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Autosomal dominant polycystic kidney disease (ADPKD) is mainly caused by mutations in the PKD1 (∼85%) or PKD2 (∼15%)
gene which, respectively, encode polycystin-1 (PC1) and polycystin-2 (PC2). How PC1 regulates cell proliferation and apoptosis has
been studied for decades but the underlying mechanisms remain controversial. Protein kinase RNA-activated (PKR) is activated
by interferons or double-stranded RNAs, inhibits protein translation, and induces cell apoptosis. In a previous study, we found
that PC1 reduces apoptosis through suppressing the PKR/eIF2𝛼 signaling. Whether and how PKR is involved in PC1-inhibited
proliferation and protein synthesis remains unknown. Here we found that knockdown of PKR abolishes PC1-inhibited proliferation
and translation. Because suppressed PKR-eIF2𝛼 signaling/activity by PC1 would stimulate, rather than inhibit, the proliferation and
translation, we examined the effect of dominant negative PKRmutant K296R that has no kinase activity and found that it enhances
the inhibition of proliferation and translation by PC1. Thus, our study showed that inhibition of cell proliferation and protein
synthesis by PC1 is mediated by the total expression but not the kinase activity of PKR, possibly through physical association.

1. Introduction

Autosomal dominant polycystic kidney disease (ADPKD)
is one of the most common inherited renal diseases and
characterized by the development of fluid-filled cysts [1, 2].
Up to 95% of the ADPKD cases are caused by mutations in
the PKD1 or PKD2 gene which encodes polycystin-1 (PC1)
and polycystin-2 (PC2), respectively. Mutations in PKD1
account for ∼85% of ADPKD [3, 4]. PC1 is a 462-kDa
membrane protein with 4302 amino acids (aa) in length,
eleven transmembrane (TM) domains, a large extracellular
N-terminus and a short C-terminus containing domains
involved in G-protein activation and interaction with partner
proteins [5–7]. PC1 seems to function as a cell surface
receptor that mediates mechanosensation of fluid flow of
primary cilia in renal epithelia and intracellular signalling
[8–10].

ADPKD is a disorder characterized by several cellular
abnormalities, including cell overproliferation, apoptosis,
and dedifferentiation [11], which indicates a high cell turnover
rate. It was reported that cyclic adenosine monophosphate
(cAMP) and mitogen-activated protein kinase (MAPK) sig-
naling [12], P53, c-JunN-terminal kinase(JNK) induction [13]
and activation of cellular Src kinase (c-Src) [14], signal trans-
ducers and activators of transcription (STAT) [15], Hippo
[16], and 𝛽-catenin/Wnt pathway [17] are connected with
overproliferation or differentiation of renal epithelial cells in
ADPKD. In cyst-lining epithelial cells of ADPKD patients
and mouse model experiments, the mammalian target of
rapamycin (mTOR) pathway was shown to be activated,
which may result from loss of PC1 binding with tuberin,
suggesting that PC1 inhibits cell proliferation by downregu-
lating mTOR activity through interaction with tuberin [18].
Actually, PC1 reduces the cell growth by negatively regulating
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mTORanddownstreameffectors ribosomal protein S6 kinase
beta-1(S6K1) and eukaryotic translation initiation factor 4E-
binding protein 1 (4EBP1) in a tuberin-dependent manner
[18, 19]. mTOR-related translational control pathways have
then been subjects of study with respect to PKD pathogenesis
[20–25]. Despite tremendous progress made in the devel-
opment of ADPKD pathogenesis over the past years, the
underlying mechanisms are still elusive.

Protein kinaseRNA-activated (PKR) is a serine/threonine
protein kinase that is activated by interferons, double-
stranded RNAs (dsRNAs), cytokine, growth factor, and stress
signals [26]. The 551-aa kinase is made up of a C-terminus
for catalysis as well as a N-terminus which contains double-
stranded RNA of approximately 70aa residues each; when
combined with dsRNAs, the conformation of PKR changed,
and the binding site dimerized to form PKR dimer [10].
During virus infection, PKR is activated and blocks viral
protein synthesis through phosphorylation of eukaryotic
translation initiation factor 2 alpha (eIF2𝛼), thus leading
to antiviral defense [27]. PKR can be autophosphorylated
with the formation of dimer and activated when binding
to dsRNA, and then phosphorylates substrates, including
eIF2𝛼, protein phosphatase 2A (PP2A), and inhibitor of
nuclear factor kappa-B(I𝜅B) kinase (IKK). PKR inhibits
translation and promotes apoptosis through the substrates
and downstream effectors [28, 29]. In addition to PKR, there
are three other eIF2𝛼 kinases, including protein kinase-like
endoplasmic reticulum (ER) kinase (PERK), general control
nonderepressible 2 (GCN2), and heme-regulated inhibitor
(HRI) [30]. Phosphorylated eIF2𝛼 (P-eIF2𝛼) blocks transla-
tion initiation but activates some selected proteins critical to
cell survival, including transcription factor 4(ATF4), growth
arrest, and DNA damage gene (GADD34) and C/EBP-
homologous protein (CHOP) [31, 32].

Up to now, there has been no literature report on whether
or how PKR mediates the inhibition of proliferation and
translation caused by PC1. Therefore, the aim of this study
was to investigate the involvement of PKR in PC1-regulated
proliferation and translation.

2. Materials and Methods

2.1. Reagents and Antibodies. Puromycin was a product
of Sigma-Aldrich Canada. Phosphorylated PKR (P-PKR,
Thr446), P-PKR (pT446), PKR (B-10), and anti-FLAG anti-
bodies were purchased from Santa Cruz (Santa Cruz, CA)
or Epitomics (Burlingame, CA). eIF2𝛼, P-eIF2𝛼, and mTOR
antibodies were products of Cell Signaling Technology (New
England Biolabs, Pickering, ON). Anti-GFP (B-2) was from
Santa Cruz and anti-GFP (EU4) from Eusera (Edmonton,
AB). Mouse monoclonal anti-𝛽-actin (C4, Santa Cruz) anti-
bodywas employed as loading controls. Secondary antibodies
were from Santa Cruz or GE Healthcare (Baied’Urfe, QC).

2.2. DNA Constructs, Cell Culture, and Transfection. Plas-
mid pcDNA3-GFP-PC1-5TMC(PC1-5TMC, aa 3895-4302)
comprising last 5 TMs plus C-terminus was constructed
using Stratagene Quik Change� II XL Site-Directed Muta-
genesis Kit (Agilent Technologies Canada Inc., Mississauga,

ON) as described previously [33]. Plasmid eIF2𝛼 was from
Santa Cruz (Santa Cruz, CA). All cDNA sequences of the
constructed plasmids were verified by sequencing. Human
embryonic kidney (HEK293T) or HeLa cells were grown in
Dulbecco’s modified Eagle’s medium with 10% fetal bovine
serum, penicillin-streptomycin, and L-glutamine in an atmo-
sphere of 5% CO

2
and 37∘C. HEK293T cells with stable

transfection of wild type (WT) mouse PC1 was from one
coauthor Dr. J. Yang and cultured under the above conditions
with 2𝜇g/ml of puromycin [34]. Transient transfection was
performed on HEK293T or HeLa cells grown to ∼70% con-
fluency employing lipofectamine 2000 reagent (Invitrogen).

2.3. Gene Knockdown. Small Interfering RNAs (siRNA) of
PKR (SantaCruz, Cat#sc-36263)was utilized to interferewith
HEK293T and HeLa cells according product description.
HEK293T or HeLa cells at 50–60% confluency were trans-
fected in normal culture medium without antibiotics, sup-
plementedwithOpti-MEMmedium (Invitrogen, Burlington,
ON) and lipofectamine 2000. 10 pmol of siRNAwas added to
the transfection reagent for 40 hours (hr). The efficiency of
the siRNA knockdown was assessed by immunoblotting.

2.4. Cell Proliferation Assay. HEK293T or HeLa cells were
transiently transfected with corresponding plasmids such as
GFP, GFP-PC1-5TMC, PKR, and PKR siRNA in 100 mm
dishes. At 24 hr after transfection, cells were seeded into
either new 100 mm dishes for further transfection such as
eIF2𝛼, PKR, PKR-K296R, and PKR knockdown or a 96-
well plate for alarmaBlue (Invitrogen Canada Inc.). After
incubation for another 16-30 hr, absorbance was measured
using a microplate reader (Fluoroskan Ascent FL, Thermo
Labsystems). The rest of the cells in the 100 mm dishes
were collected for immunoblotting at the same time point.
HEK293T cells stably expressing WT PC1 were seeded in
100 mm dishes overnight and then transfected with PKR-
K296R or PKR siRNA using 4𝜇l lipofectamine 2000 reagent
in medium lacking serum. 6 hr after transfection, the plates
were replenished with medium containing 10% serum and
incubated at 37∘C for an additional 24 hr before measure-
ments. The cell proliferation rate (%) was calculated as
ODtest/ODcontrol×100%.

2.5. 35S Pulse Labelling. HEK293T or HeLa cells were trans-
fectedwith plasmids using Lipofectamine 2000 reagent. At 40
hr after transfection, equal number of cells was starved for 1
hr in the prelabeling medium (L-methionine and L-cysteine
free DMEM with 10% FBS and penicillin/streptomycin,
Invitrogen), followed by pulse labeling with 50 𝜇Ci of
[35S] methionine/cysteine (EXPRE 35S Protein Labeling Mix,
PerkinElmer, Woodbridge, ON) for 10 minutes, as described
previously [35, 36]. Cell extracts were used for sodium
dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-
PAGE) and autoradiography.

2.6. Coimmunoprecipitation (Co-IP). Experiments were car-
ried out according to previously established methods [37].
Briefly, HeLa cells (2×107 cells) with plasmid pEGFP-PC1-
5TMC or pEGFP transfection were collected for extraction of
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Figure 1: Effects of PKR on the proliferation and translation. (a) Effects of PKR on the proliferation of HeLa cells. After being transfected with
plasmids PKR, PKR siRNA, or GFP, HeLa cells were plated inmultiple wells of a 96-well plate and grown for 24 hr for cell proliferation assays.
Cells from the sample preparations were collected for immunoblotting. Proliferation rate of the control sample was normalized to 100%. PKR,
WT PKR; si-PKR, PKR siRNA; Ctrl, GFP. Upper panel, averaged data (N=4, ∗∗p<0.01). Lower panel, effectiveness of transfection and siRNA
of PKR assessed by immunoblotting. (b) Effect of PKR on protein synthesis inHEK293Tcells. HEK293T cells transiently transfected with GFP,
PKR, or PKR siRNAwere starved for 1 hr followed by pulse labelling for 35S pulse labelling assays followed by SDS-PAGE and immunoblotting
assays with the antibody against total PKR. 𝛽-actin served as loading control.

protein and immunoprecipitation at 40 hr after transfection.
20mg of the total protein was for immunoblotting and 200mg
for co-IP.

2.7. Statistical Analysis. All data generated were presented
as mean±standard error (SEM). N represents the number
of repeat experiments. Data analyses were measured using
Sigmaplot 12.0 software (Systat Software Inc., San Jose, CA).
A P-value ⩽0.05 was statistically significant.

3. Results

3.1. Inhibition of Proliferation and Translation by PKR. We
found that PC1 reduces apoptosis by inhibiting the PKR
kinase activity and the phosphorylation of eIF2𝛼 [33]. Here
we tested whether PKR is involved in PC1-inhibited prolifer-
ation. In order to clarify the effect of PKR on cell proliferation
and translation, we used alarmaBlue to label HeLa cells for
cell proliferation assays and performed 35S labelling assays
in HEK293T to evaluate protein translation. We found that
PKR suppresses proliferation and translation whereas PKR
knockdown by siRNA does not show stimulation effect
(Figures 1(a) and 1(b)), which is in line with previous reports
[28, 29] and suggests that the endogenous PKR activity is
not a rate-limiting factor for the proliferation and protein
synthesis.

3.2. Independency of PC1-Mediated Inhibition of Proliferation
from eIF2𝛼. We next examined whether PC1 and PKR-eIF2𝛼
inhibit cell proliferation or protein translation through the
same pathway. Overexpression of PC1 truncate mutation
encoding 5 TMs and C-terminus (PC1-5TMC, aa 3895-
4302) inhibited cell proliferation of HeLa cells (Figure 2(a)).
HeLa cells overexpressing eIF2𝛼 exhibited much reduced
proliferation rates, as expected, and were still inhibitable by
PC1-5TMC (Figure 2(a)), indicating that the eIF2𝛼 activity
and PC1 inhibit proliferation through two different path-
ways. In fact, if inhibition by PC1 were through eIF2𝛼,
then because PC1-5TMC reduces the eIF2𝛼 activity [33], a
known proliferation and translation inhibitor, we would see a
stimulating effect of PC1-5TMC on proliferation, against our
observation (Figure 2(a)). PC1-5TMC also inhibited protein
synthesis assessed by 35S labelling, but because overexpressed
PKR almost completely stopped 35S labelling, the effect
of coexpressed PC1-5TMC on protein synthesis cannot be
evaluated (Figure 2(b)).

3.3. Dependence of PC1-Inhibited Proliferation and Translation
on Total PKR. We further examined the role of PKR in
PC1-inhibited proliferation and protein synthesis.When PKR
was knocked down by siRNA, PC1 no longer inhibited
proliferation of HEK cells, indicating the requirement of PKR
for mediating the effect of PC1 (Figure 3(a)). Interestingly,
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Figure 2: Effects of PKR/eIF2𝛼 overexpression on PC1-5TMC-inhibited proliferation and translation in HeLa cells. (a) Effects of eIF2𝛼
overexpression on PC1-5TMC-inhibited proliferation. Transfected with GFP or PC1-5TMC, HeLa cells were cotransfected with eIF2𝛼. They
were then plated in multiple wells of a 96-well plate and grown for 24 hr for cell proliferation assay; cells from the sample preparations
were collected for immunoblotting. 5TMC, GFP-tagged PC1-5TMC; eIF2𝛼, WT eIF2𝛼; Ctrl, GFP. Upper panel, averaged data (N=4,∗p< 0.05,
∗∗p< 0.01). Lower panel, effectiveness of transfection of eIF2𝛼 assessed by immunoblotting. (b) Effects of PKR overexpression on PC1-5TMC-
inhibited protein synthesis. After transfected with GFP or PC1-5TMC, HeLa cells were cotransfected withWT PKR.They were then used for
35S pulse labeling assays followed by SDS-PAGE and immunoblotting assays with the antibodies against P-eIF2𝛼, total eIF2𝛼, and P-PKR.
𝛽-actin served as loading control.

expression of PKR-K296R that can retain the autophospho-
rylation of PKR but has lost kinase function [38] did not have
significant effect on proliferation but allowed strong inhibi-
tion of proliferation by PC1 (Figure 3(a)). 35S labelling assays
also showed that PKR knockdown abolishes while expression
of mutant K296R rescues the inhibition of protein synthesis
in HEK cells by PC1 (Figure 3(b)). Taken together, out data
showed that PC1-inhibited proliferation and translation are
mediated by a pathway that depends on the total PKR but not
its kinase activity.

Based on the above results that phosphorylated PKR/
eIF2𝛼 exerts an opposite effect on PC1-inhibited prolif-
eration/translation and is not involved in PC1-inhibited
proliferation/translation, we deduced that PC1 inhibits cell
proliferation/protein translation through the total expression
of but not the kinase activity of PKR.

3.4. Interaction of PC1 with PKR and mTOR. Dependence of
PC1-inhibited proliferation and translation on the total PKR
suggested that PC1 may inhibit proliferation and translation

by physical protein-protein interaction. It is well known that
PC1 reduces cell size by negatively regulating mTOR and
downstream molecules [18, 19]. Furthermore, it was found
that mTOR and PKR may regulate the expression of PP2A
subunit B56𝛼 independently of their kinase activity [39],
while results from our current experiments showed that
siRNA of B56𝛼 also abolishes PC1-inhibited proliferation and
translation (data not shown).Therefore, we carried out co-IP
experiments to document the physical interaction of PC1with
mTOR and PKR, and found that PC1-5TMC is in the same
complex with mTOR and PKR in HeLa cells (Figures 4(a)
and 4(b)), which is in line with previous reports [33, 40]. The
results suggested that the PC1-PKR-mTOR association may
mediate the effect of PC1 on proliferation and translation.

4. Discussion

Studies have shown that both PC1 and PC2 inhibit cell prolif-
eration [19, 35]. Our previous study found that PC2 down-
regulates cell proliferation by promoting phosphorylation
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Figure 3: Effects of PKR siRNA and PKR-K296R on PC1-inhibited proliferation and translation. (a) Effects of PKR siRNA and PKR-K296R
on PC1-inhibited proliferation. HEK293T and those stably transfected full-length PC1 were transfected with GFP vector, PKR-siRNA or
PKR-K296R, and then plated in multiple wells of a 96-well plate and grown for 24 hr for cell proliferation assays. Cells from the sample
preparations were collected for immunoblotting. PC1, GFP-tagged full-length PC1; Ctrl, GFP; K296R, PKR-K296R. Upper panel, averaged
data (N=4). Lower panel, effectiveness of PKR-K296R transfection and PKR siRNA assessed by immunoblotting. (b) Effects of PKR-K296R
and PKR siRNA on PC1-inhibited translation. HEK293T and those cells stably transfected full-length PC1 were transfected with GFP vector,
PKR-siRNA, or PKR-K296R and then for 35S pulse labelling assays, followed by SDS-PAGE and immunoblotting assay with the antibody
against P-PKR. 𝛽-actin served as loading control. P-PKRs, band with short exposure of 0.5 min; P-PKRL, band with common exposure of 2
min.
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Figure 4: Physical interaction of PC1 truncate mutation, PKR, and mTOR in HeLa cells. (a) Interaction between mTOR and PC1-5TMC.
200mg of protein extracted was immunoprecipitated with antibody against GFP (EU4), and 20mg of protein extracted was detected by
immunoblotting assays with antibody against GFP (B-2).The blot was reprobed with anti-mTOR. 5TMC, GFP-tagged PC1-5TMC; Ctrl, GFP.
(b) Interaction between PKR and PC1-5TMC. Experiments performed are similar to those in panel (a).The blot was reprobed with anti-PKR.

of eIF2𝛼 through increasing the efficiency of PERK [35].
We thus wondered whether eIF2𝛼 also takes part in PC1-
inhibited proliferation. PKR is a well-known eIF2𝛼 kinase
and is involved in various cellular functions. In particular,
PKR as a kinase phosphorylates downstream substrates
through which it regulates proliferation, translation, and
apoptosis [28, 29]. In our previous study, we found that PC1

and PC1 truncate mutation inhibit P-eIF2𝛼 through reducing
kinase activity of PKR [33].Therefore, it is likely that the PC1-
inhibited cell proliferation should be through a signaling that
is different from PKR-eIF2𝛼 pathway, because suppressed
PKR-eIF2𝛼 activity would promote cell proliferation and
protein translation. However, surprisingly, PKR knockdown
abolished and expression of nonfunctional PKR resumed the
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regulation of proliferation and translation by PC1. Together
with the results of physical interaction of PC1-5TMC with
PKR and mTOR, our data indicated that total PKR but not
its kinase activity mediates the inhibition of proliferation and
translation by PC1, possibly through physical association.

PC1 reduces cell growth by downregulating mTOR and
downstream effectors in a tuberin-dependent manner [18,
19]. Because S6 and 4EBP1 are the well-known substrates
of mTOR, while PP2A was shown to regulate translation
initiation through dephosphorylating 4EBP1 and ribosomal
protein S6 kinase beta-1(p70s6k) [40], we consider that
PP2A may act as a major mTOR phosphatase to regu-
late downstream effectors. Furthermore, function of PP2A
relies on B56𝛼, an important member of regulatory B sub-
unit families [41]. Ruvolo et al. considered that although
mTOR regulates translational and transcriptional pathways
by kinase activity, it does not directly regulate B56𝛼 by
such pathways because a proteasome inhibitor can restore
expression of the B subunit while PKR can protect B56𝛼
by suppressing proteasome-mediated proteolysis [39]. Based
on our present experiment result of B56𝛼 knockdown also
abolishing PC1-inhibited proliferation and translation (data
not shown), we speculate the possibility that knockdown of
PKR may inactivate PP2A and abolish PC1-dependent inhi-
bition of proliferation/translation through promoting B56𝛼
proteolysis.

Through its protein-binding domain, PKR can act as
an adaptor protein but not its regulatory dsRNA-binding
domain [42, 43]. It was recently reported that protein-
binding function of PKR promotes the proliferation of
pancreatic 𝛽 cells through TNF receptor-associated factor 2
(TRAF2)/receptor-interacting protein 1 (RIP1)/nuclear factor
kappa-light-chain-enhancer of activated B cells (NF-𝜅B)/c-
Myc pathway [44], while cancer cell survival requires mTOR-
dependent phosphorylation of 4EBP1 in Myc-dependent
tumor, and PP2A-B56𝛼 holoenzyme can negatively regulate
c-Myc protein accumulation [45, 46].

Further experiments are needed to elucidate the mecha-
nisms of involvement of total PKR,mTOR, PP2A-B56𝛼, Myc,
or other proteins in regulation of proliferation/translation by
PC1.

5. Conclusions

In summary, our data showed that PKR knockdown by
siRNA abolishes the inhibitory effect of PC1 on prolifer-
ation and translation, suggesting the dependence of the
inhibition on PKR. Dominant negative PKR mutant K296R
that retains the auto-phosphorylation ability but has no
kinase activity increases the inhibition supported that PC1-
inhibited proliferation and translation are mediated by the
total but not the kinase activity of PKR. PC1-5TMCphysically
interacted with PKR andmTOR, which further indicated that
the PKR-dependent inhibition of proliferation/translation by
PC1 may be through physical association. Our study thus
unveiled a novel mechanism of PC1-inhibited proliferation
and translation that may be important for understanding
ADPKD pathogenesis.
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