations are used throughout this paper,
in accordance with the notations from [7].

Let n ≥ 2, and consider the set  = {A0,...,An-1} of n

Boolean variables.

We will call "pool" a subset of . We say that a pool is

"true", or "positive", if at least one of its elements is true.

Let us call "layer" a partition of .

Let q be a prime number, with q < n.

We define the "compression power" of q relative to n,
noted Γ(q,n), as the smallest integer γ such that qγ+1 ≥ n.
We will simply write Γ for Γ(q,n) whenever possible.

Let σq be the mapping of {0,1}q onto itself defined by:

Note that σq is a cyclic function of order q: σq
q is the iden-

tity function on {0,1}q.

The matrix representation
Any set of pools can be represented by a Boolean matrix,
as follows. Each column corresponds to one variable, and
each row to one pool. The cell (i,j) is true (value 1) if pool
i contains variable j, and false (value 0) otherwise.

Example

Consider the n = 9 variables  = {A0, A1,...,A8}. The fol-

lowing matrix defines a set of 3 pools:

The pools are {A0,A3,A6} (defined by the first row),
{A1,A4,A7} (second row), and {A2,A5,A8} (third row). In
fact, this set of pools clearly constitutes a layer.

Definition of STD
A pooling design is a method to construct a set of pools.
When the set of pools can be partitioned into layers (i.e.
subsets which each form a partition of the set of varia-

bles), the pooling design is said to be "transversal". STD is
a transversal pooling design that rearranges the variables
from one layer to the next, with two intuitive goals in
mind. First, the number of pools in which any pair of var-
iables can occur (i.e. the co-occurrence of variables)
should be limited: this is essential for determining the var-
iables' values. The second aim is that the intersections
between pools should be of roughly constant size, in
order to maximize the mutual information obtained by
observing the pools' values and thus increase STD's effi-
ciency.

Given a prime number q with q < n, and k such that k ≤
q+1, STD constructs a set STD(n; q; k) of pools composed
of k layers. When k ≤ q, the layers have a uniform con-
struction: they each contain q pools of n/q or (n/q)+1 var-
iables, and are globally interchangeable. In the special
case where k = q+1, the q homogeneous layers are supple-
mented with a singular layer, which has a specific con-
struction and is less regular, yet complements the others
nicely. A formal definition of STD(n; q; k) follows.

For every j ∈ {0,...,q}, let Mj be a q × n Boolean matrix,
defined by its columns Cj,0,...,Cj,n-1 as follows:

, and ∀ i ∈ {0,...,n-1} 

where:

 if j < q, and , where

the semi-bracket denotes the integer part.

Let L(j) be the set of pools of which Mj is the matrix repre-

sentation. Note that each column Cj,i has exactly one

occurrence of '1' and (q-1) occurrences of '0'. The index of
the '1' identifies the (single) pool of L(j) which contains
variable Ai. Therefore, in a given set of pools L(j), each var-

iable is present in exactly one pool, that is to say L(j) con-

stitutes a partition of : L(j) is a layer.

Finally, for k ∈ {1,2,...,q+1}, STD(n; q; k) is defined as:

.
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Example

Consider again the variables , and let q = 3 (hence Γ =

1). M0 is as defined above, and M1, M2, M3 are:

The corresponding layers of pools are the following:

Layer 0: L(0) = {{A0,A3,A6}, {A1,A4,A7}, {A2,A5,A8}}

Layer 1: L(1) = {{A0,A5,A7}, {A1,A3,A8}, {A2,A4,A6}}

Layer2: L(2) = {{A0,A4,A8}, {A1,A5,A6}, {A2,A3,A7}}

Layer3: L(3) = {{A0,A1,A2}, {A3,A4,A5}, {A6,A7,A8}}.

STD(9; 3; 2) is the following set of pools: STD(9; 3; 2) =
L(0) ∪ L(1).

Remark
The method builds at most q+1 layers: indeed, if we dis-
card the last particular layer L(q) and attempt to extend
the STD construction to any j, it becomes cyclic of order q:
for every j, L(j+q) = L(j).

Results (2): properties of STD
In this section, we establish an important theorem, lead-
ing to three corollaries which show that STD constitutes a
solution to the pooling problem described in the intro-
duction, and that it can be used to detect and correct noisy
observations. We then establish another property of STD,
which is noteworthy albeit not directly related to the pool-
ing problem.

Co-occurrence of variables
So far we have considered the variables that are contained
in a given pool. Dually, we may consider the set of pools
that contain a given variable. For k ∈ {1,2,...,q+1}, we will
note poolsk(i) the set of pools of STD(n; q; k) that contain
variable Ai:

∀ i ∈ {0,...,n-1}, poolsk(i) = {p ∈ STD(n; q; k) | Ai ∈ p}.

Theorem 1
Recall that q is prime.

∀ i1, i2 ∈ {0,...,n-1}, [i1≠i2] ⇒ [Card(poolsq+1(i1) ∩
poolsq+1(i2)) ≤ Γ(q,n)].

Proof
see Methods section.

Example
Consider again the example n = 9, q = 3, k = 4, for which
the layers L(0), L(1), L(2), and L(3) are known (see
above). The set of pools containing A0 is: pools4(0) =
{{A0,A3,A6},{A0,A5,A7},{A0,A4,A8},{A0,A1,A2}}.

One can easily see that A0 is present exactly once with each
other variable. In fact, each pair of variables is present in
exactly 1 (= Γ(3,9)) pool, in conformity with theorem 1.

Remark
The property holds a fortiori when k < q+1, i.e. when con-
sidering STD(n; q; k) instead of STD(n; q; q+1).

A solution to the pooling problem
Corollary 1

Let t be an integer such that t·Γ(q,n) ≤ q. Let k = t·Γ+1,
and consider the set of pools STD(n; q; k). Suppose that
the value of each pool has been observed, and that there

are at most t positive variables in . Then, in the

absence of noise (i.e., if all pool values are correctly
observed), the value of every variable can be identified.

Proof
Consider the following algorithm, which tags variables as
negative or positive.

Algorithm 1: all the variables present in at least one nega-
tive pool are tagged negative; any variable present in at
least one positive pool where all other variables have been
tagged negative, is tagged positive.

We show that this algorithm correctly identifies the value
of each and every variable.

Let Ai be a negative variable. Ai is present in exactly k
pools: one pool in each layer. Theorem 1 asserts that no
variable other than Ai is present in more than Γ of these
t·Γ+1 pools. Therefore, since at most t variables are posi-
tive, Ai is present in at least one pool where no positive
variable is present. Consequently, examination of this
pool yields a negative answer (since all observations are
correct), which leads algorithm 1 to tag Ai negative. This
shows that every negative variable is correctly tagged as
such.
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Now let Ai be a positive variable. Since we suppose here
that there are no observational errors, all pools containing
Ai are positive: Ai is not tagged negative. Again according
to theorem 1, no other variable is present in more than Γ
of these t·Γ+1 pools. Therefore, since there are at most t-
1 other positive variables, Ai is present in at least Γ+1 pos-
itive pools where all other variables are negative, and are
tagged negative according to the above. This shows that
every positive variable is tagged correctly and uniquely.

Finally, since every positive pool must contain at least one
positive variable, and since no positive variable is tagged
negative, we can conclude that no negative variable can be
tagged positive (in addition to its negative tag): every neg-
ative variable is also uniquely tagged. This completes the
corollary's proof.

Example
Consider again our example STD(9; 3; 2) = {{A0,A3,A6},
{A1,A4,A7}, {A2,A5,A8}, {A0,A5,A7}, {A1,A3,A8},
{A2,A4,A6}}.

Let t = 1, and suppose that a single variable in  is pos-

itive. For reasons of symmetry, the name of that variable
is inconsequent: all are equivalent. Let us suppose that the
only positive variable is A8. Then pools {A0,A3,A6},

{A1,A4,A7}, {A0,A5,A7}, and {A2,A4,A6} are negative,

which shows that variables A0, A1,...,A7 are negative; and

pools {A2,A5,A8} and {A1,A3,A8} are positive, which each

prove that A8 is positive (given that A2, A5, A1 and A3 have

been shown to be negative).

Remark
If more than t variables are positive, this fact is revealed:
clearly, at most n - (t+1) variables are tagged negative,
contrary to when there are at most t positives. In fact, all
tags produced by the above algorithm are still correct, but
some variables may not be tagged at all: these variables are
called "unresolved", or "ambiguous". It would be interest-
ing to know how many ambiguous variables are to be
expected, but this is a very hard problem to study analyti-
cally, particularly when one takes into account experimen-
tal noise. Instead, this issue can be suitably approached by
computer simulation.

Dealing with noise: error correction
As stated in the introduction, pooling designs have an
intrinsic potential for noise-correction, due to the redun-
dancy of variables. In the case of STD, this potential can
be taken advantage of by simply testing a few extra layers
of pools and using a modified algorithm, as shown here.

Corollary 2

Let t and E be integers such that t·Γ(q,n)+2·E ≤ q, and let

k = t·Γ+2·E+1. Consider the set of pools STD(n; q; k),
and suppose that the value of each pool has been
observed. Furthermore, suppose that there are at most t

positive variables in , and that there are at most E

observation errors. Then, all errors can be detected and
corrected, and the value of every variable can be identi-
fied.

Proof
Consider the following tagging algorithm.

Algorithm 2: all the variables present in at least E+1 nega-
tive pools are tagged negative; any variable present in at
least E+1 positive pools where all other variables have
been tagged negative, is tagged positive.

The proof is similar to that of corollary 1: we show that
algorithm 2 correctly and uniquely tags every variable. In
this case, theorem 1 shows that each negative variable is
necessarily present in at least 2·E+1 negative pools. Since
there are at most E observation errors, it follows that at
least E+1 of these negative pools are correctly observed.
Therefore, algorithm 2 tags all negative variables as such.
In addition, at most E pools containing a positive variable
can be observed negative; hence no positive variable is
tagged negative. Finally, since at most E pools containing
only negative variables can be observed positive, no nega-
tive variable is tagged positive:every negative variable is
correctly and uniquely tagged.

Conversely, a positive variable Ai appears in at least
t·Γ+E+1 positive pools (since there are at most E errors),
of which at most (t-1)·Γ contain at least one other posi-
tive variable (according to theorem 1). Therefore Ai is
present in at least (t·Γ+E+1) - (t-1)·Γ = Γ+E+1 positive
pools where all other variables are negative. Since these
negative variables have been correctly tagged as such (as
shown above), Ai is tagged positive. This shows that algo-
rithm 2 also correctly and uniquely tags all positive varia-
bles.

Finally, any observation which is contradictory with the
obtained tagging is necessarily erroneous. In other words,
false negative and false positive observations are identi-
fied.

Remark
Few restrictions are imposed when choosing the value of
the parameter q: it must simply be a prime number
smaller than n. Consequently, STD can be used success-
fully even when very high noise levels are expected, by
picking a large value for q. Of course, as is to be expected

9

n
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in low signal-to-noise situations, this high corrective
power comes at the price of lower compression perform-
ance, since larger q values mean more pools per layer.

Corollary 2 does not distinguish between the two types of
errors: false positives and false negatives. If we consider
them separately, the corrective power of STD can actually
be improved twofold, as shown below.

Corollary 3

Let t and E be integers such that t·Γ(q,n)+2·E ≤ q, and let

k = t·Γ+2·E+1. Consider the set of pools STD(n; q; k),
and suppose that the value of each pool has been

observed. Furthermore, suppose that there are at most t

positive variables in , and that there are at most E false

positive and E false negative observations. Then, all errors
can be detected and corrected, and the value of every var-
iable can be identified.

Proof
The proof of corollary 2 can be directly replicated, and
shows that algorithm 2 still tags all variables uniquely and
correctly. Indeed, since there are at most E false positives,
every negative variable is tagged as such; and since there
are at most E false negatives, no positive variable is tagged
negative. In addition, no negative variable is tagged posi-

n

Guaranteed error correction and detection properties of STDFigure 1
Guaranteed error correction and detection properties of STD. An experimenter, expecting up to t positives and E 
errors, chooses a satisfactory prime number q and builds the set of pools STD(n; q; t·Γ+2·E+1), as specified in corollary 2. 
Recall that n is the total number of variables and Γ is the compression power, i.e. the smallest γ such that qγ+1 ≥ n. This figure 
summarizes the behavior of these pools when the actual number of errors exceeds E, and distinguishes between the two types 
of errors: false positives and false negatives. In the dark blue region, all errors are detected and corrected. In the intermediate 
blue rectangles, correction is not guaranteed but detection is: in an unfavorable conformation of positives and errors, correc-
tion of all errors may fail, but this failure cannot go unnoticed, and the user can therefore plan additional experiments. In the 
cyan square, detection is usually also guaranteed, except if E is very small (E < 2·Γ-1): in this case, the line y = 3·E+1-x splits the 
square in two, and detection is only guaranteed in the bottom left portion, where the total number of errors is at most 3·E+1. 
Finally, in the outer pale cyan zone, no guarantee is provided.
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tive: this results from the facts that there are at most E false
positives and that no positive variable is tagged negative.
Finally, given that every negative variable is tagged nega-
tive, we can conclude that every positive variable is tagged
positive as long as there are less than E+Γ+1 false nega-
tives.

Error detection
If algorithm 2 tags some variables twice or not at all, or if
it tags more than t variables as positive, or if it identifies
more than E false positives or false negatives, then we
know that the conditions for corollaries 2 and 3 are not
satisfied. In this case the obtained tags may be incorrect,
but one is aware of the situation. However, if enough
excess errors are present, the tags can be wrong while
seeming to satisfy one of the corollaries' hypotheses; in
this case, the mistake is not detected. This leads to the fol-
lowing important question: in general, assuming there are
at most t positives, how many errors can be detected?

Examining the proof of corollary 3, if there are at most E
false positives and up to E+Γ false negatives, every variable
is correctly tagged, although some variables may be tagged
twice (i.e. both positive and negative). It follows that to
avoid detection, there must be at least E+Γ+1 false nega-
tives, or at least E+1 false positives. In fact, E+Γ+1 false
negatives can successfully remain undetected. On the
other hand, if there are E+1 false positives, a negative var-
iable may seem positive with only E fictitious false nega-
tives; but this would lead to t+1 putative positive
variables, hence detection is in fact not avoided. A
detailed analysis shows that escaping detection in this
case actually requires either Γ extra false positives, or
2·E+1 additional errors among which at least E+1 are
false negatives. Overall, ignoring the errors' types, we con-
clude that the detection of min(3·E+1, E+Γ) errors is
guaranteed. Typically Γ is 2 or 3, hence this guarantee is
not very strong; but it corresponds to a rare worst case sce-
nario, and in practice many more errors can usually be
detected.

The error correction and detection properties of STD are
summarized in Figure 1. From another angle, it is interest-
ing to know what happens if more than t variables are
positive. As long as there are at most E errors, all tags pro-
duced by algorithm 2 are still correct, although some var-
iables may not be tagged (i.e., they are unresolved).
Therefore the occurrence of more than t positives is
detected, as in the noiseless case. However, if there are
both more than E errors and more than t positives, prob-
lems may occur and escape detection (e.g., a positive var-
iable might be "mis-tagged" as negative). Some of these
problems reflect the natural limits of the STD pools, and
can only be avoided by using different STD parameters;
but some result from the rigidity of algorithm 2. In real

applications where the number of positives and errors will
probably exceed t and E in at least a few instances, more
sophisticated algorithms should be used.

Even redistribution of variables
We have just shown that STD constitutes a solution to the
pooling problem in the presence of experimental noise.
Although it digresses from the main focus of this paper,
the following theorem provides an interesting characteri-
zation of STD, basically showing that the STD layers work
well together, information-wise.

Theorem 2
Let m ≤ k ≤ q and consider a set of m pools {P1,...,Pm} ⊂
STD(n; q; k), each belonging to a different layer. Then:

Proof
see Methods section.

Remarks
1. λm depends only on m and not on the choice of
P1,...,Pm; hence this theorem can be expressed simply as
follows: each pool is redistributed evenly in every other
layer, and furthermore the intersection between any two
or more pools from different layers is also redistributed
evenly in the remaining layers. This property is very inter-
esting because it means that knowing that any given pool
is positive doesn't bring any information regarding which
pools of another layer will be positive; hence, the infor-
mation content of the other layers remains high.

2. Note that the theorem specifies k ≤ q rather than q+1:
the last layer that can be built with STD, L(q), is particular
and does not satisfy theorem 2.

Discussion
To evaluate and compare pooling designs, a fair perform-
ance measure is needed. A widely-used and reasonable
choice consists in considering the number of pools
required to guarantee the correction of all errors and the
identification of all variables' values: we call this the
"guarantee requirement". This criterion is used here to
study the behavior and performance of STD, and to com-
pare it to the main published deterministic error-correct-
ing pooling designs. Since most authors do not
distinguish between false positives and false negatives, we
only consider here the error correction power of STD as
stated in corollary 2, rather than the stronger result
expressed in corollary 3.
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Guaranteed performance of STD
We define the "gain" of a design as the ratio between the
number of variables and the number of pools: n/v. The
gain is called "guaranteed gain" if the guarantee require-
ment is satisfied. This measure is particularly useful for
comparing settings where n varies.

Given the specifications of an application, i.e. values for n
(total number of objects to be tested), t (number of
expected positives), and E (expected number of errors to
be corrected), STD can propose many sets of pools, by
selecting various values for the parameter q and setting the
number of layers k accordingly (as specified by corollary
2). These pool sets are of different sizes, but all satisfy the
guarantee requirement. The optimal choice, qopt, is the
one with maximum guaranteed gain. Let qmin be the
smallest possible q such that t·Γ(q,n)+2·E ≤ q, and let
Γmax = Γ(qmin,n). At a fixed value for Γ, the number of lay-
ers k necessary to satisfy the guarantee requirement is con-
stant; therefore the best gain at fixed Γ is always obtained
with the smallest q whose compression is Γ. It follows that
qopt can be identified easily by finding the smallest q for
each value of Γ in {1,...,Γmax}, and calculating the corre-
sponding gain. In practice we often have qopt = qmin, but
this is not compulsory, as illustrated by Table 1 in the case
n = 10000, t = 5, E = 0.

The above method allows to easily calculate the best guar-
anteed gain that STD can offer, in any specified (n,t,E) set-
ting. Therefore, the behavior of STD can be studied under
various angles. In particular, one interesting approach
consists in using fixed values for t and E, and studying the
evolution of the best guaranteed gain (obtained using
qopt) when n increases. For example, Table 2 displays the
number of pools necessary to identify three positives and
correct two errors, when the number of variables ranges
from 100 to 106. When n increases, the gain increases sub-
stantially and fairly regularly: it is multiplied by a factor
ranging from 6 to 9 every time n gains an order of magni-
tude. Note that in a real application, the fact that the pool
sizes are generally constrained by practical considerations
can result in forcing to use values of q > qopt and hence
limit the gain.

Comparison with previous work
In this section, after a brief overview of the known con-
struction methods, we compare STD, in terms of flexibil-
ity and performance under the guarantee requirement, to
the main published error-correcting deterministic pooling
designs. In general, the guaranteed gains can be difficult to
compare analytically, because the numbers of pools and
variables can be defined by formulas that are often rather
involved. However, each paper describing a new design
typically holds a numerical example, which would hardly

Table 1: Choosing the optimal value for the number of pools per layer, q

q Γ k v gain

≤ 13 ≥ 3 ≥ 16 k > q+1, can't use these values
17 3 16 272 36.8
19 3 16 304 32.9
23 2 11 253 39.5
29 2 11 319 31.3
... 2 11 ... ...
97 2 11 1067 9.4
101 1 6 606 16.5

This table shows the gains obtained with various q values, when the total number of variables to be tested is n = 10000 and the number of expected 
positives is t = 5, in a noiseless experiment (E = 0). Γ is the compression power (i.e. logarithm of n in base q, see Preliminaries in Results(1) section), 
k is the number of layers, v is the number of pools (i.e. k·q), and the gain is defined as n/v. By construction, STD requires k ≤ q+1; and to guarantee 
the identification of t positives while correcting E errors, section 3.3 showed that we must choose k = t·Γ+2·E+1; in this example, k = 5Γ+1. Often, 
the smallest useable q (i.e., satisfying k ≤ q+1), qmin, yields the highest gain, but this is not always the case. In this example, qmin = 17, but q = 23 
(smallest q such that Γ = 2) yields the highest gain: 39.5.

Table 2: Gains obtained when the identification of 3 positives and the correction of 2 errors is guaranteed (t = 3, E = 2)

n qopt pool size k v gain

100 11 9 8 88 1.1
1000 11 91 11 121 8.3
104 13 769 14 182 55
105 19 5263 14 266 376
106 19 52631 17 323 3096

For each value of n (total number of variables), the optimal q value qopt has been calculated, as well as the associated pool size, the number of layers 
k, the total number of pools v, and the gain.
Page 8 of 13
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be disadvantageous to the described design. Therefore,
when the methods cannot be easily compared, it seems
fair to use each paper's numerical example for comparison
with STD. Note that the guarantee requirement cannot be
satisfied by random designs [e.g. [8]], which are conse-
quently not studied here.

Detailed reviews of deterministic pooling designs can be
found in [7,9,10], and we will only very briefly recapitu-
late them here. Broadly speaking, there are three main
construction methods: set packings, transversal designs,
and direct constructions. In fact, the non-adaptive pooling
problem is strongly connected to the problem of con-
structing superimposed codes [11], which was analyzed
forty years ago to deal with the questions of representing
rare document attributes in an information retrieval sys-
tem and of assigning channels to relieve congestion in
shared communications bands. The focus is different:
each variable is seen as a code word and the goal is to max-
imize the number of code words n at fixed length v rather
than the other way around; and these problems were
noiseless, contrary to our own situation where error-cor-
rection is critical. Yet [11] had already suggested construc-
tions of superimposed codes based on set packings, as
well as constructions based on q-nary codes (which are in
fact transversal designs) and on compositions of q-nary
codes (which are not transversal anymore, and are more
compact). Set packings, such as the designs presented in
[12], can yield very efficient designs, but are mainly lim-
ited to t ≤ 2 [7]. Transversal designs include the well-
known grid (or row-and-column) design. This design is
initially limited to identifying a single positive in the
absence of noise, and is not very efficient, but it has been
improved in two directions: hypercube designs [13] gen-
eralize it by considering higher dimension grids, and var-
ious methods [e.g. [14]] have been proposed to build
several "synergical" grids that work well together. Finally,
some authors have proposed direct constructions of error-
correcting pooling designs [15,16].

Note that STD, although directly constructed, is in fact a
transversal design. Furthermore, STD can be seen as a con-
structive definition of a q-nary code as proposed by [11],
i.e. a concatenated code where the inner code is simply the
unary code, and the outer code has some similarities with
a Reed-Solomon code [17]. Yet although related, the
methods are clearly different: for example, STD doesn't
produce useful pools if q is a prime power; on the other
hand, STD allows to build up to q+1 layers, whereas the
Reed-Solomon based construction can only build up to q-
1. Furthermore, STD produces efficient pools independ-
ently of the number of variables n, contrary to the Reed-
Solomon approach where one is faced with the difficult
problem of choosing a good subset of code words except

for some n values. The relationship between the two
approaches requires further investigations.

Set packing designs
Regarding set packing designs, the main results taking into
account error-correction are presented in [12]. The
authors exhibit Steiner designs that can identify up to t =
2 positives and in some instances correct many errors, and
prove that these designs are optimal when the construc-
tion is possible (it is only possible for very specific (n,E)
values). When these optimal designs exist, they are more
efficient than STD. The same authors describe a real-world
application in [18], where the goal is to screen a clone
map with n = 1530 and t = 2. They start off with a design
that can deal with 4368 variables while satisfying the guar-
antee requirement for t = 2 and E = 0. None of the optimal
designs from [12] can be used, but this initial design is
also based on a Steiner system and remains very efficient.
The authors then select 1530 of the 4368 variables to serve
as clones in their experiment. This was presumably done
because Steiner systems, even outside the optimality con-
ditions of [12], are not known for arbitrary values of n.
Although this reduces the resulting designs' performance,
they remain efficient and obviously still satisfy the guar-
antee requirement. Additionally, this strategy reduces the
sizes of pools, providing increased robustness (e.g., some
information can still be obtained if, exceptionally, three
objects are positive), and complying with the application-
imposed pool size constraints. In the example, n = 1530
and t = 2, and the authors propose two designs: one with
65 pools of approximately 118 clones each, and one with
54 pools of 142 clones. These numbers are very close to
what would be recommended with STD: we could pro-
pose STD(1530; 13; 5) which has 65 pools of 118 clones,
or STD(1530; 7; 7) with 49 pools of 218 clones. Note that
although STD(1530; 13; 5) has the same number of pools
and pool size as the first design proposed in [18], they are
in fact different: the latter is obtained by random sam-
pling from the Steiner design. All of these designs guaran-
tee the identification of 2 positives in the absence of noise.
Furthermore, although noise-tolerance is not guaranteed
in any of them, simulations we have performed suggest
that substantial error-rates can be corrected in the STD
designs, as is the case in the others. Therefore these
designs and STD appear to achieve very similar perform-
ances on these examples. However, it is important to note
that the only Steiner systems proven to be optimal con-
cern specific instances of the t = 1 and t = 2 cases. In more
general circumstances, designs derived from Steiner sys-
tems are not optimal, and their performance depends on
the problem specification (i.e. n, t, E values). For example,
considering the n = 10000, t = 5, E = 0 problem discussed
above and in Table 1, the smallest Steiner system that we
could identify (based on [19]) is S(3,24,530), which com-
prises 530 pools. In addition, there is no clear method for
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choosing the Steiner system best suited to a given problem
specification: although we have searched extensively, we
cannot be certain that no better Steiner system exists for
this example. In contrast, finding the optimal STD param-
eters is straight-forward, as explained in the previous sec-
tion. In this case STD proposes a solution comprising 253
pools.

Transversal designs
An interesting generalization of the grid design is
described in [13]. The authors propose to array the varia-
bles in a D-dimensional cube, instead of the 2 dimensions
used in the standard grid design. Furthermore, they advise
that the length of the cube's side be chosen prime: let us
denote it q. A pool is then obtained from each hyper-
plane, so that the D-dimensional cube yields D layers of q
pools, each comprising up to n/q variables. To obtain
more layers, the authors propose a criterion to construct
"efficient transforming matrices" that produce additional
cubes, where variables are as shuffled as possible; in fact,
the purpose of their "efficiency" criterion is identical to
the "co-occurrence of variables" property satisfied by STD
(theorem 1). Seen like this, their system is clearly related
to STD: D is Γ+1, and although the authors do not inves-
tigate their design's behavior under the guarantee require-
ment, corollaries 1 and 2 can in essence be applied.
Furthermore, when the cube is "full", i.e. when n = qD,
their pools satisfy an analog of theorem 2 (i.e. they are
"information-efficient" in some sense). Note that this can-
not be the case when q is arbitrary; this may explain why
the authors limit their options for q to the smallest primes
larger than n1/D, for each D value. However, each D-
dimensional cube provides only D layers, and the pro-
posed criterion for building additional cubes is not sys-
tematic, so that the total number of layers that can be built
is unclear but seems much smaller than with STD. In addi-
tion, the authors don't take observational noise into
account (they do talk of "false positives", but are really
referring to what we call ambiguous variables). For these
reasons, we cannot rigorously compare the designs under
the guarantee requirement, but in general the fact that
STD can build more layers is clearly favorable, since it
allows dealing with a greater number of positives and/or
errors at any chosen q value. In a numerical example con-
cerning the screening of the CEPH YAC library, n = 72000
and the authors argue that the optimal dimension and
side length to use are D = 3 and q = 43, respectively. They
then exhibit a set of transforming matrices that allows the
construction of at most 3 additional cubes, yielding a total
of 12 layers. By contrast, using the same values for D and
q, STD can build up to 44 layers, which all satisfy the effi-
ciency criterion. We believe that some of these extra layers
could prove valuable, especially when allowing for exper-
imental noise. In addition, smaller values for q can be
used with STD (while still being information-efficient in

the sense of theorem 2), although simulations would be
necessary to choose the best value.

Two other transversal pooling designs, which generalize
the grid design by providing additional 2-dimensional
grids, are described in [14]: the "Union Jack" and the RCF
designs. In essence, they are very similar to STD when Γ =
1: writing q = √n, they allow the construction of up to q+1
layers of pools (where each layer contains q pools of size
q) which satisfy the property that any pair of variables
appears in at most one pool. Theorem 1 shows that this
property, known as the "unique colinearity" condition, is
in fact verified by STD when Γ = 1 (in accord with q = √n).
We can observe that these designs, as well as STD when Γ
= 1, are maximal under this condition, since each pair of
variables is in fact present in exactly one pool. Corollaries
1 and 2 can be applied, and show that they allow the iden-
tification of up to t positives while correcting E observa-
tion errors, provided that t+2·E+1 ≤ q+1. The
performance of the designs from [14] is therefore identical
to that of STD when Γ = 1. However, STD is superior to
these designs in two respects. First, their constructions are
only possible if q is prime and q≡5 mod 6 (using the RCF
construction), or if q is prime and q≡3 mod 4 (with the
Union Jack design). By contrast, STD only requires that q
is prime. Second, STD can be used with any compression
power, rather than being limited to Γ = 1. This flexibility
is an advantage, because STD can be customized to suit
more applications. Notably, when the fraction of positives
is small, the Union Jack and RCF designs perform less
well: the pools are too small, and observing that a pool is
negative brings little information. By contrast, pools in
STD can be very large (when choosing a small q), so that
every observation is informative. To illustrate this point,
let us consider the numerical example of [16] discussed
below, where the fraction of positives is particularly low
(n = 18,918,900 and t is 2 or 9). The best usable design
from [14] would be a Union Jack with q = 4363, and
would require a total of 13,089 pools for 2 positives – 77
times more than STD – and 43,630 pools to guarantee the
identification of 9 positives – 32 times more than STD.

Direct constructions
In [15], the author proposes a direct construction allow-
ing the detection of an arbitrary number of positives.
Although this design is not very efficient under the guar-
antee requirement, the author shows in [20] that the
pools designed for detecting 2 positives allow with high
probability the detection of more positives. A numerical
example, presented in [9], is the following. If n = 106 and
t = 5, using 946 pools guarantees the identification of 2
positives and successfully identifies up to 5 positives with
probability 97.1%. In comparison, under the guarantee
requirement (i.e. with probability 100%), STD(n; 11; 11)
contains 121 pools and identifies 2 positives, and STD(n;
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23; 21), which comprises 483 pools, guarantees the iden-
tification of up to 5 positives.

Finally, another group [16] described two new classes of
non-adaptive pooling designs, which allow the detection
of any number of positives and the correction of half as
many errors. Following the idea from [20], they also show
that their designs for t = 2 have high probabilities of being
successful for more positives. In a numerical example,
they consider the case n = 18,918,900, and propose a
design with 5460 pools which guarantees the identifica-
tion of 2 positives, and can in addition identify up to 9
positives with 98.5% chance of success. By contrast,
STD(n; 13; 13) contains 169 pools and guarantees the
identification of 2 positives, and the identification of 9
positives is guaranteed with the 1369 pools of STD(n; 37;
37).

Conclusion
In this paper, we have presented a new pooling design: the
"shifted transversal design" (STD). We have proven that it
constitutes an error-correcting solution to the pooling
problem. This design is highly flexible: it can be tailored
to deal efficiently with many experimental settings (i.e.,
numbers of variables, positives and errors). Finally, under
a standard performance criterion, i.e. requiring that the
correction of all errors and the identification of all varia-
bles' values be guaranteed mathematically, we have
shown that STD compares favorably, in terms of numbers
of pools, to the main previously described deterministic
pooling designs.

This approach is being experimentally validated in collab-
oration with Marc Vidal's laboratory at the Dana Farber
Cancer Institute, Boston. In a pilot project, pools have
been generated with 940 AD-Y preys, using the
STD(940;13;13) design, and we are screening the 169
resulting pools against 50 different baits. This experiment
will provide estimations for the technical noise levels of
their high-throughput 2-hybrid protocol, in addition to
producing valuable interaction data and yielding a real-
world evaluation of STD.

Although this work is motivated by protein interaction
mapping, as we have been collaborating with Marc Vidal's
group for several years, its scope is certainly not limited to
high-throughput two-hybrid projects. Potential applica-
tions include a wide range of high-throughput PCR-based
assays such as gene knockout projects, drug screening
projects, and various proteomics studies. Furthermore,
this general problem certainly has applications outside
biology.

In practice, an important point is made in [20], where the
author shows that his pooling design can be used to detect

with high probability more positives than guaranteed.
Simulations we have performed show that this observa-
tion is also true with STD: the gains can be increased sub-
stantially if one tolerates a small fraction of ambiguous
variables that will need to be retested. However, these
considerations are outside the scope of this paper, because
we cannot study them analytically, but resort instead to
computer simulations. Yet using such a strategy in practice
with STD significantly improves the performance. For
example, consider the case n = 10000 and t = 5, and sup-
pose that the assay has an error-rate of 1%. To guarantee
the identification of all variables' values, one must use
483 pools (with q = 23 and k = 21). However, if one tol-
erates up to 10 ambiguous variables, even when overesti-
mating the error-rate to 2% for safety's sake, 143 pools
prove amply sufficient. It is clear that this "ambiguity-tol-
erant" approach should be preferred in practical applica-
tions. This approach and the corresponding computer
program, which performs simulations to select the STD
parameter values best suited for a given application and
includes original efficient algorithms for preparing the
pools and decoding the outcomes, will be discussed in
another paper.

Another interesting track will be to study the efficiency of
pooling designs from the point of view of Shannon's
information theory. We are planning to investigate STD's
behavior in this context. Theorem 2 could prove useful for
this.

Finally, the connection between STD and constructions
based on superimposed codes, e.g. q-nary Reed-Solomon
codes [11], warrants further studies.

Methods
Proof of theorem 1

Let i1,i2 ∈ {0,...,n-1} with i1 ≠ i2. Since each layer of pools

is a partition of , there cannot be more than one pool

per layer containing both Ai1 and Ai2. Furthermore, there

exists a pool in layer L(j) that contains both Ai1 and Ai2 if

and only if the columns for Ai1 and Ai2 are equal in Mj, that

is to say . Therefore the number of pools of

STD(n; q; q+1) that contain both i1 and i2,

Card(poolsq+1(i1) ∩ poolsq+1(i2)), is the number of values of

j in {0,...,q} such that . However, the follow-

ing equivalencies hold ∀ j ∈ {0,...,q-1} :

n

C Cj i j i, ,1 2
=

C Cj i j i, ,1 2
=
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Since q is prime, Z/qZ is a field, namely the Galois field
GF(q).

Furthermore, since i1≠i2, there exists at least one value c ∈

{0,...,Γ} such that  mod q. Indeed,

i1,i2 ∈ {0,...,n-1} and n ≤ qΓ+1 entails that

 and ,

where % denotes the modulus (these are the unique
decompositions of i1 and i2 in base q). Hence,

. Supposing that

 mod q for every c ∈ {0,...,Γ} would

lead to i1 - i2 = 0, which is contradictory with the hypoth-

esis that i1≠i2.

It follows that the above (1) can be seen as a non-zero pol-

ynomial (in j) of degree at most Γ on GF(q). As is well-

known, such a polynomial has at most Γ roots in GF(q).

That is to say, there are at most Γ values of j in {0,...,q-1}
such that a pool of L(j) contains both Ai1and Ai2. This

proves the theorem if . Furthermore, if

, the coefficient of jΓ in (1) is zero by defini-

tion of s(i,q), and (1) is of degree at most Γ-1. Therefore if
Ai1 and Ai2 are elements of the same pool in L(q), then

there are at most Γ-1 pools in L(0),...,L(q-1) that contain
both Ai1 and Ai2. This concludes the proof of theorem 1.

Proof of theorem 2
Let j1,...,jm ∈ {0,...,k-1} be the layer numbers and p1,...,pm
∈ {0,...,q-1} be the pool indexes that define {P1,...,Pm}:
for every h ∈ {1,...,m}, Ph contains all variables of index i
∈ {0,...,n-1} such that s(i,jh) ≡ ph mod q.

 is the number of values i ∈ {0,...,n-1} such that:

∀ h ∈ {1,...,m},

s(i,jh) ≡ ph mod q. Writing  with α0,...,αΓ ∈

{0,...,q-1} (this is the unique decomposition of i in base
q), the above is equivalent to:

This system can be written:

If m ≥ Γ+1: consider the square sub-matrix composed of

the first Γ+1 rows of the left member. Since P1,...,Pm

belong to different layers, the jh values are all distinct.

Therefore, recalling that q is prime, this sub-matrix can be
seen as a Vandermonde matrix with elements in the
Galois field GF(q): it is nonsingular. This shows the exist-

ence of a unique tuple of values for α0,...,αΓ ∈ {0,...,q-1}

satisfying the first Γ+1 congruencies of (2). The remaining

m-(Γ+1) congruencies may or may not be satisfied with

these α0,...,αΓ values, and the corresponding 

might be too large (i.e. ≥ n); but in any case, there is at
most one value of i satisfying the system: theorem 2 is

proved when m ≥ Γ+1 (given that in this case λm = 0).

Otherwise, m ≤ Γ: consider the square sub-matrix com-
posed of the first m columns of the left member. Again,
this sub-matrix is a Vandermonde matrix in GF(q), hence
it is nonsingular. Consequently, given any values for

αm,...,αΓ, there exists a unique tuple of values for α0,...,αm-

1 in {0,...,q-1} satisfying (2) (simply shift the terms in

αm,...,αΓ to the right member). The question therefore

becomes: how many tuples of values for αm,...,αΓ exist,

such that  where α0,...,αm-1 are deter-

mined by αm,...,αΓ as explained above. To answer this,
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consider the unique decomposition of n-1 in base q:

, where  for c ∈

{0,...,Γ}. Under this representation, it is clear that i < n,

i.e. i ≤ n-1, if and only if:

αΓ < βΓ or

For each c ∈ {m,...,Γ}, the branch ending at (αc <βc) yields
βc·q(c-m) different tuples. Indeed, for d > c αd = βd in this
branch, and α0,...,αm-1 are bound to αm,...,αΓ: there are βc
possible choices for αc, and q choices each for αm,...,αc-1.
As to the final branch, it can yield at most one solution,
given that all the α values are set or bound in this branch.

Consequently, there are a total of  or

λm+1 solutions: theorem 2 is also proved when m ≤ Γ.
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