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Abstract: This article introduces the odds exponential-Pareto IV distribution, which belongs to
the odds family of distributions. We studied the statistical properties of this new distribution.
The odds exponential-Pareto IV distribution provided decreasing, increasing, and upside-down
hazard functions. We employed the maximum likelihood method to estimate the distribution
parameters. The estimators performance was assessed by conducting simulation studies. A new log
location-scale regression model based on the odds exponential-Pareto IV distribution was also
introduced. Parameter estimates of the proposed model were obtained using both maximum
likelihood and jackknife methods for right-censored data. Real data sets were analyzed under
the odds exponential-Pareto IV distribution and log odds exponential-Pareto IV regression model to
show their flexibility and potentiality.
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1. Introduction

Pareto distribution was named after the Italian economist Vilfredo Pareto (1848–1923). The Pareto
distribution has gained considerable attention in modeling many applications with heavy-tailed
distributions, such as income distribution, earthquakes, forest fire areas, and disk drive sector
errors [1,2]. The Pareto IV family is a general family of distributions. Pareto I, Pareto II, and Pareto
III distributions are special cases of the Pareto IV family. Also, the Burr family can be regarded as a
special case of Pareto IV (see, [3,4]). There are several studies in the literature generalizing the Pareto
distribution to make it richer and more flexible for modeling data. These include the generalized
Pareto [5], beta-Pareto [6], beta-generalized Pareto [7], Weibull–Pareto [8], gamma-Pareto [9,10],
Kumaraswamy exponentiated Pareto [11], and exponentiated Weibull–Pareto distribution [12].

In recent works, adding new parameters to existing distributions or using different methods
makes the resulting new distribution more appropriate and efficient for modeling the lifetime
data. Many distributions have been generalized in the literature. These include the logit of the
Kumaraswamy distribution [13], the generalized beta-generated distribution [14], the Weibull-G family
of distribution [15], the gamma-exponentiated exponential distribution [16], and the transmuted
Weibull-Pareto distribution [17]. Very recently, some new odd distributions were proposed in
the literature, such as the odd Birnbaum–Saunders distribution [18], the odd Burr-III family of
distributions [19], the odds exponential-log logistic distribution [20], the odd log-logistic-Fréchet
distribution [21], the odd log-logistic-Burr XII distribution [22], the odd exponentiated half-logistic
Burr XII distribution [23], the odd Lomax-G family of distributions [24], the odd Dagum-G family of
distributions [25], and the odd log-logistic Lindley-exponential distribution [26].
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This article used the transformed-transformer (T-X) family by Alzaatreh et al. [27] to introduce
an odds exponential-Pareto IV distribution, in which the cumulative distribution function (CDF) is
defined by

G(x) =
∫ W(F(x))

a
r(t) dt = R{W(F(x))}, (1)

where r(t) is the probability density function (PDF) of a random variable T ∈ [a, b], such that −∞ ≤
a < b ≤ ∞ and W(F(x)) is a function of any CDF, that takes different forms, see Alzaatreh et al. [27].
In this study, we consider the odds function form, W(F(x)) = F(x)

1−F(x) . That is, the CDF will be

G(x) =
∫ F(x)

1−F(x)

0
r(t) dt = R

{
F(x)

1− F(x)

}
, (2)

and we considered the exponential distribution for r(t) = λe−λt, t ≥ 0, and F(x) = 1 −(
1 + x

θ

1
a
)−α

, x > 0, is the Pareto IV distribution with parameters (a, θ, α) in Equation (2).
The resulting generated distribution will provide more flexibility in accommodating different types
of the hazard function for the generated distribution. Also, this proposed distribution will be more
suitable for modeling and fitting different real-life data

Therefore, we now define the odds exponential-Pareto IV (OEPIV) distribution with CDF given by

G(x; λ, a, θ, α) = 1− exp

{
−λ

[(
1 +

( x
θ

) 1
a

)α

− 1

]}
, x > 0 . (3)

The PDF of OEPIV is

g(x; λ, a, θ, α) =
λα

aθ
exp(λ)

( x
θ

) 1
a−1

(
1 +

( x
θ

) 1
a

)α−1

exp

{
−λ

(
1 +

( x
θ

) 1
a

)α}
, x > 0 , (4)

where λ > 0, α > 0 are the shape parameters, θ > 0 is the scale parameter, and a > 0 is the
inequality parameter.

Recently, there has been a great deal of interest in the literature investigating the relationship
between survival time and some other covariates, such as sex, weight, blood pressure, and many
others. In a number of applications, different parametric regression models were used to estimate the
effect of covariate variables on the survival time, including the log-location-scale regression model.
The log-location-scale regression model is distinguished since it is commonly used in clinical trials
and in many other fields of application. It is also widely used in engineering models where failure is
accelerated by voltage, temperature, or other stress factors [28]. Several studies in the literature applied
the log-location-scale regression model based on different distributions, such as the log-modified
Weibull [29], the log-Weibull extended [30], the log-exponentiated Weibull [31], the log-Burr XII [32],
the log-beta Weibull [33], the log-beta log-logistic [34], the log-Fréchet [35], the log-Exponentiated
Fréchet [36], and the log-gamma-logistic [37]. Recent studies used the log-location-scale regression
model built from the logarithm odd of the distribution. For instance, the odd log-logistic-Weibull [38],
odd log-logistic generalized half normal [39], and odd Weibull [40].

This article is organized as follows: In Section 2, we define the survival and hazard functions of
the OEPIV distribution with some graphical representations. We derived some of the OEPIV properties
in Section 3. In Section 4, we explain the maximum likelihood estimation for parameters of the odds
exponential-Pareto IV distribution. Simulation studies are provided to illustrate the performance of the
OEPIV distribution in Section 5. In Section 6, we address the log odds exponential-Pareto IV (LOEPIV)
distribution along with some of its statistical properties, in addition to introducing a log-location
regression model based on LOEPIV and discussed its parameter estimates via maximum likelihood
and Jackknife methods. In Section 7, three applications are analyzed to demonstrate the performance
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of the introduced new distribution and its regression model. Finally, we report our conclusions in
Section 8.

2. The Odds Exponential-Pareto IV Distribution

The survival (SF) and hazard functions (HF) are, respectively, as follows:

SF(x; λ, a, θ, α) = exp

{
−λ

[(
1 +

( x
θ

) 1
a

)α

− 1

]}
, (5)

HF(x; λ, a, θ, α) =
λα

aθ

( x
θ

) 1
a−1

(
1 +

( x
θ

) 1
a

)α−1

. (6)

The Exponential-Pareto (EP) distribution [41] can be treated as a special case of OEPIV distribution
by setting α = 1 and 1/a = θ. For α = 1, 1/a = σ and λ = 1/β, we obtain the odds exponential-log
logistic (OELL) distribution [20].

Graphical representations of the PDF in Equation (4) and HF in Equation (6) are, respectively,
shown in Figures 1 and 2. From Figure 1, we note that the OEPIV distribution has different shapes at
different parameter values, which indicate its great flexibility. Based on Figure 2, the OEPIV takes the
following HF shapes: increasing, decreasing, and upside-down.
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Figure 1. Density function plots of the OEPIV distribution .
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Figure 2. Hazard function plots of the OEPIV distribution .

3. Statistical Properties

We discuss in this section some statistical properties of the OEPIV distribution.
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3.1. The Quantile and Median

The quantile of the OEPIV distribution is computed as

qOEPIV = θ

[[(
− log(1− p)

λ

)
+ 1
] 1

α

− 1

]a

. (7)

Then, the median of the OEPIV distribution can be obtained by setting p = 0.5 in Equation (7),

Med = θ

[[(
log(2)

λ

)
+ 1
] 1

α

− 1

]a

. (8)

3.2. The Mode

The mode of the OEPIV distribution can be obtained by computing the derivative of the log PDF
in Equation (4) with respect to x and equating to zero

d
dx

log g(x; λ, a, θ, α) = 0

(1/a− 1)x +
(α− 1)(x/θ)1/a−1

aθ(1 + (x/θ)1/a)
− λα

θa
(x/θ)1/a−1(1 + (x/θ)1/a)α−1 = 0 . (9)

Thus, the mode can be obtained numerically by solving Equation (9).

3.3. The r-th Order Moment and Moment Generating Function

The r-th order raw moment is defined as

µ′r =
∫ ∞

0
xrg(x; λ, a, θ, α)dx.

Thus,

µ′r =
∫ ∞

0
xr λα

aθ
exp(λ)

( x
θ

) 1
a−1

(
1 +

( x
θ

) 1
a

)α−1

exp

{
−λ

(
1 +

( x
θ

) 1
a

)α}
dx.

Let

u = λ

(
1 +

( x
θ

) 1
a

)α

⇒ du = λα
aθ

( x
θ

) 1
a−1

(
1 +

( x
θ

) 1
a

)α−1
dx.

Also, x = θ
[( u

λ

)1/α − 1
]a

.
Thus, we put the above formulas in the integration to have

µ′r = eλθr
∫ ∞

λ

[( u
λ

)1/α
− 1
]ar

e−udu.

Using the binomial expansion of
[( u

λ

)1/α − 1
]ar

, we obtain

µ′r =
∞

∑
k=0

(
ar
k

)
(−1)keλθrλ−

ar−k
α

∫ ∞

λ
u(ar−k)/αe−udu.

Using the gamma function definition,

Γ(s, x) =
∫ ∞

x
ts−1e−tdt.
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Thus, the r-th moment can be written as

µ′r = E(xr) =
∞

∑
k=0

(
ar
k

)
(−1)keλθrλ−

ar−k
α Γ(

ar− k
α

+ 1, λ). (10)

Therefore, the moment generating function (mgf) can be obtained based on r-th moment of OEPIV
distribution as

Mx(t) = E(etx) =
∞

∑
r=0

tr

r!
µ′r. (11)

Substituting from Equation (10) into Equation (11), we find

Mx(t) =
∞

∑
r=0

∞

∑
k=0

(
ar
k

)
(−1)k (θt)r

r!
λ−

ar−k
α eλΓ(

ar− k
α

+ 1, λ) .

Then, the mean of the OEPIV distribution is

µ′1 = E(x) =
∞

∑
k=0

(
a
k

)
(−1)keλθλ−

a−k
α Γ(

a− k
α

+ 1, λ) .

The mean, variance, skewness, and kurtosis of the OEPIV distribution for different values of λ, a,
θ, and α are calculated in Table 1, to illustrate the effects on these measures.

Table 1. Mean, variance, skewness, and kurtosis of OEPIV model selected parameter values.

λ a θ α Mean Variance Skewness Kurtosis

2 2.5 0.5 1.5 1.1281 23.5677 0.5281 0.0424
2 3.5 0.5 1.5 4.3493 192.0261 0.1223 0.0665
2 4.5 0.5 1.5 24.8511 488.3011 13.3934 7.6745

2 2.5 2.5 1.5 5.6405 589.1917 0.5281 0.0424
2 2.5 3.5 1.5 7.8967 1154.8158 0.5281 0.0424
2 2.5 0.5 1.5 1.1281 23.5677 0.5281 0.0424

0.5 2.5 1.5 1.5 1.1153 5.3631 0.7241 0.4752
0.5 2.5 1.5 2.5 0.9486 9.6007 0.0298 0.0131
0.5 2.5 1.5 4.5 0.8567 13.2012 0.0302 0.0084

1.5 3.5 0.5 1.5 3.0317 47.0037 0.5800 0.3771
2.5 3.5 0.5 1.5 7.7388 568.5549 0.1148 0.0424
3.5 3.5 0.5 1.5 42.8019 1795.2542 4.7337 2.5407

3.4. Order Statistics

Suppose X1, X2, X3, . . . , Xn is a random sample from the PDF in Equation (4).
Let X(1), X(2), X(3), . . . , X(n), denote the corresponding order statistic. The probability density
function and the cumulative distribution function of the kth order statistic, say Y = X(k), given by

fY(y) =
n!

(k− 1)!(n− k)!
Fk−1(y)[1− F(y)]n−k f (y), (12)

where f (y) and F(y) are the PDF and CDF of OEPIV distribution given by Equations (4) and (3),
respectively. Using the binomial expansion of [1− F(y)]n−k, given as follows

[1− F(y)]n−k =
n−k

∑
i=0

(
n− k

i

)
(−1)i[F(y)]i. (13)
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Substituting Equation (13) into (12), we have

fY(y) =
n!

(k− 1)!(n− k)!
f (y)

n−k

∑
i=0

(
n− k

i

)
(−1)i[F(y)]i+k−1. (14)

Substituting Equations (3) and (4) into (14), we obtain

f (y) =
n!

(k− 1)!(n− k)!

n−k

∑
i=0

(−1)i

(
n− k

i

)
λα

aθ
exp(λ)

(y
θ

) 1
a−1

(
1 +

(y
θ

) 1
a

)α−1

[
1− exp

{
−λ

[(
1 +

(y
θ

) 1
a

)α

− 1

]}]i+k−1

exp

{
−λ

(
1 +

(y
θ

) 1
a

)α}
(15)

Using binomial expansion of
[

1− exp
{
−λ

[(
1 +

( y
θ

) 1
a

)α

− 1
]}]i+k−1

, we get

f (y) =
n!

(k− 1)!(n− k)!

∞

∑
j=0

n−k

∑
i=0

(
n− k

i

)(
i + k− 1

j

)
(−1)i+j λα

aθ
exp(λ)

( y
θ

) 1
a−1

(
1 +

( y
θ

) 1
a
)α−1

exp

{
−λj

[(
1 +

( y
θ

) 1
a
)α

− 1

]}
exp

{
−λ

(
1 +

( y
θ

) 1
a
)α
}

f (y) =
n!

(k− 1)!(n− k)!
λα

aθ

∞

∑
j=0

n−k

∑
i=0

(
n− k

i

)(
i + k− 1

j

)
(−1)i+j exp(λ(1 + j))

(y
θ

) 1
a−1

(
1 +

(y
θ

) 1
a

)α−1

exp

{
−λ

[(
1 +

(y
θ

) 1
a

)α

(1 + j)

]}
. (16)

3.5. Rényi Entropy

The Rényi entropy of a random variable X represents a measure of variation of the uncertainty.
It is given by

HR(x) =
1

1− R
log
[∫ ∞

0
g(x)Rdx

]
, R > 0, R 6= 1.

Using the PDF in Equation (4), we can write

g(x)R =

[
αλ exp(λ)

aθ

]R [
(

x
θ
)1/a−1

]R
[(

1 + (
x
θ
)1/a

)α−1
]R

exp
{
−Rλ

(
1 + (

x
θ
)1/a

)α}
.

IR(x) =
∫ ∞

0
g(x)Rdx

=
∫ ∞

0

[
αλ exp(λ)

aθ

]R [
(

x
θ
)1/a−1

]R
[(

1 + (
x
θ
)1/a

)α−1
]R

exp
{
−Rλ

(
1 + (

x
θ
)1/a

)α}
dx

Let u = Rλ
(

1 + ( x
θ )

1/a
)α

, so

IR(x) =
eλR

R

(
αλ

aθ

)R−1 ∫ ∞

0

( u
Rλ

)R(1− 1
α )+

1
α−1

[( u
Rλ

) 1
α − 1

]R(1−a)+a−1

e−udu.
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Using binomial expansion of
[( u

Rλ

) 1
α − 1

]R(1−a)+a−1
, given as follows[( u

Rλ

) 1
α − 1

]R(1−a)+a−1

=
∞

∑
k=0

(
R(1− a) + a− 1

k

)
(−1)k

( u
Rλ

) R(1−a)+a−1−k
α .

Thus, we put the above formula in the integration to have

IR(x) =
eλR

R

(
αλ

aθ

)R−1 ∞

∑
k=0

(
R(1− a) + a− 1

k

)
(−1)k

(
1

Rλ

) 1
α (a(1−R)−k)+R−1 ∫ ∞

0
u

1
α (a(1−R)−k)+R−1e−udu

IR(x) = eλR
( α

aθ

)R−1 ∞

∑
k=0

(
R(1− a) + a− 1

k

)
(−1)k

λ1/α(a(1−R)−k)
Γ(1/α(a(1− R)− k) + R)

R1/α((1−R)−k)+R
.

log(IR(x)) = λR+(R− 1) log
( α

aθ

)
+ log

[
∞

∑
k=0

(
R(1− a) + a− 1

k

)
(−1)k

λ1/α(a(1−R)−k)
Γ(1/α(a(1− R)− k) + R)

R1/α((1−R)−k)+R

]
.

The Rényi entropy of the OEPIV distribution is

HR(x) =
λR

1− R
− log

( α

aθ

)
+

1
1− R

log

[
∞

∑
k=0

(
R(1− a) + a− 1

k

)
(−1)k

λ1/α(a(1−R)−k)
Γ(1/α(a(1− R)− k) + R)

R1/α((1−R)−k)+R

]
.

4. Estimation of the OEPIV Parameters

We assume that x1, x2, . . . , xn is a random sample from the OEPIV distribution. Then,
the log-likelihood (`) for φ = (λ, a, θ, α) is

` = n log(λ) + n log(α)− n log(a)− n log(θ) + nλ + (
1
a
− 1)

n

∑
i=1

log(
xi
θ
) + (α− 1)

n

∑
i=1

log(hi)− λ
n

∑
i=1

(hi)
α, (17)

where hi = 1 + ( xi
θ )

1/a. The likelihood equations are given by

∂`

∂λ
=

n
λ
+ n−

n

∑
i=1

(hi)
α, (18)

∂`

∂a
= −n

a
− 1

a2

n

∑
i=1

log(
xi
θ
)− (α− 1)

a2

n

∑
i=1

1
hi
(

xi
θ
)1/a ln(

xi
θ
) +

λα

a2

n

∑
i=1

hα−1
i (

xi
θ
)1/a ln(

xi
θ
), (19)

∂`

∂θ
= −n

θ
− (1/a)− 1

θ
− (α− 1)

aθ

n

∑
i=1

1
hi
(

xi
θ
)1/a +

λα

aθ

n

∑
i=1

(
xi
θ
)(1/a)hα−1

i , (20)

and
∂`

∂α
=

n
α
+

n

∑
i=1

log(hi)− λ
n

∑
i=1

hα
i log(hi). (21)

We can obtain maximum likelihood (ML) estimates of the parameters by directly maximizing
Equation (17) using the nlm or optim functions in R package or by solving Equations (18)–(21).
Under standard regularity conditions, we can obtain approximate intervals estimation of the
parameters using multivariate normal distribution N4(0, J(φ̂)−1) by numerically evaluating the
elements of the 4 × 4 observed information matrix J(φ) at φ̂, J(φ) =

(
− ∂2`

∂φj∂φk

)
. In addition,

the likelihood ratio (LR) test can be applied to discriminate between nested models.
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5. Simulation Studies

We conducted a Monte Carlo simulation to illustrate the performance of the ML parameter
estimates of the OEPIV distribution. That is, we randomly generated 10,000 samples with size 30, 50,
100, 200, and 500 from the OEPIV distribution for two different sets of parameter values as follows:

SetI : λ = 0.3, a = 0.4, θ = 0.5, α = 0.2.

SetI I : λ = 0.2, a = 0.1, θ = 0.6, α = 0.15.

The estimates for the parameters were obtained along with their calculated bias and mean square
error (MSE), given by

ˆBiasb =
1
n

n

∑
i=1

(b̂i − b),

ˆMSEb =
1
n

n

∑
i=1

(b̂i − b)2,

where b = λ, θ, a , α. The results of the simulation are displayed in Table 2. We concluded from these
results that the empirical means tend to the true value of the parameters as the sample size increases.
In addition, the MSEs and biases decreased as we increased the sample size.

Table 2. Parameter estimates, along with their MSE, and bias for two different cases with different
sample sizes.

Set I Set II

Estimate MSE Bias Estimate MSE Bias

n = 30

λ 0.7646 34.3149 0.4646 0.4444 1.1410 0.2444
a 0.1806 0.1159 −0.2194 0.0347 0.0086 −0.0653
θ 1.0773 1009.5916 0.5773 0.6595 0.0570 0.0595
α 0.0778 0.0364 −0.1222 0.0440 0.0374 −0.1060

n = 50

λ 0.5774 1.1837 0.2774 0.3526 0.4563 0.1526
a 0.2333 0.0893 −0.1667 0.0495 0.0074 −0.0505
θ 0.6825 0.7605 0.1825 0.6366 0.0235 0.0366
α 0.1008 0.0228 −0.0992 0.0631 0.0161 −0.0869

n = 100

λ 0.4324 0.3672 0.1324 0.2628 0.0909 0.0628
a 0.3072 0.0540 −0.0928 0.0683 0.0051 −0.0317
θ 0.6042 0.2970 0.1042 0.6147 0.0132 0.0147
α 0.1430 0.0128 −0.0570 0.0953 0.0105 −0.0547

n = 200

λ 0.3535 0.0982 0.0535 0.2243 0.0221 0.0243
a 0.3532 0.0256 −0.0468 0.0830 0.0028 −0.0170
θ 0.5463 0.1018 0.0463 0.6054 0.0064 0.0054
α 0.1718 0.0057 −0.0282 0.1211 0.0058 −0.0289

n = 500

λ 0.3156 0.0140 0.0156 0.2069 0.0038 0.0069
a 0.3847 0.0082 −0.0153 0.0942 0.0010 −0.0058
θ 0.5149 0.0211 0.0149 0.6015 0.0020 0.0015
α 0.1911 0.0017 −0.0089 0.1403 0.0020 −0.0097

6. The Log Odds Exponential-Pareto IV Regression Model

If X is a random variable from the OEPIV distribution, as given in Equation (4), then Y = log(X)

is a random variable that has a LOEPIV distribution with the transformation parameter σ = a and
µ = log(θ). Therefore, the PDF and CDF of the LOEPIV distribution are as follows:

f (y; λ, α, σ, µ) =
λα

σ
exp(λ) exp

(
y− µ

σ

)(
1 + exp

(
y− µ

σ

))α−1
exp

{
−λ

(
1 + exp

(
y− µ

σ

))α}
, (22)
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F(y; λ, α, σ, µ) = 1− exp(λ) exp
{
−λ

(
1 + exp

(
y− µ

σ

))α}
, −∞ < y < ∞ (23)

where σ > 0 is the scale parameter, λ > 0, α > 0 are the shape parameters, and −∞ < µ < ∞ is
the location parameter. The LOEPIV model becomes the log exponential-Pareto (LEP) distribution
for α = 1.The PDF ( for −∞ < y < ∞) of the LEP distribution with parameters λ > 0, σ > 0 and
−∞ < µ < ∞, is

f (y) =
λ

σ
exp(λ) exp

(
y− µ

σ

)
exp

{
−λ

(
1 + exp

(
y− µ

σ

))}
The SF and HF are given by

SF(y; λ, α, σ, µ) = exp(λ) exp
{
−λ

(
1 + exp

(
y− µ

σ

))α}
, (24)

HF(y; λ, α, σ, µ) =
λα

σ
exp

(
y− µ

σ

)(
1 + exp

(
y− µ

σ

))α−1
. (25)

The following are the properties for the LOEPIV distribution:
The quantile of the LOEPIV distribution

y = σ ln

[(
1− 1

λ
ln(1− p)

) 1
α

− 1

]
+ µ . (26)

The mode of the LOEPIV distribution

d
dy

log f (y; σ, µ) =
1
σ

1 + (α− 1)
exp

(
y−µ

σ

)
1 + exp

(
y−µ

σ

) − λα

(
1 + exp

(
y− µ

σ

))α−1
exp

(
y− µ

σ

) = 0 . (27)

Then, the mode can be obtained by solving Equation (27) numerically.
The median of the LOEPIV distribution

Med = σ ln

[(
1 +

1
λ

ln(2)
) 1

α

− 1

]
+ µ . (28)

The mgf of LOEPIV distribution

MY(t) =
∫ ∞

−∞
exp(ty) f (y; λ, α, σ, µ)dy.

Thus,

=
∫ ∞

−∞
exp(ty)

λα

σ
exp(λ) exp

(
y− µ

σ

)(
1 + exp

(
y− µ

σ

))α−1
exp

{
−λ

(
1 + exp

(
y− µ

σ

))α}
dy.

Substituting u =
(

1 + exp
(

y−µ
σ

))α
⇒ du = α

σ exp
(

y−µ
σ

) (
1 + exp

(
y−µ

σ

))α−1
, will reduce the

above integration to

MY(t) = λeλ exp(tµ)
∫ ∞

1

(
u1/α − 1

)tσ
e−λudu.

Then, using the binomial expansion

(
u1/α − 1

)tσ
=

∞

∑
j=0

(
tσ
j

)
(−1)j

(
u1/α

)tσ−j
,
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MY(t) can be rewritten as

MY(t) = λeλ exp(tµ)
∞

∑
j=0

(
tσ
j

)
(−1)j

∫ ∞

1

(
u1/α

)tσ−j
e−λudu.

Using the gamma function. Thus, the mgf of LOEPIV distribution is as follows

MY(t) = eλ exp(tµ)
∞

∑
j=0

(
tσ
j

)
(−1)j

(
1
λ

) tσ−j
α

Γ
((

tσ− j
α

)
+ 1, λ

)
.

The standardized random variable for y in Equation (22) is defined as z = (y− µ)/σ, then z has
the following PDF

f (z) = λα exp(λ) exp(z)(1 + exp(z))α−1 exp{−λ(1 + exp(z))α}, −∞ < z < ∞ (29)

with SF given as
SF(z) = exp(λ) exp{−λ(1 + exp(z))α}. (30)

Hence, a linear location-scale regression model with response variable yi and explanatory vector
xi = (xi1, ..., xip)

T can be defined as

yi = βTxi + σzi, i = 1, 2, ..., n, (31)

where zi is the random error with PDF in Equation (24), β = (β1, ..., βp)T , and σ > 0, λ > 0, and α > 0
are the unknown parameters. yi is the location of µi = βTxi and the location vector µ = (µ1, ..., µn)T

can be represented as a linear model µ = βTx, in which (x1, ..., xn)T is the known model matrix.
Therefore, the SF of Yi|x is expressed as:

SF(yi|x) = exp(λ) exp

{
−λ

(
1 + exp

(
yi − βTxi

σ

))α
}

.

6.1. Estimation of the LOEPIV Regression Model

6.1.1. ML Method

For the right-censored lifetime data, we have ti = min( fi, ci), where fi is the lifetime and ci
is the censoring time, then, we have yi = log(ti) for the ith individual i = 1, . . . , n. If we have a

random sample with n observations (y1, τ1, x1),...,(yn, τn, xn), where τi =

{
1 for yi = log(ti)

0 for yi = log(ci)
,

and assuming the censoring and lifetimes are independent and random. Then, the likelihood function
for the regression model in (31) with θ = (λ, α, σ, β)T assuming right censoring is as follows:

L(θ) =
n

∏
i=1

( f (yi))
τi (SF(yi))

1−τi ,

where f (yi) and SF(yi) are given by Equations (17) and (19) of Yi, respectively. The ` for θ reduces to

` = r log(λ) + r log(α)− r log(σ) + rλ +
n

∑
i=1

τi[zi + (α− 1) log(1 + exp(zi))− λ(1 + exp(zi))
α]

+
n

∑
i=1

(1− τi) log(exp(λ) exp[−λ(1 + exp(zi))
α]), (32)
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where ∑n
i=1 τi = r represents the uncensored data, and zi = (yi − βTxi)/σ. The ML estimate for the

parameter vector θ could be obtained using an optimization algorithm that maximizes Equation (32).

6.1.2. Jackknife Method

The jackknife technique was developed by Quenouille (1949) to estimate the bias of an estimator.
It is an alternative method to estimate the LOEPIV parameters based on “leaving one out”.

Suppose that θ̂ is the parameter estimation of the whole sample and θ̂−i is the parameter estimation
when we dropped the ith observation from the data. That is, the pseudo-value of the ith observation is
obtained as

θ̃i = nθ̂ − (n− 1)θ̂−i. (33)

Then, the jackknife estimate of θ is the mean of pseudo-values, denoted θ̂∗ is

θ̂∗ =
1
n

n

∑
i=1

θ̃i. (34)

For more details, see [42–44].

6.2. Sensitivity Analysis: Global Influence

Global influence, introduced by [45], is used to conduct a sensitivity analysis that represents the
diagnostic effect depending on the case deletion. Case deletion measures the impact of dropping the
ith observation from the data set on the estimate of the parameters. That is, this method is based on
comparing the difference of θ̂ and θ̂−i where θ̂−i is the estimated parameters when the ith observation
is dropped from data. If θ̂−i is distant from θ̂, then this case is considered as influential. The case
deletion model for the LOEPIV regression Model (31) is

YJ = βTxi + σZi; J = 1, 2, ..., n, J 6= i. (35)

We denote the ML estimate of θ when the ith observation is dropped by θ̂−i = (λ̂(i), α̂(i), σ̂(i), β̂(i))
T .

Then, we describe two methods of global influence below.

6.2.1. Generalized Cook Distance

Generalized Cook distance (GD) is the first measure of global influence and is defined as

GDi(θ) = ((θ̂−i − θ̂))T{M̈(θ̂)}(θ̂−i − θ̂),

where M̈(θ̂) denotes the observed information matrix.

6.2.2. Likelihood Distance

Likelihood distance (LD) measures the differences between θ̂ and θ̂−i, and is given by

LDi(θ) = 2{`(θ̂)− `(θ̂−i)},

where `(θ̂−i) is the log likelihood function of θ when the ith observation is dropped from the data.

6.3. Residual Analysis

In the regression model, checking the assumptions and appropriateness of the fitted model is
an essential step. Therefore, we used residual analysis to check the assumptions and detect outlier
observations. In this study, we consider the following types.
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6.3.1. Martingale Residual

Barlow and Prentice [46] proposed the martingale residual as

rMi = δi + log(SF(yi; θ̂)),

where δi denotes the censor indicator, where δi = 0, if the ith observation is censored, and δi = 1,
if the ith observation is not censored, and SF(yi; θ̂) denotes the SF for the regression model. Therefore,
the martingale residual of the LOEPIV regression model is

rMi =

{
1 + log[exp(λ) exp(−λ(1 + exp(ẑi))

α)] if i ∈ li f etime
log[exp(λ) exp(−λ(1 + exp(ẑi))

α)] if i ∈ censored
(36)

where rMi has a range between −∞ and 1 and has skewness. Thus, the transformation of rMi will be
used to reduce the skewness.

6.3.2. Deviance Residual

This is a further improvement of the martingale residual, which reduces the skewness and make
it more symmetrical, around zero. It can be expressed as

rDi = sign(rMi )
√
−2[rMi + δi log(δi − rMi )],

where rMi is defined in Equation (36), and the deviance for the LOEPIV regression model is

rDi =



sign(1 + log[exp(λ) exp(−λ(1 + exp(ẑi))
α)]){

−2{1 + log[exp(λ) exp(−λ(1 + exp(ẑi))
α)]

+ log(− log[exp(λ) exp(−λ(1 + exp(ẑi))
α)])}

} 1
2

if i ∈ li f etime

sign(log[exp(λ) exp(−λ(1 + exp(ẑi))
α)])

{−2{log[exp(λ) exp(−λ(1 + exp(ẑi))
α)]}} 1

2 if i ∈ censored.

7. Simulation Study for the Log Odds Exponential-Pareto IV Regression Model

We performed a Monte Carlo simulation to explore the empirical distribution of the rMi and rDi

for different values of n and different censoring levels. The lifetimes t1, ..., tn were from the OEPIV
distribution in Equation (4), and xi was generated from uniform(0, 1). We sampled the censoring
times c1, ..., cn from uniform(0, ρ), where ρ was adjusted until we obtained the required censoring level.
For each fit, the log lifetimes were obtained as yi = min{log(ti), log(ci)}. We generated 1000 samples.
For each selection of n, λ, α, σ, β0, and β1, and the censoring levels. The simulation was conducted
for n = 30, 50, and 100 with λ = 0.3 ,α = 0.36, σ = 0.6, β0 = −0.6, and β1 = 1, and the censoring
levels 0.1, 0.3, and 0.5. Figures 3 and 4 present normal probability plots (NPP) for the residuals. These
figures show that the rDi empirical distribution provided more agreement with the standard normal
distribution (SND) compared to rMi . rDi also approached the SND as we increased the sample size or
decreased the censoring level.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3. Normal probability plots (NPP) for rMi for different sample sizes (n) and censoring levels (c).
(a) n = 30; c = 0.1 (b) n = 30; c = 0.3 (c) n = 30; c = 0.5 (d) n = 50; c = 0.1 (e) n = 50; c = 0.3 (f) n = 50; c = 0.5
(g) n = 100; c = 0.1 (h) n = 100; c = 0.3 (i) n = 100; c = 0.5.

(a) (b) (c)

Figure 4. Cont.
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(d) (e) (f)

(g) (h) (i)

Figure 4. NPP for rDi for different sample sizes (n) and censoring levels (c). (a) n = 30; c = 0.1 (b) n = 30;
c = 0.3 (c) n = 30; c = 0.5 (d) n = 50; c = 0.1 (e) n = 50; c = 0.3 (f) n = 50; c = 0.5 (g) n = 100; c = 0.1 (h)
n = 100; c = 0.3 (i) n = 100; c = 0.5.

8. Applications

We analyzed three real data sets to investigate the flexibility of the OEPIV distribution and the
LOEPIV regression model.

8.1. The Strength of Glass Fibers Data

This data was analyzed by [47], and it represents the strength of glass fibers with the length
1.5 cm. This data consists of 63 observations.

We will compare the fits of the OEPIV with the Pareto IV, Weibull BurrXII (WBXII) in [48],
Weibull Frechet (WFr) in [49], Weibull Lomax (WL) in [50], Odd exponential-weibull (OE-W),
Odd exponential-normal (OE-N) in [51], and Gamma distributions.

We considered the following criteria to compare these distributions: the values of the negative
log-likelihood function (− ˆ̀), Akaike information criterion (AIC), and corrected Akaike Information
Criterion (CAIC). The smaller the values for these statistics, the better the fit to the data.

The ML estimates, standard errors (SE), − ˆ̀, AIC and CAIC statistics for the OEPIV, WBXII, WL,
WFr, Pareto IV,OE-W, OE-N, and Gamma distributions are reported in Table 3. From the results in
Table 3, it is clear that the OEPIV distribution provides better fit for the data having lowest AIC and
CAIC values and could be selected as a more appropriate model than other models. Figure 5 displays
the QQ-plot of the OEPIV distribution and the estimated PDFs of the fitted distributions. It is clear
from these plots that the OEPIV captures the skewness of the glass fibers data than other competitive
fitted distributions.
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Table 3. Maximum likelihood (ML) estimates, SE in (), − ˆ̀ , and Akaike information criterion (AIC) and
corrected Akaike Information Criterion (CAIC) statistics for the glass fibers data.

Distribution ML Estimate and SE in () − ˆ̀ AIC CAIC

OEPIV λ = 0.0401 a = 0.2862 θ = 1.1455 α = 2.1549 13.9507 35.902 36.591
(0.0810) (0.1368) (0.4016) ((1.4014)

WBXII a = 0.0026 b = 1.8888 α = 1.6077 β = 2.7409 14.3035 36.607 37.297
(0.0032) (0.7680) (0.3760) (1.0100)

WL a = 581.4052 b = 5.1752 α = 17.5336 β = 110.7104 14.934 37.868 38.558
(28.2900) (0.2010) (102.1130) (659.3920)

WFr a = 1.4762 b = 16.8561 α = 0.3865 β = 0.2436 15.5005 39.001 39.691
(4.7820) (20.4850) (0.7990) (0.2850)

Pareto IV a = 0.1626 θ = 2.3513 α = 10.2153 - 15.4781 36.956 37.363
(0.0187) (0.4477) (9.9080)

OE-W λ = 0.0721 β = 1.9603 - - 16.4613 36.922 37.123
(0.0162) (0.0940)

OE-N λ = 0.0121 σ = 0.7385 - - 17.5979 39.195 39.396
(0.0043) (0.0364)

Gamma β = 17.4411 θ = 11.5748 - - 23.9515 51.9031 52.1031
(3.0783) (2.0725)

Figure 5. QQ-plot of the OEPIV model and the estimated PDFs of the OEPIV and other competitive
distributions for the glass fibers data.

8.2. Sum of Skin Folds Data

The authors of [52] discussed this data set, and it represents 102 male and 100 female athletes
collected at the Australian Institute of Sports, provided by Richard Telford and Ross Cunningham.

We compare the ML estimates and their corresponding SE, and the values of the (− ˆ̀), and the
AIC and CAIC statistic for fitted OEPIV distribution with the results of the Kumaraswamy Pareto-IV
(KwPIV) in [53], gamma-Pareto IV (GPIV) [10], Pareto IV (PIV) in [53], and exponentiated Pareto (EP)
distributions provided in [54], and the Weibull distribution. These results are reported in Table 4.
From the results in Table 4, it is clear that the OEPIV distribution provides the lowest AIC and CAIC
values among those of the fitted distributions. Therefore, OEPIV could be selected as the best modal
for this data. Figure 6 displays the QQ-plot of the OEPIV distribution and the estimated PDFs of the
fitted distributions. It is clear from these plots that the OEPIV provides a good fit to this data.
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Table 4. ML estimates, SE in (), − ˆ̀, and AIC and CAIC statistics for skin folds data.

Distribution ML Estimate and SE in () − ˆ̀ AIC CAIC
OEPIV λ = 0.348 a = 0.024 θ = 29.579 α = 0.036 - 944.2687 1896.537 1896.740

(0.090) (0.006) (0.678) (0.010)
KwPIV a = 2.928 b = 21.746 α = 0.023 γ = 0.060 θ = 23.430 945.200 1900.401 1900.707

(1.188) (33.283) (0.019) (0.033) (4.633)
GPIV c = 0.520 α = 81.355 σ = 0.098 - - 950.007 1906.014 1906.135

(0.198) (8.071) (0.035)
PIV α = 0.463 γ = 0.182 θ = 46.812 - - 956.333 1918.666 1918.787

(0.183) (0.041) (5.595)
EP c = 28 α = 2.155 θ = 2.737 - - 951.878 1907.757 1907.878

(0.154) (0.298)
Weibull α = 2.2635 θ = 78.2664 - - - 975.2427 1954.485 1954.545

(0.1159) (2.5832)

Figure 6. QQ-plot of the OEPIV distribution and the estimated PDFs of the OEPIV and other
competitive distributions for the skin folds data.

8.3. Stanford Heart Transplant Data

This data was obtained from Kalbfleisch and Prentice [55] and has information on n = 103 patients.
The patient’s survival time was specified as the number of days from the acceptance into a heart
transplant program to death. The following are associated with each patient: yi: log survival time
(days); statusi: censoring indicator (1 = dead, 0 = censoring); xi1: is the age (in years); xi2: is the prior
surgery coded as (0 = No, 1 = Yes); and xi3: is the transplant coded as (0 = No, 1 = Yes). This data set
was used by [38], [35], and [36] for illustrating the log-odd log-logistic Weibull (LOLLW), log-Fréchet
(LF), and log-exponentiated Fréchet (LEF) regression models. The LOEPIV regression model will be
compared with the log-Weibull (LW), LEP, LOLLW, LF, and LEF regression models.

That is, we present the results from fitting the following model

yi = β0 + β1xi1 + β2xi2 + β3xi3 + σzi,
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where yi follows the LOEPIV distribution in Equation (22).
To examine the suitability of the proposed model, a plot of the empirical SF estimates from

the Kaplan–Meier (KM) model and the SF from the fitted OEPIV model are displayed in Figure 7.
Therefore, we concluded that the logarithm of times to event follow the LOEPIV distribution.
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Figure 7. Estimated SF based on the OEPIV distribution and the Kaplan–Meier (KM) model for the
heart transplant data.

8.3.1. ML and Jackknife Estimation

The estimates, their corresponding SE, p-values, AIC, CAIC, and Bayesian Information Criterion
(BIC) statistics for the LOEPIV, LEF, LOLLW, LF, LW and LEP regression models are shown in Table 5.
The results demonstrated that the LOEPIV regression model had the lowest AIC, CAIC, and BIC.
This shows the superiority of the LOEPIV model over other models. The LR test can be used to
discriminate between LOEPIV and LEP regression models since they are nested.That is, the LR statistic
for testing the hypotheses H0 : α = 1 versus H1 : H0 is not true given in Table 6 and rejects the LEP
model in favor of the LOEPIV model.

Table 5. The ML estimates, SE in (), p-values in [], AIC, CAIC, and ayesian Information Criterion
(BIC) statistics of the log odds exponential-Pareto IV (LOEPIV), log-exponentiated Fréchet (LEF),
log-odd log-logistic Weibull (LOLLW), log-Fréchet (LF), log-Weibull (LW), and log exponential-Pareto
(LEP) regression models for the heart transplant data.

Models λ α σ β0 β1 β2 β3 AIC CAIC BIC

1.3754 0.1257 0.5569 3.5186 −0.0539 1.7494 2.5405 343.42 344.61 361.87
LOEPIV (1.9087) (0.0974) (0.1689) (1.0747) (0.0192) (0.5524) (0.3621)

[0.00106] [0.00507] [0.00154] [<0.001]

- 6.2746 3.5882 8.6744 −0.0624 0.8910 2.7241 346.72 347.59 362.53
LEF - (7.5737) (1.4492) (3.5491) (0.0206) (0.5059) (0.3780)

- - - [0.016] [0.002] [0.078] [<0.001]

- 4.62831 6.20325 8.74485 −0.07692 1.40550 2.59196 347.59 348.47 363.40
LOLLW - (3.5307) (4.6851) (1.7603) (0.0199) (0.5745) (0.3884)

- - - [<0.001] [<-0.001] [0.016] [<0.001]

- - 1.7457 4.2129 −0.0431 0.6902 2.6572 349.15 349.77 362.33
LF - - (0.1484) (0.9153) (0.0189) (0.5034) (0.3782)

- - - [<0.001] [0.023] [0.170] [<0.001]

- - 1.4658 7.9742 −0.0924 1.2143 2.5375 353.42 354.03 366.59
LW - - (0.13148) (0.93397) (0.02061) (0.64700) (0.37336)

- - - [<0.001] [<0.001] [0.063] [<0.001]

0.1439 - 1.4655 5.1321 −0.0923 1.214127 2.537713 355.42 356.29 371.22
LEP (1.1088) - (0.1314) (11.3276) (0.0206) (0.6469) (0.3733)

- - - [0.6505] [<0.001] [0.061] [<0.001]
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Table 6. LR statistic for heart transplant.

Heart Transplant Hypotheses Statistic w p-Values

LOEPIV vs. LEP H0 : α = 1 versus H1 : H0 is not true 13.9922 0.00018

Table 7 lists the jackknife parameter estimates of the LOEPIV model, their corresponding
SE and 95% confidence intervals. Based on the results in Tables 5 and 7, we observed that the
explanatory variables x1, x2, and x3 are significant for the fitted model and both methods displayed
similar estimates.

Table 7. The Jackknife parameter estimates of the LOEPIV regression model.

Parameter Estimate SE 95% Confidence Intervals

λ 1.4043 1.5262 (0.0000, 4.3957)
α 0.0838 0.0988 (0.0000, 0.2775)
σ 0.6586 0.1885 (0.2891, 1.0281)
β0 3.8616 1.1072 (1.6915, 6.031)
β1 -0.0536 0.0196 (−0.0921, −0.0152)
β2 1.7304 0.5262 (0.6989, 2.7619)
β3 2.5563 0.3881 (1.7955, 3.3172)

The plots of the SF that corresponded to the explanatory variables for the fitted LOEPIV regression
model are presented in Figure 8. From Figure 8a, we observed that Ŝ(1|age = 8) = 0.96808,
which means that ≈ 97% of the patients who are 8 years old will be thriving when y = 1
(≈3 days). However, for patients between 44 and 64 years old, Ŝ(1|age = 44) = 0.34676 and
Ŝ(1|age = 64) = 0.00064, which indicated that the percentages of living patients at y = 1 decreased
to 34% and 0.06%, respectively. These results indicate decreases in survival of the patients as their
age increased. Similarly, Figure 8b,c indicated that approximately 58% of patients who did not have
surgery or receive a transplant were thriving at y = 3 (≈21 days). Furthermore, for the patients who
undertook surgery, we observed that approximately 98% of them were thriving at y = 3, while patients
that received a transplant, Ŝ(3|transplant = 1) = 0.9943, increased to 99% at y = 3 in the survival
percentage. Therefore, it can be stated that receiving a heart transplant increased the survival time
when undergoing surgery.

Figure 8. Cont.
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Figure 8. Fitted SF from the LOEPIV regression model (a) for x1 = age, (b) for x2 = surgery, (c) for
x3 = transplant.

8.3.2. Global Influence Analysis

The case deletion measures GDi(θ) and LDi(θ) were numerically computed and Figure 9
represents the influence measure index plots. It is clear that case 99 could be an influential observation
in the LOEPIV regression model.

(a)

(b)

Figure 9. The index plot of (a) GDi(θ) and (b) LDi(θ) for the LOEPIV regression model.

8.3.3. Residual Analysis

In order to detect possible outlaying observations, a plot for the rDi versus the observations index
is shown in Figure 10a. This demonstrated that almost all of the observations fall within (−3, 3),
except for observation 8. Therefore, observation 8 was a possible outlier. Figure 10b shows the NPP for
the deviance residuals with a generated envelope. Approximately all of the observations fell inside the
envelope, which indicated that the proposed model was appropriate to fit the heart transplant data.
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(a)

(b)

Figure 10. The index plot of (a) the deviance residual and (b) the NPP for the deviance residual
with envelopes.

9. Concluding Remarks

In this article, we introduced the odd exponential-Pareto IV distribution. We derived some of its
statistical and mathematical properties. The model parameters were estimated using the ML method,
and simulation studies were carried out to examine the performance of the ML estimators based on
biases and mean squared errors. Moreover, a new log-location regression model for censored data
based on the OEPIV distribution was introduced. The ML and jackknife estimation methods for right
censored data were used to estimate the unknown parameters of the new regression model. The model
assumptions were checked using martingale and deviance residuals. Furthermore, generalized Cook
and likelihood distance measures were defined to detect the influence observations for the regression
model. Finally, we analyzed three real data sets to examine the usefulness of the OEPIV distribution
and LOEPIV regression model. The results demonstrated that the OEPIV distribution outperformed
other competitive distributions in terms of goodness of fit. In addition, the LOEPIV regression model
provides a good fit for the Stanford heart transplant data.
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