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Abstract: Bladder cancer is one of the most incident neoplasms worldwide, and its treatment
remains a significant challenge, since the mechanisms underlying disease progression are still poorly
understood. The epithelial to mesenchymal transition (EMT) has been proven to play an important
role in the tumorigenic process, particularly in cancer cell invasiveness and metastatic potential.
Several studies have reported the importance of epigenetic mechanisms and enzymes, which
orchestrate them in several features of cancer cells and, specifically, in EMT. In this paper, we discuss
the epigenetic enzymes, protein-coding and non-coding genes, and mechanisms altered in the EMT
process occurring in bladder cancer cells, as well as its implications, which allows for improved
understanding of bladder cancer biology and for the development of novel targeted therapies.
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1. Introduction

1.1. Bladder Cancer

Bladder cancer (BlCa) is the seventh most prevalent cancer worldwide and the second most
frequent urological malignancy after prostate cancer. Incidence has been rising in most countries, with
an estimated 549,393 new cases diagnosed in 2018 and 990,724 new cases expected in 2040. Therefore,
this almost doubled the number. Moreover, BlCa constitutes an important cause of cancer-related
death with 199,922 deaths estimated in 2018 and 387,232 predicted for 2040 [1,2]. There is a strong male
predominance, approximating a 3:1 ratio, and epidemiological trends track closely the prevalence of
tobacco smoking [3]. Similar to other urological malignancies, mortality-to-incidence ratios are higher
in underdeveloped countries, which probably reflects different environmental exposures and/or
inequalities in healthcare accessibility [4]. Importantly, due to its high prevalence, mortality and,
particularly, the propensity for multiple recurrences and/or disease progression and consequent
additional treatments, BlCa is the most costly neoplastic disease constituting an important financial
burden (costs about €4.9 billion in the European Union, alone, in 2012) [5].

BlCa generally refers to a cancer derived from epithelial layer, the urothelium, which is shared with
other organs of the urinary tract and it extends from the renal pelvis to the urethra. Hence, although
other much rarer tumor formations occur, its major histological subtype is urothelial carcinoma, which
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will be the focus of this review. Two major forms of BlCa are acknowledged, differing clinically,
pathologically, and molecularly. Non-muscle invasive BlCa (NMIBC, corresponding to 75% to 80%
of all cases, disclosing papillary architecture, with the propensity to recur and eventually invade the
bladder wall over time) and muscle-invasive BlCa (MIBC, 20% to 25% of all cases, mostly derived
from urothelial carcinoma in situ, which constitutes an aggressive disease that invades locally and
metastasizes systemically) [6,7].

1.2. Epigenetics

During many years, scientists believed that living organisms’ identity was defined by the genetic
component of its cells, but, rapidly, it became clear that this could not explain how cells with the same
genomic composition could disclose different phenotypes depending on different conditions. Now it is
known that the identity of a cell is defined by both genetic and epigenetic patterns with the latter being
crucial for fetal development in mammals, as well as cell and tissue differentiation [8–11]. Epigenetics is
defined as the study of heritable modifications of DNA or associated proteins, which carry information
related to gene expression during cell division, and currently encompasses all potentially reversible
mechanisms that lead to changes in expression regulation without affecting the DNA sequence [12].
The most well-known epigenetic mechanisms comprise four major groups: DNA methylation, histone
post-translational modifications or chromatin remodeling, histone variants, and non-coding RNAs’
regulation [11]. These modifications are tightly regulated by several enzymes, which may act isolated
or in chromatin remodeling complexes, and grouped according to function. These epigenetic enzymes
include: DNA methyltransferases (DNMTs) and demethylases (TETs), histone methyltransferases
(HTMs) and demethylases (HDMs), histone acetyltransferases (HATs) and deacetylases (HDACs),
and histone ubiquitin ligases (UbLs) and deubiquitinases (dUbs) [12].

Cancer cells exhibit a distinct epigenetic landscape and they take advantage of all of the previously
mentioned mechanisms to acquire the characteristic malignant features, from transformation to
progression [13]. BlCa is no exception. Several studies have associated epigenetic machinery
deregulation and this cancer type. Moreover, the potential of epigenetic biomarkers to assist in clinical
management of BlCa patients, not only for detection, but also for follow-up, treatment monitoring and
prediction of recurrence/progression has been intensively investigated [14,15]. In parallel, efforts have
been made to understand how epigenetic mechanisms are involved in the various steps of urothelial
carcinogenesis [16,17]. One question remains mostly unanswered. What mechanisms distinguish
neoplastic cells with the ability to invade the muscle layer of the bladder, and eventually metastasize,
from those that do not have this ability? In fact, epigenetics may help answer this question.

1.3. Epithelial to Mesenchymal Transition

The epithelial to mesenchymal transition (EMT) is a multistep process in which epithelial cells
acquire a range of mesenchymal characteristics, which enables cell motility and invasiveness [18].
Importantly, these mesenchymal characteristics are reversible, with cells resuming their epithelial
phenotype, through a process named mesenchymal to epithelial transition (MET). Recently, the classic
concept of EMT, which strictly pointed out to mutually exclusive epithelial or mesenchymal
phenotypes, has been challenged by “partial EMT” in which cells may transiently display both
epithelial and mesenchymal features, corresponding to an intermediate state of EMT [19,20].
The concept of a partial EMT may be explained by implicating epigenetic regulation of EMT/MET
reversibility and cell plasticity. Various factors and cellular environmental conditions are known
to induce EMT, by triggering a cascade of signalling pathways that lead to post-transcriptional
modification of the most well-known EMT transcription factors (EMT-TFs): Snail, Slug, ZEB1,
ZEB2, and TWIST [21,22]. The interplay between the EMT-TFs and various key regulatory proteins
and epigenetic enzymes that regulate EMT-TFs themselves, results in overexpression or repression
of well-described EMT effectors, such as the cadherin family (CDH1, CDH2, and CDH3) and
vimentin [23–26].
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1.4. Influence of EMT Major Players in Bladder Cancer

EMT is essential for various physiological processes, including early embryogenesis as well as
in cancer. Accordingly, in vitro and in vivo studies implicated EMT in cell invasion and metastatic
potential in several cancer types [19]. Intense research efforts uncovered the major EMT players in
epithelial cancers, including BlCa. We performed an in silico analysis of The Cancer Genome Atlas
(TCGA) database for BlCa (using the online resource cBioPortal for Cancer Genomics [27]), with a
user-defined entry set of major EMT players (CDH1, CDH2, CDH3, CTNNB1, GSK3B, MMP2, MUC1,
SNAI2, SNAI1, TWIST1, VIM, ZEB1, and ZEB2), and we found that these genes are deregulated in
272/413 (66%) tumors being significantly associated with reduced overall survival (p = 0.0098) and
disease/progression-free survival (p = 0.0279) (Figure 1A,B). Furthermore, the expression levels of
mesenchymal markers, like MMP2, VIM, TWIST1, ZEB1, and ZEB2, were significantly higher in stages
III/IV when compared to stages I/II (p < 0.0001) (Figure 1C–F).
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resource cBioPortal for Cancer Genomics). (A) Overall and (B) Disease/Progression-free survival
curves according to major EMT players’ alterations. (C) MMP2, (D) TWIST1, (E) VIM, and (F) ZEB1
transcript levels in stages I/II vs. III/IV bladder cancer cases. **** p < 0.0001.

2. Epigenetic Enzymes and Mechanisms Altering EMT in Bladder Cancer

2.1. Protein-Coding Genes

DNA methylation and chromatin remodelling deregulation in cancer result from aberrant epigenetic
enzymes’ activity that ultimately lead to abnormal gene expression, which empowers tumors to
quickly evolve. It facilitates invasion and metastasis. Overall, while the importance of these epigenetic
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enzymes in promoting bladder cancer transformation has been already acknowledged, only a limited
number of studies have characterized its role in the context of EMT process in this tumor model.

One of the epigenetic enzymes involved in EMT is the enhancer of zeste homolog 2 (EZH2),
which is a core subunit of the polycomb repressive complex 2 (PRC2) that acts as a chromatin modifier
by adding two or three methyl groups at H3K27 residues [28]. In several cancer models, EZH2 was
proven to be associated with CDH1 transcriptional silencing and the mesenchymal phenotype [29–31].
Using chromatin immunoprecipitation (ChIP), Luo M. et al. demonstrated EZH2 and H3K23me3
enrichment within CDH1 promoter in BlCa cells even though no clues were yet provided on how
PRC2 is specifically recruited to CDH1 [32]. Nonetheless, Kottakis et al. suggested that EZH2 might be
regulated by FGF-2 upregulation in BlCa cells, which, in turn, upregulates the lysine demethylase 2B
(KDM2B) and triggers EZH2 recruitment. The upregulation of these two enzymes is associated with
miR-101 transcription repression, due to H3K36 demethylation by KDM2B, and H3K27 trimethylation
by EZH2. As a result, and because EZH2 is also post-transcriptionally regulated by miR-101, these
events ultimately contribute to EZH2 overexpression in a loop [33–35]. Moreover, several EMT-TFs
were also found to be overexpressed in these cells, which further supports EZH2 implication in
EMT [33,36]. The E2F1 transcription factor and the epigenetic reader BRD4 were also suggested as
possible EZH2 regulators in BlCa, but its direct link with EMT and respective TFs is still elusive [37,38].
Importantly, because EZH2 overexpression is common to several tumors, inhibitors for this histone
methyltransferase are under evaluation as potential anticancer drugs in phase one and two clinical
trials [39]. Nevertheless, just one of the undergoing studies targets BlCa patients, and only those that
have unresectable or metastatic disease [40]. The development of new therapies for BlCa is still an
unmet need since these tumors have limited treatment options. Specifically, EZH2 inhibition might
restrain the progression of non-muscle to muscle invasive disease.

DNA methylation—a covalent modification of DNA, in which a methyl group is transferred
from S-adenosylmethionine (SAM) to the fifth carbon of a cytosine-constitutes a stable and heritable
mark frequently associated with the maintenance of a closed chromatin structure, which results in
the silencing of repeat elements in the genome and genes’ transcriptional repression [41]. Across the
genome, clustered regions of CpG dinucleotides, also known as CpG islands, are often found in genes’
promoter regions. Several cancer-related genes were reported to be regulated by promoter methylation,
some of which were implicated in BlCa EMT (Table 1). Among these, serine protease PRSS8 was found
to be downregulated by promoter methylation in high-grade BlCa tissues, and its overexpression in
cell lines was associated with E-Cadherin upregulation, which suggests an interplay between these
two proteins during epithelial differentiation [42,43].

Similarly, the Elf5 transcription factor, which is also regulated by methylation in several cellular
developmental processes, was associated with EMT in primary BlCa and in vitro studies [44–46].
Elf5 reduced expression, both at mRNA and protein levels, is associated with disease progression,
and, in BlCa cell lines, its downregulation is associated with increased mesenchymal markers, such as
Snail, ZEB1, and vimentin. Furthermore, ELF5-silenced BlCa cells exhibited an invasive phenotype,
and exposure to the demethylating agent 5-AZA restored ELF5 expression in the same cells, which
attenuated its invasion capacity [46].
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Table 1. Epigenetically modulated protein-coding genes implicated in Bladder Cancer EMT.

Gene Expression in BlCa Effect on EMT Epigenetic Regulation Sample Type and Size Author

MAEL Upregulated

↑EMT
(↓ECAD, ↓β-catenin, ↑Fibronectin, ↑VIM)

Recruitment of DNMT3B and HDAC1/2 to
MTSS1 promoter)

Downregulated by miR186 184 primary tumors,
in vitro and in vivo assays

Li, X.D., 2016
[47]

GDF15 Downregulated
↓EMT

(knockdown cells with ↓ECAD, ↑NCAD, ↑Snail,
↑Slug)

Upregulated by demethylation In vivo assays Tsui, K.H. and Hsu, S.Y., 2015
[48]

KLF4 Downregulated

↓EMT
(↑ECAD, ↓NCAD, ↓ β-catenin, ↓VIM, ↓Snail, ↓Slug)

Promoter methylation;
Upregulated by 5AZA treatment

139 non-muscle invasive
primary tumors, in vitro

and in vivo assays

Li, H. and Wang, J., 2013
[49]

↓EMT
(Upregulation)

Promoter methylation confirmed
by BSP In vitro assays Xu, X., 2017

[50]

PRSS8 Downregulated ↓EMT
(↑ECAD in cells with forced PRSS8 expression)

Promoter methylation.
Upregulated by 5AZA and

TSA treatment

40 primary tumors and
in vivo assays

Chen, L.M., 2009
[43]

ELF5 Downregulated ↓EMT
(↑ECAD, ↓NCAD, ↓VIM, ↓Snail, ↓ZEB1)

Promoter methylation.
Upregulated by 5AZA treatment

182 FFPE + 50 FF primary
tumors and in vivo assays

Wu, B., 2015
[46]

Abbreviations: 5AZA—5-Azacytidine. BlCa—bladder cancer. BSP—Bisulfite sequencing. EMT—epithelial to mesenchymal transition. FF—Fresh-frozen. FFPE—Formalin-fixed
paraffin-embedded. miR—microRNA. TSA—Trichostatin A.
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Furthermore, hypermethylation of the growth differentiation factor-15 (GDF15), which is a
member of the TGF-β superfamily reported as an urothelial cancer biomarker [51,52], was found to be
lower in BlCa cell lines derived from MIBC tumors. Moreover, GDF15-knockdown cells displayed
E-Cadherin downregulation while several EMT-TFs were upregulated [48]. Thus, the discovery
of epigenetically downregulated genes in MIBC provides new insights about BlCa progression
and metastasis.

KLF4, which is a zinc finger transcription factor, is commonly downregulated in several
cancers [53–56] including BlCa [49,50]. Specifically, KLF4 was found to be repressed by promoter
methylation [49,50]. Furthermore, (CRISPR)-ON upregulation reduced BlCa cells’ migration, invasion
and EMT abilities, which is paralleled by the growth inhibition of tumor xenografts and lung metastasis
formation in mice. However, epigenetic editing (e.g., residue specific methylation or demethylation)
would be more suitable for assessing the specific role of KLF4 promoter methylation in gene expression
regulation [57,58]. The new epigenetic tools available would allow for the clarification of promoter
methylation’s regulation of all the previously mentioned genes implicated in BlCa EMT and metastasis.

Several epigenetic mechanisms act synergistically to maintain the epigenetic landscape through
a regulation loop in which they simultaneously control protein-coding genes’ expression and other
epigenetic players at different regulation levels. Specifically, for BlCa, the oncogene maelstrom (MAEL),
frequently upregulated in this malignancy, downregulates the metastasis suppressor MTSS1 gene by
recruiting DNMT3B and HDAC1/2 to its promoter. Moreover, MAEL is also targeted by miR-186
and, possibly, by loss of promoter methylation, which constitutes an example of a gene that recruits
epigenetic enzymes and is, in turn, regulated by epigenetic mechanisms [47].

2.2. Non-Coding RNAs

Non-coding RNAs (ncRNAs) are also involved in the dynamic regulation of EMT-related genes’
expression. There are several ncRNA categories, commonly classified according to their size, including
the long ncRNAs (lncRNAs) with more than 200 nt and the small ncRNAs (sncRNAs), which present
less than 200 nt [59,60]. ncRNAs, not only directly hinder messenger RNA (mRNA), but also
interact (directly or indirectly) with DNMTs, various histone modifying enzymes, and remodelling
complexes, which establishes important links between all epigenetic players that modulate gene
expression. Therefore, ncRNAs have been implicated in a broad range of biological processes,
including proliferation, adhesion, invasion, migration, metastasis, stemness, apoptosis, genomic
instability, and, also, EMT, by mediating cell-cell communication (via ncRNA-containing extracellular
vesicles), which binds to transcription factors and proteins, DNA methylation regulation, splicing, and
scaffolding [61,62].

Among ncRNAs, sncRNAs have been considered the most biologically relevant in the context
of EMT. They are involved in post-transcriptional regulation of target RNAs (by forming complexes
with proteins of the Argonaute family) with microRNAs being the most intensively studied within this
class. Their mature forms are single-stranded and have 20–25 nt in length, which constitutes the final
product of a processing pathway involving DROSHA, DICER, and RISC [63]. In fact, in silico analysis
has shown several up-regulated and downregulated microRNAs that target the most important EMT
players associated with aggressive disease [64].

Our literature review disclosed 31 different microRNAs, which participate in BlCa EMT regulation
[(Table 2), [65–92]]. Most studies were performed in patients’ samples (n = 25) and/or in cell
lines (n = 31), but some have also tested animal models (n = 9). For most microRNAs, the net
effect was to counteract an EMT phenomenon (n = 25), while only miR92 family/miR92b, miR135a,
miR221, miR224, and miR301b were reported to promote EMT. In addition, to a putative value as
diagnostic markers, 13 microRNAs were shown to have prognostic and/or predictive value as well,
associated with clinicopathological variables such as tumor grade, stage, occurrence of metastases,
and patients’ survival.
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Table 2. Non-coding RNAs associated with EMT in bladder cancer.

Non-Coding RNA Effect on EMT (and Others) Main Regulators Main Targets/Pathways Sample Type and Size Author

Small Non-Coding RNAs

miR22 ↓EMT, diagnostic value
(↓ in tumor, vs. normal)

Snail and
MAPK/Slug/VIM

13 primary tumors, in vitro and
in vivo assays Xu, M., 2018 [90]

miR23b ↓EMT, diagnostic (↓ in tumor vs.
normal) and prognostic (↑OS) value ZEB1 20 primary tumors and

in vivo assays Majid, S., 2013 [68]

miR24 ↓EMT, diagnostic value
(↓ in tumor, vs. normal) CARMA3 In vitro assays Zhang, S., 2015 [71]

miR34a ↓EMT, diagnostic value
(↓ in tumor, vs. normal) CD44 8 primary tumors, in vitro and

in vivo assays Yu, G., 2014 [72]

miR92 (family)
↑EMT, diagnostic

(↑ in tumor vs. normal) value, induces
cisplatin resistance

GSK-3β/
Wnt/c-myc/MMP7

20 primary tumors and
In vitro assays Wang, H., 2016 [79]

miR92b ↑EMT DAB2IP In vitro assays Huang, J., 2016 [80]

miR-124-3p ↓EMT, diagnostic value
(↓ in tumor, vs. normal) ROCK1, MMP2, MMP9 13 primary tumors and

in vitro assays Xu, X., 2013 [66]

miR135a ↑EMT GSK-3β 165 primary tumors and
in vitro assays Mao, X.W., 2018 [91]

miR141 ↓EMT, prognostic value
(LN metastases)

MMP2 and 9, Vimentin,
N-Cadherin, E-Cadherin

30 primary tumors, 78 urine
samples and in vitro assays Liu, W. and Qi, L., 2015 [93]

miR-148a-3p ↓EMT, diagnostic value
(↓ in tumor, vs. normal)

↓expression mediated by
DNA methylation (DNMT1) –

↑expression with 5AZA

ERBB3-AKT2-c-myc/SNAIL
axis

59 primary tumors, in vitro and
in vivo assays Wang, X., 2016 [82]

miR186 ↓EMT, diagnostic value
(↓ in tumor, vs. normal) NSBP1 20 primary tumors and

in vitro assays Yao, K., 2015 [73]

miR-199a-5p
↓EMT, diagnostic (↓ in tumor vs.
normal) and prognostic (stage,

grade) value
CCR7, MMP9 40 primary tumors and

in vitro assays Zhou, M., 2016 [81]

miR200 (family) ↓EMT, prognostic value (↑ survival) ↓expression mediated by
EZH2 and BMI-1 BMI-1, ZEB1, ZEB2 87 primary tumors and

in vitro assays
Martínez-Fernández, M. and

Duenas, M., 2015 [74]

↓EMT and proliferation, diagnostic (↓
in tumor vs. normal) and prognostic (↑

survival) value
BMI-1 and E2F3 15 primary tumors and

in vitro assays Liu, L., 2014 [69]
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Table 2. Cont.

Non-Coding RNA Effect on EMT (and Others) Main Regulators Main Targets/Pathways Sample Type and Size Author

miR200b

↓EMT, prognostic value
(LN metastases)

MMP2 and 9, Vimentin,
N-Cadherin, E-Cadherin

30 primary tumors, 78 urine
samples and in vitro assays Liu, W. and Qi, L., 2015 [93]

↓EMT ↓expression mediated by
TGF-β1 MMP16 In vitro assays Chen, M.F. and Zeng, F., 2014 [75]

miR200c ↓EMT, restores sensitivity to
EGFR inhibitors ZEB1, ZEB2 and ERRFI-1 In vitro assays Adam, L., 2009 [65]

miR203 ↓EMT, diagnostic value
(↓ in tumor, vs. normal) Twist1 24 primary tumors and

in vitro assays Shen, J., 2017 [85]

miR205 ↓EMT, poor prognosis ↑expression mediated by p63
isoform ∆Np63α ZEB1, ZEB2 98 primary tumors and

in vitro assays Tran, M.N., 2013 [67]

miR221 ↑EMT ↑expression mediated by
TGF-β1 STMN1 In vitro assays Liu, J., 2015 [76]

miR224
↑EMT, diagnostic (↑ in tumor vs.
normal) and prognostic (stage,
metastases, ↓survival) value

SUFU/Hedgehog
pathway

97 primary tumors, in vitro and
in vivo assays

Miao, X., Gao, H. and
Liu, S., 2018 [86]

miR301b ↑EMT, diagnostic value (↑ in tumor,
vs. normal) EGR1 In vitro assays Yan, L., 2017 [94]

miR-323a-3p ↓EMT, diagnostic (↓ in tumor vs.
normal) and prognostic (↑OS) value

↓expression mediated by
methylation of IG-DMR Met/SMAD3/Snail 9 primary tumors and in vivo

assays Li, J., 2017 [87]

miR-370-3p ↓EMT Wnt7a 41 primary tumors in vitro and
in vivo assays Huang, X. and Zhu, H., 2018 [92]

miR-370-5p ↓EMT p21 In vitro assays Wang, C., 2016 [95]

miR424
↓EMT, diagnostic (↓ in tumor vs.

normal) and prognostic (stage, ↑OS
and DFS) value

↓expression mediated by
DNMT1 EGFR pathway 124 primary tumors, in vitro

and in vivo assays Wu, C.T., 2015 [77]

miR429 ↓EMT ZEB1/βcatenin axis In vitro assays Wu, C.L., 2016 [83]

miR433 ↓EMT, diagnostic value (↓ in tumor,
vs. normal)

c-Met/CREB1-Akt/
GSK-3β/Snail

13 primary tumors and
in vitro assays Xu, X., 2016 [84]

miR451
↓EMT, diagnostic (↓ in tumor

vs. normal) and prognostic (grade and
stage) value

E-Cadherin, N-Cadherin 40 primary tumors and
in vitro assays Zeng, T. and Peng, L., 2014 [70]

miR-485-5p ↓EMT, diagnostic value (↓ in tumor
vs. normal) HMGA2 15 primary tumors and

in vitro assays Chen, Z., 2015 [78]
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Table 2. Cont.

Non-Coding RNA Effect on EMT (and Others) Main Regulators Main Targets/Pathways Sample Type and Size Author

miR497
↓EMT, diagnostic (↓ in tumor vs.
normal) and prognostic (stage,

metastases) value
E-Cadherin, Vimentin 50 primary tumors and

in vitro assays Wei, Z., 2017 [88]

miR612
↓EMT, diagnostic (↓ in tumor vs.
normal) and prognostic (stage,

metastases) value
ME1 46 primary tumors and

in vitro assays Liu, M. and Chen, Y., 2018 [96]

miR613 ↓EMT, diagnostic value (↓ in tumor vs.
normal) SphK1 35 primary tumors and

in vitro assays Yu, H., 2017 [89]

Long non-coding RNAs

circRNA MYLK ↑EMT, prognostic value (stage, grade) miR29a/VEGFA/VEGFR2
axis

32 primary tumors, in vitro and
in vivo assays Zhong, Z., 2017 [97]

lncRNA GHET1
↑EMT, diagnostic (↑ in tumor vs.

normal) and prognostic (grade, stage,
metastases, ↓OS) value

E-Cadherin, Vimentin,
Fibronectin, Slug, Twist,

Snail, ZEB1

80 primary tumors and
in vitro assays Li, L.J., 2014 [98]

lncRNA HOTAIR ↑EMT Various EMT players 10 primary tumors and
in vitro assays Berrondo, C., 2016 [99]

lncRNA H19 ↑EMT, diagnostic value (↑ in tumor
vs. normal)

miR-29b-3p/DNMT3B
axis

35 primary tumors, in vitro and
in vivo assays Lv, M., 2017 [100]

lncRNA Malat1 ↑EMT, poor prognosis ↑expression mediated by
TGF-β suz12 95 primary tumors, in vitro and

in vivo assays Fan, Y., 2014 [101]

lncRNA ROR ↑EMT, diagnostic value (↑ in tumor vs.
normal) ZEB1 36 primary tumors and

in vitro assays Chen, Y., 2017 [102]

lncRNA TP73-AS1
↓EMT, diagnostic (↓ in tumor vs.

normal) and prognostic (↑OS and
PFS) value

Various EMT players 128 primary tumors and
in vitro assays Tuo, Z., 2018 [103]

lncRNA TUG1
↑EMT, diagnostic (↑ in tumor vs.
normal) and prognostic (stage,

↓OS) value, promotes radio-resistance
miR145/ ZEB2 axis 54 primary tumors, in vitro and

in vivo assays Tan, J., 2015 [104]

lncRNA UCA1 ↑EMT

miR145-ZEB1/2-FSCN1
axis In vitro assays Xue, M., 2016 [105]

miR143/HMGB1 52 primary tumors and
in vitro assays Luo, J., 2017 [106]

lncRNA XIST ↑EMT miR200c In vitro and in vivo assays Xu, R., 2018 [107]

lncRNA ZEB2NAT ↑EMT, diagnostic value (↑ in tumor vs.
normal)

↑expression mediated by
TGF-β1 ZEB2 30 primary tumors and

in vitro assays Zhuang, J. and Lu, Q., 2015 [108]

Abbreviations: DFS—disease-free survival. EMT—epithelial to mesenchymal transition. lncRNA—long non-coding RNA. miR—microRNA. OS—overall survival.
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Some of the most well-studied microRNAs belong to the miR200 family. Their expression has been
found to hamper EMT in different tumor models such as breast, prostate, ovarian, and endometrial
carcinomas, in part by affecting different EMT players like ZEB1, ZEB2, and E-Cadherin [109–113].
Martínez-Fernández et al. [74] showed that PRC members EZH2 and BMI1 repress miR200 family,
which results in EMT activation and aggressive disease, which is in accordance with the association
of EZH2 overexpression with high risk for recurrence in NMIBC [114]. These findings support the
dynamic regulation and cooperation between protein coding and non-coding RNAs in EMT. Since
EZH2 pharmacological inhibition is already available and efficiently increases miR200 in BlCa cell
lines, this might constitute a therapeutic opportunity for hindering cancer progression. It has also
been reported that epidermal growth factor receptor (EGFR) inhibition may lead to therapeutic
resistance due to mesenchymal features. Additionally, miR200c induction (which targets the ERBB
receptor feedback inhibitor 1-ERRFI-1) is effective in restoring sensitivity to EGFR inhibitors, which
constitutes another example of pharmacological modulation of EMT that could be translated into
clinical practice [65]. Lastly, another member of the miR200 family, miR200b, was demonstrated to
target matrix metalloproteinase-16 (MMP16) in BlCa cell lines, which is downregulated by transforming
growth factor beta 1 (TGF-β1), previously associated with metastatic potential acquisition. This leads
to miR downregulation having a net effect of promoting EMT [75]. In fact, TGF-β1 also cooperates
with several other miRs, including miR221. Liu et al. showed that, by targeting STMN1, miR221
facilitates TGF-β1-induced EMT, and that its inhibition resulted in increased levels of epithelial marker
E-cadherin and reduction of mesenchymal markers such as vimentin, fibroactin, and N-cadherin [76].

A connection between microRNAs and methylation was also reported, which disclosed a
feedback loop between DNMT1 and miR-148a-3p [79]. miR-148a-3p, a BlCa tumor suppressor, and
an EMT inhibitor, by targeting the ERBB3/AKT2/c-MYC axis, was shown to be downregulated
by DNMT1-induced methylation. Moreover, re-expression was observed after treatment with
5-Aza-2’-deoxycytidine (5AZA) [79]. Wu et al. obtained similar findings for miR424 in BlCa cell lines,
in vivo models, and patient-derived specimens. DNMT1 inhibition resulted in substantial miR424
upregulation, which, in turn, promoted epithelial characteristics of BlCa cells (changing the relative
expression levels of E-cadherin and Twist) and resulted in reduced invasion ability. Additionally, the
same authors identified the EGFR-PI3K-AKT axis as the target of miR424, explaining its effect on
EMT [77]. Lastly, miR-323a-3p was also implicated in EMT of BlCa cells by targeting MET and SMAD3,
which interfered with their regulation of Snail and resulted in the net effect of repressing EMT. On the
other hand, miR-323a-3p is downregulated by aberrant methylation of the intergenic differential
methylated region (IG-DMR) [87]. In addition, miRs might also be regulated by methylation and this
feature might be used for urothelial carcinoma detection in bodily fluids, such as urine [115].

EMT-related miRs have also been demonstrated to impact the resistance to cytotoxic drugs.
Furthermore, miR-92 was found to promote EMT (changing the relative expression levels of two of
its major players, E-cadherin, and vimentin) by activating glycogen synthase kinase 3 beta (GSK3B)
and the Wnt signalling pathway, inducing resistance to cisplatin (increasing BlCa cells viability and
decreasing apoptosis upon treatment with cisplatin) [79].

Most of the human genome is transcribed into structural ncRNAs. LncRNAs, which include both
linear and circular forms (the latter being referred to as circRNAs), display different regulatory
functions, according to their cellular location. Whereas nuclear lncRNAs can either sequester
transcription factors and recruit chromatin-remodelling complexes to a cell-site (hence impeding
transcription), or trigger chromatin-modifying complexes (thus, activating transcription), cytoplasmic
lncRNAs modulate RNAs stability and translation, competing with endogenous RNAs (ceRNAs) for
microRNA binding. Additionally, having a longer half-life than their linear counterparts, circRNAs
may also act as microRNA “sponges” [116,117].

Eleven lncRNAs (ten linear and one circRNA) [97–108] have been reported to modulate EMT in
BlCa. Contrary to microRNAs, only one lncRNA (TP73-AS1) was implicated in negative regulation of
EMT, whereas all the remainder substances promoted its activation. Five of the lncRNAs (including
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circRNA MYLK and lncRNAs GHET1, Malat1, TP73-AS1, and TUG1) were explored as potential
diagnostic and prognostic biomarkers.

CircRNA MYLK was found to function as ceRNA for miR-29a, which, in result, promotes EMT
and activates the vascular endothelial growth factor receptor (VEGFR) pathway, which is associated
with BlCa progression [97]. Thus, circRNA MYLK modulation might constitute a therapeutic target
in combination with anti-VEGF drugs such as bevacizumab. Moreover, Lv et al. [100] have shown
that lncRNA H19 also functions as a ceRNA for miR-29b-3p, which is another member of the miR29
family. Therefore, this allows for the expression of target DNMT3B, reprograms DNA methylation
patterns, and promotes EMT (through Twist, vimentin, and MMP9 upregulation and E-cadherin
downregulation) and metastasis.

Non-coding RNAs may modulate not only the response to systemic treatments, but also to local
therapies such as radiotherapy. Tan et al. [104] showed that miR145’s downmodulation by lncRNA
TUG1 associated with EMT and radio-resistance due to its action on the ZEB2 axis. Targeting this
lncRNA might re-sensitize BlCa to radiotherapy, which results in a better patient response and outcome.

Furthermore, TGF-β1 leads to overexpression of lncRNA malat1, which is associated with
suppressor of zeste 12 (suz12), decreases E-cadherin, and increases N-cadherin and fibronectin
expression levels [101]. Moreover, another lncRNA-ZEB2NAT—was shown to be essential for the role
of TGF-β1-secreting cancer associated fibroblasts (CAFs) in promoting EMT in BlCa cells. Zhuang et al.
elegantly showed that CAFs induce EMT by activating the TGF-β1/ZEB2NAT/ZEB2 axis, whereas
ZEB2NAT inhibition reduced ZEB2 expression levels and inhibited BlCa cells invasion capacity [108].

Several lncRNAs might target the same microRNA and the same lncRNA may influence more
than one microRNA simultaneously. Such is the case of lncRNA UCA1, which induces EMT either by
targeting miR145 or miR143 [105,106]. These studies suggest that lncRNAs might be implicated in EMT
by interfering with several pathways through various regulatory functions, due to their redundancy.

3. Conclusions

As discussed in this review, epigenetic mechanisms and connected enzymes are intrinsically
involved in the various steps of EMT in BlCa cells, which acts in concert and controlling EMT-TFs as
well as several upstream targets (Figure 2). All the studies published to the date illuminate the way
for the development of specific anti-cancer drugs, which could abrogate EMT by targeting epigenetic
enzymes and genes regulated by these reversible modifications.

Nevertheless, the epigenetic regulation of EMT requires further investigation to provide clinically
useful information for BlCa patient management.
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