
 

 

Supplementary Information 

 
Supplementary Fig. 1: Violin and boxplots of evaluation metrics for gene expression of all genes (n = 
785), HVGs (n = 30) and SVGs (n = 20 per image sample) for each method in the HER2+ ST dataset. 
The bounds of the box correspond to the 25th percentile (first quartile) and 75th percentile (third 
quartile). The line within the box represents the median. The boxplot’s lower whisker extends 1.5 
times the interquartile range below the first quartile, while the upper whisker extends 1.5 times the 
interquartile range above the third quartile. Source data are provided as a Source Data file. 
 



 

 

 
Supplementary Fig. 2: Violin and boxplots of evaluation metrics for gene expression of all genes (n = 
997), HVGs (n = 35) and SVGs (n = 20 per image sample) for each method in the cSCC ST dataset. 
The bounds of the box correspond to the 25th percentile (first quartile) and 75th percentile (third 
quartile). The line within the box represents the median. The boxplot’s lower whisker extends 1.5 
times the interquartile range below the first quartile, while the upper whisker extends 1.5 times the 
interquartile range above the third quartile. Source data are provided as a Source Data file. 



 

 

 
Supplementary Fig. 3: K-means clustering of spatial regions based on eight samples from HER2+ 
ST dataset was performed using predicted gene expression of each method. The ground truth 
annotations are based on manual delineation by pathologists, while the ground truth SGE is derived 
from sequencing data. Adjusted Rand Index (ARI) was calculated between the ground truth 
annotations and the clustering results of each method. In sample B1, Hist2ST had the best 
performance, achieving the highest ARI of 0.36, followed by ST-Net with an ARI of 0.28 and 
THItoGene with 0.27. These methods outperformed the ground truth SGE, which had an ARI of 0.19. 
Source data are provided as a Source Data file. 
 



 

 

 
Supplementary Fig. 4: Gene expression prediction evaluation metrics vs. the percentage of zeros in 
each gene for each method. The solid line indicates the line of best fit, while the error band represents 
the 95% confidence interval (CI). The test statistics, degrees of freedom, p-values and effect sizes 
from a correlation test are shown on each panel. Source data are provided as a Source Data file.  
 
 
 
 
 



 

 

 
Supplementary Fig. 5: Evaluation of gene expression prediction and normalisation in HER2+ ST 
dataset. (a) Spatial plots of predicted gene expression of BGN and C3 at each spot in an HER2+ ST 
image in the test set of each method. Genes were chosen as they had high correlation in DeepPT/ST-
Net and low correlation in Hist2ST/HisToGene. Ground truth (leftmost column) and normalised gene 
expression (rightmost column) values are also plotted. (b) Scatterplot of gene expression variance in 
the HER2+ ST dataset before (x-axis) and after normalisation (y-axis) for each method. (c) Scatterplot 
of average correlation difference between average correlation of both DeepPT/ST-Net & average 
correlation of both HisToGene/Hist2ST and the correlation between ground truth and normalisation (y-
axis). Each point represents a gene in the HER2+ ST dataset (n = 785). The solid line indicates the 
line of best fit, while the error band represents the 95% CI. Source data are provided as a Source 
Data file. 



 

 

 
Supplementary Fig. 6: Violin and boxplots of evaluation metrics for gene expression of all genes (n = 
992), HSGs (n = 145), HVGs (n = 48) and SVGs (n = 20) for each method in the Visium-Kidney 
dataset. The bounds of the box correspond to the 25th percentile (first quartile) and 75th percentile 
(third quartile). The line within the box represents the median. The boxplot’s lower whisker extends 1.5 
times the interquartile range below the first quartile, while the upper whisker extends 1.5 times the 
interquartile range above the third quartile. Source data are provided as a Source Data file. 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

 

 
Supplementary Fig. 7: Coefficient of variation for ground truth and predicted 992 genes, and ground 
truth and predicted 145 HSGs across spots in the Visium-Kidney dataset. The bounds of the box 
correspond to the 25th percentile (first quartile) and 75th percentile (third quartile). The line within the 
box represents the median. The boxplot’s lower whisker extends 1.5 times the interquartile range 
below the first quartile, while the upper whisker extends 1.5 times the interquartile range above the 
third quartile. Outliers are shown as individual data points. Source data are provided as a Source Data 
file. 
 
 
 
 
 



 

 

 
Supplementary Fig. 8: Coefficient of variation for ground truth and predicted 990 genes, and ground 
truth and predicted 274 HSGs across spots in the Visium-HER2+ dataset. The bounds of the box 
correspond to the 25th percentile (first quartile) and 75th percentile (third quartile). The line within the 
box represents the median. The boxplot’s lower whisker extends 1.5 times the interquartile range 
below the first quartile, while the upper whisker extends 1.5 times the interquartile range above the 
third quartile. Outliers are shown as individual data points. Source data are provided as a Source Data 
file. 



 

 

 
Supplementary Fig. 9: Gene expression matrix sparsity across different datasets. HER2+ (n = 785) 
and cSCC (n = 997) refer to the sparsity of the gene sets used for the ST data training and 
predictions. ST-Visium-HER2+ (n = 762) refers to the sparsity of the Visium-HER2+ gene set used for 
validating HER2+ ST trained models. Visium-HER2+ (n = 990) and Visium-Hercep-Test2+ (n = 990) 
represent the sparsity of gene sets used for training and prediction in the Visium Breast Cancer 
models, respectively. Visium-Kidney (n = 992) represents the sparsity of the gene sets in the Visium-
Kidney dataset. The bounds of the box correspond to the 25th percentile (first quartile) and 75th 
percentile (third quartile). The line within the box represents the median. The boxplot’s lower whisker 
extends 1.5 times the interquartile range below the first quartile, while the upper whisker extends 1.5 
times the interquartile range above the third quartile. Outliers are shown as individual data points. 
Source data are provided as a Source Data file. 
 
 
 



 

 

 
Supplementary Fig. 10: Violin and boxplots of the average PCC, MI, SSIM and AUC between the 
ground truth gene expression and predicted gene expression. Metrics measured from the test fold of a 
4-fold CV, averaged over each gene across all 992 genes and 145 HSGs in the Visium-Kidney 
dataset. The bounds of the box correspond to the 25th percentile (first quartile) and 75th percentile 
(third quartile). The line within the box represents the median. The boxplot’s lower whisker extends 1.5 
times the interquartile range below the first quartile, while the upper whisker extends 1.5 times the 
interquartile range above the third quartile. Source data are provided as a Source Data file. 
 
 



 

 

 
Supplementary Fig. 11: Violin and boxplots of the average PCC, MI, SSIM and AUC between the 
ground truth gene expression and predicted gene expression. Metrics measured from the test fold of a 
4-fold CV, averaged over each gene across all 990 genes and 274 HSGs in the Visium-HER2+ 
dataset. The bounds of the box correspond to the 25th percentile (first quartile) and 75th percentile 
(third quartile). The line within the box represents the median. The boxplot’s lower whisker extends 1.5 
times the interquartile range below the first quartile, while the upper whisker extends 1.5 times the 
interquartile range above the third quartile. Source data are provided as a Source Data file. 
 



 

 

 
Supplementary Fig. 12: Violin and boxplots of evaluation metrics for gene expression of all genes (n 
= 990), HSGs (n = 274), HVGs (n = 36) and SVGs (n = 20 per image sample) for each method in the 
Visium-HER2+ dataset. The bounds of the box correspond to the 25th percentile (first quartile) and 
75th percentile (third quartile). The line within the box represents the median. The boxplot’s lower 
whisker extends 1.5 times the interquartile range below the first quartile, while the upper whisker 
extends 1.5 times the interquartile range above the third quartile. Source data are provided as a 
Source Data file. 
 
 
 



 

 

 
Supplementary Fig. 13: Violin and boxplots of gene-level correlations between ground truth and 
predicted gene expression (n = 762) across two adjacent tissue slides from Visium-HER2+. The 
models were trained on the HER2+ ST dataset, with the best-performing model selected based on 4-
fold cross-validation. The bounds of the box correspond to the 25th percentile (first quartile) and 75th 
percentile (third quartile). The line within the box represents the median. The boxplot’s lower whisker 
extends 1.5 times the interquartile range below the first quartile, while the upper whisker extends 1.5 
times the interquartile range above the third quartile. Source data are provided as a Source Data file. 
 
 
 
 
 
 



 

 

 
Supplementary Fig. 14:  Dotplot of correlation between various histology QC metrics and gene-level 
correlations for each method in the HER2+ ST dataset and the cSCC ST dataset. Source data are 
provided as a Source Data file. 
 
 
 



 

 

 
Supplementary Fig. 15: C-indices of multivariate cox regression models predicting survival of TCGA-
BRCA patients, using RNA-Seq bulk, RNA-Seq bulk using only genes present in HER2+ ST dataset, 
and the predicted pseudobulk from each method. C-indices were calculated from the training data of 
models trained within HER2+ (n = 92), luminal (n = 463) and TNBC (n = 79) breast cancer clinical 
subtypes. Source data are provided as a Source Data file. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

 
Supplementary Fig. 16: Kaplan-Meier curves for patients split into high and low risk groups by the 
median risk prediction of the multivariate cox regression models for each method in luminal (n = 463) 
and TNBC (n = 79) breast cancer subtypes. The average risk prediction from a 3-fold CV with 100 (n = 
100) repeats was used. The p-value represents the result of the two-sided log-rank test for assessing 
the statistical significance of differences in survival between the groups. Source data are provided as 
a Source Data file. 
 
  



 

 

 
Supplementary Fig. 17: Boxplot of gene expression values after transformation (n = 15957) for each 
sample from the TNBC subset (n = 79) of the TCGA data and for all genes (n = 749) that were 
presented in the HER2+ ST dataset. The bounds of the box correspond to the 25th percentile (first 
quartile) and 75th percentile (third quartile). The line within the box represents the median. The 
boxplot’s lower whisker extends 1.5 times the interquartile range below the first quartile, while the 
upper whisker extends 1.5 times the interquartile range above the third quartile. Outliers are shown as 
individual data points. Source data are provided as a Source Data file. 
  



 

 

 
Supplementary Fig. 18: Boxplot of gene expression values after transformation (n = 15957) for each 
sample from the HER2 subset (n = 92) of the TCGA data and for all genes (n = 749) that were 
presented in the HER2+ ST dataset. The bounds of the box correspond to the 25th percentile (first 
quartile) and 75th percentile (third quartile). The line within the box represents the median. The 
boxplot’s lower whisker extends 1.5 times the interquartile range below the first quartile, while the 
upper whisker extends 1.5 times the interquartile range above the third quartile. Outliers are shown as 
individual data points. Source data are provided as a Source Data file. 
 



 

 

 
Supplementary Fig. 19: Boxplots of the computational efficiency of methods when trained on one 
histology image using 10 epochs. Metrics were measured for parallelised (cuda) and non-parallelised 
(cpu) training where applicable. Memory was measured in bytes and time in seconds. The bounds of 
the box correspond to the 25th percentile (first quartile) and 75th percentile (third quartile). The line 
within the box represents the median. The boxplot’s lower whisker extends 1.5 times the interquartile 
range below the first quartile, while the upper whisker extends 1.5 times the interquartile range above 
the third quartile. Outliers are shown as individual data points. Source data are provided as a Source 
Data file. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

Supplementary Table 1: Summary of Methods predicting SGE from H&E 
 

Model Local Features (one spot) 
Local + Global 
Features (spot-
neighbourhood 

relations) 

Global 
Features 

(spot-spatial 
relations) 

Reference 
Dataset 

Reference 
Encoder 

Application 
method 

ST-Net Pretrained DenseNet 121 NA NA NA NA NA 

HisToGene Learnable Linear Layer Super Resolution ViT NA NA NA 

DeepPT Pretrained ResNet50 + 
Autoencoder + MLP NA NA NA NA NA 

Hist2ST Convmixer GNN - GraphSAGE Transformer NA NA NA 

DeepSpaCE VGG16 Super Resolution NA  NA NA NA 

GeneCodeR  Non deep learning method 

EGNv1 ViT + Exemplar NA Exemplar Internal 
Dataset ResNet50 Exemplar 

Retrieval 

EGNv2 Exemplar (ResNet) + GraphSAGE 
+ GCN NA Exemplar Internal 

Dataset ResNet18 Exemplar 
Retrieval 

XFuse  Statistical Model + Deep generative model ISC Data NA Fuse with 
H&E 

BLEEP Pretrained ResNet50 NA Contrastive 
Learning 

Internal 
Dataset 

ResNet50 
and FCN 

Contrastive 
Learning 

NSL  Stain deconvolution matrix 

TCGN CNN + ViT + GNN  NA NA NA NA NA 

BrST-Net Trained 10 state-of-the-art CNN models and transformers then compared their performances + introduced an auxiliary 
network 

TransformerST CNN + cross-scale internal GNN Adaptive Graph 
Transformer 

Conditional 
Transformer NA NA NA 

STimage Pretrained ResNet50 + Negative 
Binomial NA NA NA NA NA 

THItoGene Dynamic Convolution + Efficient-
Capsule Module 

Graph Attention 
Network (GAT) ViT NA NA NA 

SEPAL Image Encoder GNN NA NA NA NA 

iStar HViT (super resolved features at 
near single-cell level) NA HViT NA NA NA 

 
 
 
 
 
 
 
 
 
 
 
 



 

 

Supplementary Table 2: Summary of Methods advantages, limitations, user guidance and 
improvement directions 
 

Model Date of 
Publication Publication Advantages Limitations User Guidance Improvement 

Directions 
 

ST-Net 22/06/2020 
Nature 

Biomedical 
Engineering 

Simple model, 
straightforward 
implementation, 
consistent 
performance 
across ST and 
Visium data 

Low 
generalizability and 
clinical 
translational 
impact 

Serve as 
baseline 

Using encoder 
pre-trained on 
larger and more 
diverse tissue 
datasets 

 

HisToGene 28/11/2021 Pre-print 

Suitable for 
handling small 
sample size, 
simple 
implementation, 
relatively high 
generalizability 

Modest 
performance on 
SGE prediction 
and clinical 
translational 
impact, need to 
carefully set the 
image and position 
embedding 
dimensions, hard 
to train on Visium 
data 

Use for small, 
labelled datasets 
or directly apply 
trained model to 
external 
datasets for 
SGE prediction 
for baseline 
comparison 

Reduce model 
complexity, 
particularly for 
patch 
embedding, try 
multi-scale 
modules that 
better handle 
super-resolution 

 

GeneCodeR 16/01/2022 Pre-print 
Fast training and 
interpretability for 
R users 

Modest 
performance 

Explore spatial 
information from 
images to gene 
expression 

Consider more 
advanced 
statistical model 
and perform pre-
processing of the 
H&E image stain 
to reduce patient 
effect 

 

DeepSpaCE 08/03/2022 Scientific 
Reports 

Simple 
implementation, 
relatively high 
generalizability 
and clinical 
translational 
impact 

Modest 
performance on 
SGE prediction, 
hard to train on 
Visium data 

Directly apply 
trained model to 
external 
datasets for 
SGE prediction 
as well as 
survival 
predictions for 
baseline 
comparison 

Reduce model 
complexity, 
replacing with 
more efficient 
modules for 
feature extraction 

 

DeepPT 09/06/2022 Pre-print 

Simple model, 
simple 
implementation, 
performing 
relatively well on 
both ST and 
Visium data 

Low 
generalizability 

Serve as 
baseline 

Using encoder 
pre-trained on 
larger and more 
diverse tissue 
datasets 

 

Hist2ST 20/09/2022 Briefings in 
Bioinformatics 

Perform relatively 
well in TCGA 
survival analysis 

Complex model, 
need to carefully 
set the image and 
position 
embedding 
dimensions, hard 
to train on Visium 
data 

Apply to survival 
analysis and 
served as a 
baseline 

Reduce model 
complexity, 
improve global 
feature 
representations 

 



 

 

EGNv1 26/02/2023 WACV 

Potentially less 
data to train, 
performing 
relatively well on 
both ST and 
Visium data, 
enhanced 
robustness and 
relatively high 
clinical 
translational 
impact 

Requires well-
curated, diverse 
reference dataset, 
exemplar increase 
the overall 
computational cost 
for large reference 
data, need to 
modify the 
dataloader 
appropriately to 
handle new inputs 

Use when well-
curated, high 
quality reference 
data is available, 
potentially can 
be used to 
explore survival 
analysis 

Using encoder 
pre-trained on 
larger and more 
diverse tissue 
datasets, involve 
more relevant 
and 
representative 
reference data 

 

EGNv2 26/09/2023 Pattern 
Recognition 

Potentially less 
data to train, 
enhanced 
robustness, 
relatively good 
performance in 
the ST datasets 

Requires well-
curated, diverse 
reference dataset, 
exemplar and 
graph construction 
is time-intensive 
for large reference 
data, need to 
modify the 
dataloader 
appropriately to 
handle new inputs, 
hard to train on 
Visium data 

Use when well-
curated, high 
quality reference 
data is available, 
can be used to 
explore survival 
analysis - 
especially 
luminal breast 
cancer 

Using encoder 
pre-trained on 
larger and more 
diverse tissue 
datasets, involve 
more relevant 
and 
representative 
reference data 

 

TCGN 25/11/2023 
Medical 
Image 

Analysis 

Capture cell 
organisation 
features (cell-cell 
interaction) using 
GNN, works 
better on Visium 
than ST data 

Complex model, 
taking relatively 
more time to train 

Explore and 
understand the 
effectiveness of 
transformer and 
GNN 

Reduce model 
complexity, 
improve global 
feature 
representations 

 

THItoGene 25/12/2023 Briefings in 
Bioinformatics 

Extract deep, 
multi-view 
neighbourhood 
features 

Complex model, 
risk of overfitting, 
hard coded 
dataloader and 
model settings, 
hard to train on 
Visium 

Explore and 
understand the 
effectiveness of 
deep 
neighbourhood 
features 

Improve the 
integration of 
local and global 
neighbourhood 
features 

 

iStar 02/01/2024 Nature 
Biotechnology 

Enable near 
single-cell SGE 
prediction using 
spot-based data 

Infeasible to 
perform training 
and prediction 
across different 
datasets due to 
both image and 
spot resolution 
difference and the 
requirement of 
consistent feature 
embedding 
dimension, the 
published code 
needs to be 
modified to 
dynamic 
dataloader to train 
more whole H&E 
embedding at one 
time 

Explore finer 
single-cell 
spatial features 
even when only 
spot-based SGE 
data is available, 
works better on 
high-resolution 
image data 

Improve spot to 
single-cell gene 
expression 
prediction 
method, which 
better allocates 
spot-based gene 
expression to the 
large number of 
cells within spots 

 

 
 
 



 

 

Supplementary Table 3: Top 20 predicted genes by correlation in HER2+ ST data. 
 

gene EGN 
v2 

Deep
PT 

Deep
Spa 
CE 

Gene
Code

R 

HisTo
Gene 

Hist
2ST 

ST-
Net 

EGN 
v1 

TCGN THIto
Gene 

iStar overal
l_mea
n_cor 

GNAS 0.47 0.41 0.38 0.29 0.35 0.26 0.28 0.19 0.30 0.23 0.26 0.31 

FASN 0.46 0.40 0.32 0.28 0.31 0.21 0.37 0.18 0.29 0.20 0.28 0.30 

SCD 0.42 0.34 0.24 0.15 0.28 0.22 0.31 0.13 0.27 0.21 0.21 0.25 

MYL12B 0.33 0.30 0.23 0.19 0.28 0.26 0.27 0.13 0.24 0.22 0.15 0.24 

CLDN4 0.36 0.31 0.2 0.23 0.28 0.21 0.27 0.13 0.25 0.16 0.18 0.24 

FN1 0.38 0.26 0.18 0.17 0.27 0.24 0.20 0.15 0.18 0.22 0.17 0.22 

RHOB 0.30 0.29 0.25 0.19 0.25 0.25 0.21 0.10 0.21 0.21 0.11 0.22 

STMN1 0.33 0.28 0.24 0.15 0.26 0.23 0.22 0.11 0.20 0.18 0.17 0.21 

HLA.DRA 0.37 0.36 0.13 0.21 0.19 0.18 0.23 0.17 0.17 0.12 0.13 0.20 

TMBIM6 0.33 0.28 0.14 0.17 0.23 0.20 0.25 0.10 0.16 0.18 0.17 0.20 

TMEM123 0.32 0.27 0.13 0.16 0.24 0.22 0.21 0.10 0.20 0.18 0.17 0.20 

CCT4 0.28 0.27 0.19 0.14 0.25 0.22 0.23 0.09 0.20 0.19 0.13 0.20 

FADS2 0.32 0.27 0.10 0.26 0.21 0.15 0.25 0.12 0.19 0.14 0.15 0.20 

NDUFB2 0.28 0.26 0.14 0.18 0.24 0.25 0.22 0.10 0.17 0.21 0.10 0.20 

PRKCSH  0.31 0.30 0.11 0.23 0.21 0.16 0.26 0.11 0.17 0.12 0.14 0.20 

HMGB2  0.30 0.24 0.23 0.13 0.23 0.23 0.21 0.07 0.19 0.18 0.12 0.19 

CRACR2B 0.30 0.26 0.14 0.20 0.21 0.16 0.26 0.09 0.22 0.13 0.15 0.19 

SRSF1 0.30 0.26 0.20 0.14 0.23 0.21 0.23 0.08 0.22 0.17 0.09 0.19 

CD74 0.34 0.38 0.21 0.18 0.05 0.05 0.31 0.17 0.17 0.01 0.20 0.19 

HNRNPUL2 0.29 0.27 0.17 0.20 0.21 0.18 0.22 0.10 0.19 0.14 0.01 0.19 

 

 

 

 

 

 



 

 

Supplementary Table 4: Top 20 predicted genes by correlation in cSCC ST data. 
 

gene EGN
v2 

Deep
PT 

Deep
Spa 
CE 

Gene
Code

R 

HisTo
Gene 

Hist2
ST 

ST-
Net 

EGN 
v1 

TCGN THIto
Gene 

iStar overall_
mean_c

or 

PFN1 0.53 0.41 0.08 0.12 0.12 0.27 0.13 0.49 0.21 0.23 0.32 0.26 

RPL9 0.52 0.36 0.06 0.07 0.16 0.24 0.16 0.50 0.22 0.23 0.39 0.26 

TAGLN2 0.50 0.38 0.04 0.10 0.23 0.22 0.16 0.42 0.23 0.21 0.37 0.26 

RPS17 0.51 0.34 0.05 0.10 0.19 0.25 0.13 0.46 0.21 0.23 0.37 0.26 

RPL8 0.53 0.38 0.04 0.02 0.14 0.22 0.17 0.49 0.19 0.21 0.41 0.26 

PKP1 0.52 0.33 -0.09 0.13 0.27 0.19 0.19 0.49 0.19 0.17 0.36 0.25 

RPS4X 0.49 0.36 0.06 0.01 0.22 0.22 0.17 0.46 0.19 0.22 0.37 0.25 

RPL36 0.53 0.36 0.04 0.07 0.12 0.22 0.16 0.48 0.19 0.22 0.36 0.25 

RPL5 0.50 0.34 0.06 0.08 0.17 0.23 0.14 0.43 0.22 0.21 0.36 0.25 

PTMA 0.48 0.36 0.03 0.11 0.14 0.24 0.11 0.40 0.29 0.23 0.33 0.25 

RPL24 0.49 0.37 0.03 0.06 0.18 0.21 0.22 0.44 0.19 0.18 0.34 0.25 

RPL18 0.49 0.33 0.01 0.01 0.19 0.24 0.23 0.43 0.18 0.25 0.34 0.25 

HLA.A 0.48 0.39 0.07 0.02 0.17 0.22 0.11 0.45 0.19 0.22 0.36 0.24 

SFN 0.57 0.43 -0.12 0.11 0.16 0.17 0.25 0.53 0.07 0.11 0.40 0.24 

GSTP1 0.54 0.38 -0.03 0.08 0.19 0.18 0.18 0.49 0.15 0.16 0.35 0.24 

ACTB 0.52 0.41 0.08 0.11 0.06 0.18 0.14 0.47 0.14 0.17 0.37 0.24 

ANXA2 0.49 0.39 0 0.12 0.15 0.18 0.19 0.44 0.17 0.18 0.34 0.24 

TMSB10 0.50 0.40 0.08 0.07 0.10 0.21 0.12 0.44 0.18 0.20 0.37 0.24 

ACTG1 0.52 0.41 0 0.08 0.14 0.20 0.20 0.46 0.12 0.15 0.38 0.24 

PPIA 0.49 0.34 0 0.12 0.23 0.22 0.12 0.40 0.24 0.19 0.29 0.24 

 
 

 

 

 

 

 



 

 

Supplementary Method 1 
 
iStar 
Due to variations in spatially resolved transcriptomics (SRT) technologies, H&E images from 
different datasets required specific rescaling. For the HER2+ ST dataset, the original pixel size 
was 2 μm with a spot radius of 50 μm; therefore, images were upscaled so that a 16×16 pixel 
patch represented a single cell. After rescaling, each spot contained approximately 125 cells. In 
the cSCC ST dataset, with a pixel size of 0.8 μm and a spot radius of 55 μm, images were 
upscaled, resulting in each spot containing about 150 cells. Conversely, the Visium-Kidney 
dataset had a pixel size of 0.22 μm and a spot radius of approximately 24 μm, requiring a 
downscaling, which led to spots containing around 30 cells.  
 
Practical implementation of iStar requires consistency in image size, as well as image and spot 
resolutions, when training and testing across datasets. After rescaling to make a 16×16 patch 
represent a single cell, images from datasets with different resolutions vary significantly in size. 
Since image embeddings need to have the same dimension to be trained together, resizing can 
lead to information loss, requiring input images to have consistent dimensions. This requirement 
posed challenges when attempting to include TCGA and Visium-HER2+ as external validation 
data or perform cross-study analyses between the two breast cancer data Visium-Hercep-
Test2+ and Visium-HER2+. For the HER2+ ST dataset, the upscaled image embeddings 
require a large amount of computational memory, making it challenging to train on multiple 
images simultaneously. We performed a subset evaluation for iStar by using only the first image 
slide from each training patient and predicting on the first slide from each test patient within 
each fold. An exception was made for patient G, as tissue annotation is available for the second 
slide. 
 


