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Abstract: Over the past few decades, the photoacoustic (PA) effect has been widely investigated,
opening up diverse applications, such as photoacoustic spectroscopy, estimation of chemical energies,
or point-of-care detection. Notably, photoacoustic imaging (PAI) has also been developed and has
recently received considerable attention in bio-related or clinical imaging fields, as it now facilitates an
imaging platform in the near-infrared (NIR) region by taking advantage of the significant advancement
of exogenous imaging agents. The NIR PAI platform now paves the way for high-resolution,
deep-tissue imaging, which is imperative for contemporary theragnosis, a combination of precise
diagnosis and well-timed therapy. This review reports the recent progress on NIR PAI modality,
as well as semiconducting contrast agents, and outlines the trend in current NIR imaging and provides
further direction for the prospective development of PAI systems.
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1. Introduction

Optical imaging modalities such as fluorescence imaging (FLI), multi-photon microscopy
(MPM), optical coherence tomography (OCT), and diffuse optical imaging (DOI) are widely utilized
in preclinical and clinical imaging field. These modalities have capabilities to provide real-time
anatomical and functional images with superior resolution. In addition, by providing spectroscopic
information, it is possible to obtain information of the constituent materials in/ex vivo. Additionally,
they are nonionizing imaging methods and relatively cost-effective to fabricate and maintain its
performance [1–4]. Unfortunately, the penetrating depth of optical imaging cannot reach to over ~1 mm
in biological tissue because of the scattering and absorption of light in tissue. In general, microscopic
techniques show only by ~500 µm [5]. In particular, OCT based on interferometric devices enables to
image a little bit deeper depth by ~2 mm in skin, retina, and cornea regions [6,7]. DOI overcomes this
limitation of imaging depth using the diffused light property and achieves the several centimeters
of imaging depth in breast and brain regions. However, DOI should scarify their spatial resolution
because they have to experience the multiple light scattering and absorption in tissue medium [8,9].
Thus, because pure optical imaging techniques has a tradeoff between the penetrating depth and
the spatial resolution, there is a need to developing new imaging techniques by fusing different
characterized imaging modalities.
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Photoacoustic imaging (PAI) is currently considered a promising hybrid imaging modality that
features integrated-imaging properties for both optical and ultrasound imaging techniques; it is already
utilized in a diverse range of preclinical and clinical fields. Based on dual-imaging characteristics,
PAI is capable of representing deep regions while maintaining high ultrasonic resolution. Figure 1
describes the principle of PAI. When a nanosecond-pulsed laser is illuminated into a sample with
absorbing chromophores, they absorb the light energy and generate heat. The increase in temperature
due to heat causes thermal elastic expansion, thereby leading to the generation of acoustic waves in
the tissue; this effect is known as the photoacoustic (PA) effect. By sensing these propagating acoustic
waves with conventional ultrasonic transducers, PAI allows the mapping of the location of the absorber
in the biological tissue [10–17]. Because the scattering and the speed of ultrasound are less than those
of light, PAI allows deep-tissue imaging.
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Figure 1. Schematic description of the generation of a photoacoustic signal.

The ability of PAI to discern the morphological (i.e., vasculature networks, distributions of fat
and melanin, tendon conditions, cellular structure, etc.) and physiological factors (i.e., concentrations
of hemoglobin, saturated oxygen levels, blood velocity, metabolism ratios, etc.) of biological tissues
is excellent while choosing the optimal laser wavelength of natural chromophores such as oxy- and
deoxy-hemoglobin, fat, collagen, protein, melanin, and water [10,11,18–22]. In addition, by injecting
exogenous contrast agents into the body, colorless main organs, such as the sentinel lymph nodes (SLNs),
guts, and bladder, which have relatively poor absorption coefficients, can be targeted and visualized
based on the molecular PAI approach [23–27]. Furthermore, by cooperating with multifunctional
agents for therapy and diagnosis, PAI can contribute to precision medicine [28–31]. Owing to these
advantages, PAI can play a vital role in advancing fundamental research and solving real clinical
issues [32–35].

Even if the natural absorbing biomolecules of the biological tissue offer a diverse contrast to
PAI, the absorption peaks normally position in the visible spectrum (i.e., 400–650 nm). Visible light is
incapable of penetrating into the deep-lying areas because it undergoes a high level of scattering and
absorption [36,37]. In short, the natural absorbing biomolecules for the multiple contrast of PAI only
allow for the visualization of areas at a limited depth. To resolve this issue, near-infrared (NIR) light
can be used as the PAI laser source, and exogenous contrast agents with strong absorption spectra in
the NIR region are proposed as solutions to achieve deep-tissue imaging [38,39].

In regard to the exogenous contrast agents, many contrast agents have been developed thus far for
PAI in biomedical or clinical applications; however, only those demonstrating a strong absorption in
the NIR region can be used in imaging in the NIR window. Recently, as the significance of NIR PAI has
attracted ever-increasing attention, semiconducting polymers that show a narrow band gap resulted
from extended π-conjugation have been extensively researched due to their broadband absorption
as a main platform for imaging contrast agents. During preparation, the polymers are normally
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encapsulated within biocompatible polymer shells, which forms core–shell-type, semiconducting
polymer nanoparticles (SPNs) that are stable under aqueous conditions in addition to being not cytotoxic.

Therefore, in this review, we introduce the recent progress on the development of PAI modality
and contrast polymeric agents for the NIR imaging, which can help readers to grasp the recent trend
and will be a guideline to the future development of new imaging applications.

2. Interaction of Near-Infrared Light with the Biological Tissue

When light propagates into biological tissue, several events occur between light and tissue such
as reflection, absorption, auto-florescence, and scattering [40], as shown in Figure 2. In particular,
scattering and absorption are a critical factor to determine the imaging depth of PAI. Typically,
if an illumined laser beam can penetrate without any energy loss due to scattering or absorption,
then deep PAI imaging can be obtained easily. However, the absorption coefficients of whole blood are
predominantly positioned between 200 and 600 nm, whereas lipids have some peaks near 980 nm.
These absorption peaks are beneficial for specific imaging of blood vessels and plaques but hinder
deep-tissue imaging. However, these absorption coefficients rapidly decrease and mostly disappear
over the NIR region (i.e., 700–1600 nm). Many PAI studies based on deep-tissue imaging have been
conducted using contrast agents such as organic materials (e.g., ICG or methylene blue) and inorganic
materials (e.g., carbon-based nanoparticles) in the NIR-I window (i.e., 700–1000 nm) due to the relatively
low absorption by whole blood [24,28,41–43]. However, the NIR-I window is not an optimal spectrum
for deep-tissue PAI because of its scattering factor [40]. Although most human tissues have scattering
coefficients that exponentially decrease beyond 700 nm, they still show a low level of scattering beyond
1000 nm. Additionally, when considering the NIR-II window (i.e., 1000–1600 nm), water has significant
absorption above 1400 nm; the absorption coefficient of water increases continuously from 500 nm
and becomes larger than that of biological tissues above 1200 nm [44]. Thus, considering biological
absorption or scattering as well as water absorption, it is ideal to position the deep-imaging window in
the range of 1000–1200 nm.
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3. Photoacoustic Imaging Systems with Near-Infrared Light

Depending on the field of application, various types of PAI systems can be applied. In terms
of spatial resolution and imaging depth, they can be classified as either photoacoustic microscopy
(PAM) [45] or photoacoustic tomography (PAT) [46]. Typically, PAM can delineate micro-sized
samples such as cells and blood microvessels with various micro-spatial resolutions and high
sensitivity. According to the strategy of achieving high spatial resolution, PAM is also divided
into (i) optical-resolution PAM (OR-PAM) that provides a high spatial resolution using optical
techniques such as a tiny focused beam [47] and (ii) acoustic-resolution PAM (AR-PAM) that realizes
high ultrasonic resolution by using a focused ultrasound-capturing configuration [48]. Although the
imaging depth demonstrated by PAM with the aid of low-scattering ultrasound detection is better than
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that demonstrated by conventional microscopic imaging modalities, PAM only visualizes the regions
at relatively shallow depths. Therefore, it is not appropriate for deep-tissue, clinical implementation.
PAT can reveal deeper regions owing to its systemic advantages with a low-frequency transducer,
reconstruction algorithms, and a clinically used ultrasound imaging (USI) system [49]. Although it
cannot discern micro-sized objects, it is an emerging imaging tool in the clinical field. PAT is divided
into (i) photoacoustic computer tomography (PACT) [50] and (ii) clinical USI/PAI [17] based on the
system specifications. In general, PACT utilizes a multi-array transducer in the form of a ring, a sphere,
or an arch to quickly acquire multi-directional acoustic signals and uses reconstruction algorithms
to generate the volumetric image. Clinical USI/PAI can systemically utilize the conventional USI
system. By attaching a laser-beam-delivery, fiber-optic bundle to a USI probe, structural USI and
functional PA images can be simultaneously acquired and facilely applied to clinical applications.
In Section 3.1, we introduce the representative development of PAM systems with NIR light. Using NIR
light, PAM imaging of relatively deep regions was achieved with a high spatial resolution. In Section 3.2,
three different PAT systems using NIR light are summarized with system schematics and representative
images. Table 1 shows representative PAI systems with NIR light. PAI systems are classified on the basis
of system type, wavelength used, imaging depth, spatial resolution, detector type, and application.

Table 1. Representative photoacoustic imaging (PAI) systems used in near-infrared (NIR) regions.

PAI System
Type

Wavelength
(nm)

Imaging
Depth

Spatial
Resolution

Detector Type
(Center Frequency) Application Ref.

OR-PAM

800, 1064
(NIR-I, II) >300 µm 9.4 µm Single unfocused

TR (30, 35 MHz) Mouse retina [51]
[52]

1046 (NIR-II) >3.2 mm 2.9 µm Single focused
TR (50 MHz) Mouse brain & ear [53]

1064 (NIR-II) >700 µm 15 µm Single focused
TR (40 MHz) Melanoma cell [19]

AR-PAM

778 (NIR-I) >30 mm 560 µm Single focused
TR (5 MHz) Rat spleen [54]

850 and 1064
(NIR-I and II) >10.3 mm 590 µm Single focused

TR (5 MHz)
Mouse whole

body [55]

1064 (NIR-II) >11 mm 130 µm Single focused
TR (30 MHz)

Rat lymph nodes
& bladder [56]

PACT

730, 760, 800,
850, 900 (NIR-I) >30 mm 200 µm 256-Spherical array

TR (4 MHz)
Mouse whole

body [57]

776, 796, 820
(NIR-I) >19 mm 250 µm 512-Ring array

TR (5 MHz)
Mouse whole

body
[58]
[59]

1064 (NIR-II) >40 mm 255 µm 512-Ring array
TR (2.25 MHz) Human breast [60]

Clinical
USI/PAI

670, 700, 800
(NIR-I) >30 mm 300 µm 128-Linear array

TR (8.5 MHz) SLN detection [61]

1064 (NIR-II) >50 mm — 128-Linear array
TR (5 MHz) Human arm [62]

3.1. High-Resolution Photoacoustic Microscopy with Near-Infrared Light

Figure 3a depicts the schematic of NIR OR-PAM [63]. The performance of OR-PAM is predominantly
dependent on the specifications of the optical setup, such as an objective lens. In particular, by removing
the spatial noise of the laser beam using a pinhole (PH), a high-quality beam is generated. After passing
through an objective lens (OL), the beam is focused onto the sample. Through the generation of PA
signals from a tiny focused beam area, a micro-scale resolution can be achieved. Also, the focused
ultrasonic detection part contributes the high sensitivity. To compare the imaging depth performance
between visible light and NIR light, 570 nm and 1046 nm laser systems were set up and tested by
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imaging the same mouse brain area. Under NIR light excitation, the maximum imaging depth increased
by 3.2 mm while maintaining a 6 dB SNR. Additionally, OR-PAM at 1046 nm (Figure 3c) showed more
clear brain blood vessels than OR-PAM at 570 nm (Figure 3b). Unlike OR-PAM, AR-PAM generates a
high resolution using focused ultrasound detection. Figure 3d depicts the schematic of NIR-AR-PAM.
A 1064-nm laser was focused onto a conical lens (CL) and refocused by a condenser [56]. The focused
transducer was installed in the condenser, so that it can directly capture the PA signals with high
spatial resolution. By using a black tape in chicken breast tissue, almost 11 mm imaging depth was
demonstrated. Based on the same NIR-AR-PAM configuration, an invisible sentinel lymph nodes
(SLNs) was visualized with a black ink injection, as shown in Figure 3e,f. Figure 3g presents the
system setup of NIR light optical-resolution photoacoustic ophthalmoscopy (OR-PAO) that utilizes a
focused laser beam and unfocused ultrasound detection. Thus, even though PAO is considered a form
of OR-PAM, it has the drawback of lower sensitivity caused by the unfocused ultrasonic transducer
(UT) [52]. To achieve dual-wavelength beam scanning, a dichroic mirror (DM1 ,2) integrated the 532-nm
visible and 1064-nm NIR laser. Fast volumetric scanning with two-dimensional optical scanners (GM)
was carried out with the collimated beam to visualize the mouse retinal area. Finally, the unfocused
needle-type UT (central frequency 35 MHz) detected PA signals. Figure 3h,i show the 532-nm and
1064-nm OR-PAO images, respectively. Due to strong absorption of hemoglobin at 532 nm, shadows of
blood vessels on the retinal layers in the white dashed box disturbed the visualization of inner retinal
blood vessels. Fortunately, because of the lower absorption and scattering of the 1064-nm laser beam
in hemoglobin, the NIR light OR-PAO is sufficient to show inner blood vessels clearly. Therefore,
utilization of NIR light in PAM imaging contributes to improving the depth and resolution of PAM.
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Figure 3. Photoacoustic microscopy (PAM) with NIR light. (a) Schematic of NIR optical-resolution
photoacoustic microscopy (NIR-OR-PAM). (b,c) OR-PAM images of a mouse brain of VIS-OR-PAM
and NIR-OR-PAM, respectively. (d) Schematic of NIR acoustic-resolution photoacoustic microscopy
(NIR-AR-PAM). (e,f) Photography and AR-PAM image of sentinel lymph nodes (SLNs) with a black
ink, respectively. (g) Schematic of NIR optical resolution-photoacoustic ophthalmoscopy (OR-PAO).
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(h,i) NIR-OR-PAO images of a mouse retinal blood vessels at 532 nm and 1064 nm, respectively.
Reprinted with permission from [52,53,56]. Copyright, The Optical Society America (2014) [53] and
(2012) [52], and John Willey and Sons (2019) [56].

3.2. Deep-Tissue Photoacoustic Tomography with Near-Infrared Light

Figure 4 illustrates spiral volumetric photoacoustic computed tomography (SV-PACT or SV-OT)
for visualizing volumetric dynamics in mice in real time [57]. Figure 4a depicts the diagram of the
spiral volumetric PACT system. To generate PA signals, the optical parametric oscillator (OPO) with
a 10 ns pulsed width, 30 mJ energy, and 100 Hz repetition rate was used. To image the dynamics of
blood vessels, the selected laser wavelengths of 730, 760, 800, 850, and 900 nm were excited on the
target. A spherical matrix transducer composed of 256 elements (4 MHz, 40 mm radios) was utilized
to capture the PA signals at multiple locations. Owing to its three systemic advantages such as the
NIR laser source, the multi-arrayed ring transducer, and fast spiral trajectory scanning, SV-PACT
can achieve whole-body small-animal PA images without any invisible regions at 100 volumes per
second. Finally, using a universal back-projection algorithm, a whole-body mouse SV-PACT image
was acquired, as depicted in Figure 4b. Figure 4c indicates the schematic of a ring-shaped confocal
PACT (RC-PACT) system. This system was tested to acquire volumetric PA images of a mouse tumor
glucose metabolism [58,59]. A tunable laser based on Ti-sapphire from 680 to 990 nm was also used in
this system to achieve deeper penetration. Subsequently, it was diffused by ground glass (EDC5, RPC
Photonics) and a donut-shaped beam was generated by a conical lens. This system utilized reliable
energy (below 15 mJ/cm2) and a relatively low-frequency full ring-shaped transducer (5 MHz) for
whole-body mouse imaging. The ring-shaped transducer array composed of 512 elements had a 50 mm
ring radius. Each element was designed to generate 19 mm axial focal depth. As depicted in Figure 4d–g,
RC-PACT was used to evaluate the glucose metabolism of the tumor. First, the anatomical image
was acquired using a 776-nm laser, which showed tumors, a healthy kidney, and a liver (Figure 4d).
Second, by applying three wavelengths (i.e., 776, 796, and 820 nm), hemoglobin (HbT) concentration
was acquired (Figure 4e). Finally, by injecting IRDye800-2DG, the tumor glucose metabolism was
successfully mapped (Figure 4f), and in addition, a tumor with IRDye800-2DG was observed with
fluorescence imaging as shown in Figure 4g. Figure 4h depicts the deep PA imaging application using
the clinical PAI/USI system at 1064 nm [62]. This approach was developed based on the clinical USI
system. By combining the optical fiber bundle for 1064-nm laser delivery and the USI imaging probe,
the PAI and USI images can be visualized simultaneously. Therefore, this method is more powerful
for application in the real clinical field and has already been utilized in several clinical diagnostic
applications, such as for thyroid cancer, sentinel lymph node detection, breast cancer, and diabetic
foot [63]. To improve the deep penetrating capability, phosphorus phthalocyanine (P-Pc) formulation,
which has a high absorption peak at 1064 nm, was used in the tumor (Figure 4i) and the human
arm (Figure 4j). As shown in Figure 4i, P-Pc formulation shows an excellent PA signal at the inner
tumor area. The 1064-nm PAI/USI system detected deep PAI images with the tube containing P-Pc
formulation from the opposite site of the human arm. As depicted in Figure 4j, this system was able to
detect the tube up to 5.0 cm.
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tomography (SV-PACT). (b) 3D whole body mouse SV-PACT image with high spatial resolution.
(c) Schematic of ring-shaped confocal PACT (RC-PACT). (d) Anatomical RC-PACT image of mouse at
776 nm. (e) RC-PACT image of hemoglobin (HbT) concentration. (f) PACT image and (g) Florescence
image of IRDye800-2DG concertation in tumor. (h–j) Deep PAI and USI images of the tumor and human
arm with phosphorous phthalocyanine (P-Pc) formulation, respectively. Reprinted with permission
from [57,58,62]. Copyright, SPIE (2012) [58], Ivyspring (2016) [62], and Nature Publishing Groups
(2017) [57].

4. Organic Semiconducting Materials for Near-Infrared Imaging

4.1. General Design Strategy for the Contrast Agent

Most contrast agents have been designed to form a core–shell-type structure where polymers
play crucial roles, as depicted in Figure 5. In general, the core part consists of organic semiconducting
materials that generate a photoacoustic signal in response to an NIR light while polymers at the shell are
required to be hydrophilic and biocompatible. The size of resulting core–shell particle typically ranges
from nanometers to a few microns. Thus, the particles can be appropriately applied in bio-imaging,
resulting in a stark contrast in the photoacoustic signal as an imaging agent when irradiated by NIR
light [44,64–66].

We discuss and summarize the core materials in the sections below. In brief, the materials mainly
include abundant π-conjugated polymers together with small molecules or other inorganic materials
such as carbon materials or metal complexes, which are further classified by an NIR light source that
they absorb for the generation of photoacoustic signals. Majority of the imaging agents that have
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been extensively studied thus far only absorb the light in the NIR-I region (wavelength, 700–1000 nm).
However, to increase the penetration depth and reduce the background signals, many recent studies
have focused on the use of light sources in the NIR-II region (wavelength, 1000–1600 nm), demonstrating
enhanced imaging performance—for example, deep-tissue imaging or high-resolution imaging [67,68].
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Figure 5. Illustration of general design concept for a core–shell-type, polymeric contrast agent for NIR
photoacoustic imaging.

For the shell materials, diverse biocompatible polymers can be used including conventional
hydrophilic components, such as polyethylene glycol (PEG), poly(acrylic acid) (PAA), poly(lactic acid)
(PLA), polypropylene glycol (PPG), and phospholipids, as illustrated in Figure 6a, which can result
in various further combinations, leading to copolymer structures—for example, block copolymers or
branched polymers, as depicted in Figure 6b–f. Recently, the polymeric agents have further advanced
to demonstrate not only the in situ optical detection capability, but also therapeutic functions, leading to
multi-functional agents that give rise to theragnosis—an emerging combined concept of simultaneous
diagnosis and therapeutics [23,69–73].
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4.2. NIR-I Imaging Contrast Agents

4.2.1. Semiconducting Polymers

Semiconducting polymers have been extensively used as a photoactive core material, because
their optoelectric properties as well as surface properties can be widely tailored for desired applications.
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In particular, modification of chemical structures in the polymer backbones causes significant change
in the band gap of polymers, which results in narrow-band-gap polymers that absorb light in the NIR
region. As the effective conjugation length increases, the absorbance in the NIR region is intensified.
Furthermore, biocompatible polymer components can be used to encapsulate the core polymers, or they
can be directly tethered onto the backbone of polymers as a pendant group, which reduces cytotoxicity
and improves solubility or dispersibility under biological conditions.

Pu et al. notably demonstrated semiconducting contrast agents for NIR-I imaging, considering the
fundamental concept of π-conjugated system (Figure 7a,b) [74]. The designed agent particles comprise
core semiconducting polymers (SP1 and SP2), and block copolymer shells via nanoprecipitation
(Figure 7c). The spherical particles exhibited a uniform morphology, and the diameters of the agents
measured an average of 25 nm (Figure 7d,e). The resulting agents absorbed NIR light at 780 nm and
exhibited good water dispersibility (Figure 7f). Furthermore, the authors used the agent not only for
optical imaging but also for photothermal therapy. After introducing a targeting moiety (anti-TRPV1,
TRPV1: transient receptor potential cation channel subfamily V member 1) on the surface of the
particles through amide bond formation, they were able to demonstrate the spatiotemporal, selective
control of Ca2+ flux in a cation channel of TRPV1 as converting light energy into heat on the local
designated area of TRPV1.
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absorption spectrum of the entire backbone. Therefore, when excited at 808 nm, this nanoplatform 
facilitated photoacoustic imaging (PA) and photothermal therapy (PTT) for cancer theragnostics in 
a manner superior to that by conventional PA/PTT agents, such as ICG (indocyanine green) [75].  

Size of the photoactive core affects the absorbance of contrast agents. Wu et al. found that the 
core size of a particle that was comprised of a semiconducting polymer (Figure 8b) notably altered 
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π-conjugated backbone that adjusted the effective conjugation length [76]. In general, an increase in 
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Figure 7. Synthesis and characterization of semiconducting polymer nanoparticles (SPNs). (a) Synthetic
route of SP2 via Stille polymerization under the reaction conditions (i) PdCl2(PPh3)2 and
2,6-di-tert-butylphenol, 100 ◦C for 12 h. (b) Chemical structures of SP1. (c) Schematic illustration of
synthesis of SPNs. (d) Representative TEM image of SPNs: SPN2. (e) Representative dynamic light
scattering (DLS) profiles of SPNs. (f) Photos of SPN solutions (18 µg·mL−1). Reprinted with permission
from [74]. Copyright, American Chemical Society (2016).

Other semiconducting polymers that are characterized by dual photophysical properties have
also been reported. Liu et al. demonstrated agent nanoparticles based on a conductive polymer,
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as depicted in Figure 8a. In the polymer backbone, strong intermolecular charge transfer between an
electron-rich donor and an electron-deficient acceptor occurred, which significantly red-shifted the
absorption spectrum of the entire backbone. Therefore, when excited at 808 nm, this nanoplatform
facilitated photoacoustic imaging (PA) and photothermal therapy (PTT) for cancer theragnostics in a
manner superior to that by conventional PA/PTT agents, such as ICG (indocyanine green) [75].

Size of the photoactive core affects the absorbance of contrast agents. Wu et al. found that the
core size of a particle that was comprised of a semiconducting polymer (Figure 8b) notably altered its
absorption spectrum as well as its molecular weight, because of bending or kinking of the π-conjugated
backbone that adjusted the effective conjugation length [76]. In general, an increase in the core size or
molecular weight of the polymer was found to red-shift the absorption spectrum of the whole particle.
Thus, they could fine-tune the absorption maxima of the core dots from 630 to 811 nm through facile
manipulation. Furthermore, after encapsulating the core with a PEG-based amphiphilic polymer,
they could use the resulting material in PA/PTT application for in vivo cancer treatment.

Figure 8c depicts a semiconducting polymer grafted with PEG chains, which results in an
amphiphilic copolymer and formed single-component nanoparticles via a self-assembly process under
physiological conditions without the need for an auxiliary polymer component [77]. The backbone
of the polymer has π-conjugated system and shows hydrophobicity as well. Thus, it can absorb NIR
light and produce a photoacoustic signal (PA) as well as heat (PTT) as expected; hydrophobic drugs
(doxorubicin) can be loaded in the core owing to the hydrophobic interaction and π–π interaction,
which enable the in situ chemotherapy of cancer in living mice.
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Removal of exogenous agents is mandatory after the end of life. Hence, the contrast agents need to
have relevant retention time without bioaccumulation or degradation in a biological system. Figure 9
illustrates a demonstration of a biodegradable contrast agent (SPNV). Many degradable units, such as
esters or amides, prevent the overlap of p orbitals and frustrate the delocalization of electrons. However,
the incorporation of vinylene units in the backbone of polymer prolonged the electronic conjugation
and even enhanced the absorption coefficient. Furthermore, the functional group degraded into
monomeric aldehyde compounds in response to hypochlorous acid (HClO), a strong oxidant generated
by myeloperoxidase (MPO) and hydrogen peroxide (Figure 9a,b). The agent without vinylene units
(SPNT) was non-responsive and stable under the oxidation conditions (Figure 9c). Biodegradability
of SPNVs was further demonstrated in macrophage cells (RAW264.7) that can activate MPO when
triggered by lipopolysaccharides (LPS). The considerable amounts of SPNV were removed as designed
(Figure 9d) [78].

For facile preparation, polypyrrole can be used to design the photoacoustic contrast agent [79,80].
Recently, Liu et al. developed agent capsules using polypyrrole particles that were coated with
polydopamine (PDA) and PEG for biocompatibility. Furthermore, the agent was loaded with
indocyanine green (ICG), which increased the efficiency of the material. Therefore, PEGylated,
ICG-loaded polypyrrole nanoparticles (PPI NPs) demonstrated enhanced photoacoustic and
photothermal abilities (Figure 10) [81].
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Figure 9. In vitro biodegradability study of semiconducting polymer nanoparticles (SPNs).
(a) Schematic illustration of the degradation of SPNV (SPN with vinylene groups) in the presence of
myeloperoxidase (MPO) and H2O2. (b) Absorption spectra of SPNV in the presence of H2O2 (300 µM)
and MPO (50 µg mL−1) at 37 ◦C for 0, 24, and 48 h in phosphate buffer (50 mM, pH = 7.0) containing
NaCl (150 mM). (c) Absorption decrease (Abs/Abs0) of SPNV at 819 nm and SPNT (SPN without
vinylene groups) at 828 nm in the absence or presence of MPO (50 µg mL−1) and H2O2 (300 µM) as
a function of incubation time. [SPNs] = 3 µg mL−1. (d) Absorption intensity of SPNV at 819 nm
after incubation with RAW264.7 cells (276,000 cells mL−1) treated with or without lipopolysaccharides
(LPS). Error bars were based on the standard deviations (SD) of three parallel samples. * Statistically
significant difference in cells treated with and without LPS (p < 0.005, n = 3). Reprinted with permission
from [78]. Copyright, American Chemical Society (2018).
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4.2.2. Semiconducting Small Molecules

Semiconducting small molecules have also been used for the fabrication of NIR-I contrast
agents. In general, they are chemically defined and have shorter conjugation lengths than those in
semiconducting polymers. However, they demonstrate a strong push–pull effect, which promotes the
overlap of p orbitals and causes effective conjugation. Figure 11 illustrates example chemical structures
of the small molecules. Nie et al. reported that 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic
acid) (ABTS) exhibited strong absorbance in the NIR region when oxidized (Figure 11a) [82]. Thus,
they prepared an exosome-like vesicle that contains ABTS and graphene quantum dot nanozyme
(GQDzyme) and exhibits a peroxidase-like activity. In the presence of hydrogen peroxide, the GQDzyme
converted ABTS to the oxidized form, activating the photoacoustic ability. The H2O2-sensitive agent
was further functionalized with folic acid (FA) and natural erythrocyte membranes (RM) to mimic
biological exosomes. Therefore, the vesicle agent demonstrated biocompatibility and stealth ability
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during long-term circulation, and enabled deep-tissue imaging in response to H2O2 produced from
nasopharyngeal carcinoma (NPC) cells.

Figure 11b illustrates a dual-mode probe that emits not only fluorescence but also a photoacoustic
signal [83]. Furthermore, the probe (EP-R) was found to have two absorption peaks at 700 and 800 nm,
and the resulting photophysical properties of the probe were strongly dependent on the polarity of
the medium. Therefore, authors could use the probe for ratiometric sensing of diabetes-induced liver
injury, in which the ratio between hydrophobic and hydrophilic domains in the endoplasmic reticulum
(ER) changes and cellular polarity increases.

Small molecules can form nanoparticles through a self-assembly process. For example, a croconine
(Croc) dye formed a self-assembled complex with human serum albumin (HSA) without the need for
exogenous biocompatible components (Figure 11c) [84]. The resulting HAS–Croc particle demonstrated
pH-responsive photoacoustic imaging and photothermal therapy, because Croc has interchangeable
forms dependent on pH. As an anionic basic form in high pH, Croc exhibited a strong absorption at
680 nm; however, in the zwitterionic acidic form in low pH, strong absorption was observed at 810 nm.
Thus, they could monitor relatively large tumors in detail and ablate them effectively. Figure 11d,e
depict the π-conjugated dyes based on a phenazine–cyanine structure, where the phenazine moieties
donate electrons, while the indole moieties withdraw electrons. Owing to the push–pull effect,
the dyes have a narrow band gap and absorb NIR light, which facilitates photoacoustic imaging-guided
photodynamic therapy. The dyes aggregated with human serum albumin (HAS), which enabled the
formation of nanoparticles that have appropriate sizes to be easily accumulated in tumors in mice by
enhanced permeability and retention (EPR) and treat cancer tissues effectively [85].
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Recently, Chen et al. demonstrated theragnostic platforms (THPDINs) that are comprised of
a pH-sensitive perylene diimide derivative (HPDI). The molecule further self-assembled with IR
light-absorbing dye (IR825) and anti-cancer doxorubicin (DOX) to form particles. Upon the change in
pH, the particles could be dissembled under mild acidic conditions while the absorption spectrum
of HPDI changed, which accompanied the triggered release of DOX and also enabled ratiometric
photoacoustic imaging due to the deliberate inclusion of IR825 (Figure 12) [86]. The authors found
that the theragnostic system was in vitro or in vivo effective to U87MG glioma cell line and U87MG
tumor model.



Polymers 2019, 11, 1693 13 of 26

Polymers 2019, 11, x FOR PEER REVIEW  12 of 27 

 

exhibited a strong absorption at 680 nm; however, in the zwitterionic acidic form in low pH, strong 
absorption was observed at 810 nm. Thus, they could monitor relatively large tumors in detail and 
ablate them effectively. Figures 11d and 11e depict the π-conjugated dyes based on a phenazine–
cyanine structure, where the phenazine moieties donate electrons, while the indole moieties 
withdraw electrons. Owing to the push–pull effect, the dyes have a narrow band gap and absorb 
NIR light, which facilitates photoacoustic imaging-guided photodynamic therapy. The dyes 
aggregated with human serum albumin (HAS), which enabled the formation of nanoparticles that 
have appropriate sizes to be easily accumulated in tumors in mice by enhanced permeability and 
retention (EPR) and treat cancer tissues effectively [85]. 

 
Figure 11. Chemical structures of small-molecule agents for NIR-I photoacoustic imaging. 

 
Figure 12. Characterization of the theragnostic platform (THPDINs). (a) Schematic illustration of the 
sensing and drug-releasing mechanism of THPDIN. The THPDIN is self-assembled with a 
pH-sensitive protonated PDI (HPDI, green), a pH-inert IR825 (gold), and an anticancer drug of DOX 
(blue). At low pH, the HPDI will be protonated (pink), inducing a loosened nanostructure that 
could trigger the release of the encapsulated DOX accompanied by PA signals vanishing at 680 nm. 
Meanwhile, the chemical structure of IR825 and its characteristic PA signal at 825 nm retain the 

Figure 12. Characterization of the theragnostic platform (THPDINs). (a) Schematic illustration of the
sensing and drug-releasing mechanism of THPDIN. The THPDIN is self-assembled with a pH-sensitive
protonated PDI (HPDI, green), a pH-inert IR825 (gold), and an anticancer drug of DOX (blue). At low
pH, the HPDI will be protonated (pink), inducing a loosened nanostructure that could trigger the release
of the encapsulated DOX accompanied by PA signals vanishing at 680 nm. Meanwhile, the chemical
structure of IR825 and its characteristic PA signal at 825 nm retain the same. Therefore, the DOX release
process could be monitored by ratiometric PA imaging at PA825/PA680. (b) TEM images and (c) DLS
data indicate diameters of the THPDINs in buffer solutions with different pH values. Reprinted with
permission from [86]. Copyright, Ivyspring International Publisher (2019).

Liang et al. recently demonstrated the rational design of a functional PA probe that is responsive
to alkaline phosphatase (ALP). The probe 1P has an NIR-absorbing moiety (IR775) and a phosphate
group. When exposed to the enzyme, dephosphorylation sensitively occurred, which triggered the
rapid self-assembly of resultant molecule 1 due to the hydrophobic effect. Then, the assembled particle
was able to demonstrate an enhanced PA signal. Given that certain tumors, such as SK-OV-3 and
ATDC5, secrete at low levels, this approach would provide precise diagnoses to discern the types of
cancers (Figure 13) [87].
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4.2.3. Other Semiconducting Materials

Carbon materials can be used for photoacoustic imaging as well as photothermal conversion.
As depicted in Figure 14 [88], Qu et al. investigated supra-carbon nanodots (supra-CNDs) that are
formed by the self-assembly of surface charge-confined CNDs by electrostatic force or hydrogen bonding.
The materials exhibited well-developed absorption in the NIR region, and could be accumulated in
tumor tissues in mice when measured by in vivo PA imaging after intravenous injection. Furthermore,
the following photothermal therapy efficiently inhibited tumor growth, which has paved the way for
biomedical PA application of carbon-based materials.

Polymers 2019, 11, x FOR PEER REVIEW  14 of 27 

 

 
Figure 14. (a) High-resolution transmission electron microscopy (HR-TEM) image of supra-carbon 
nanodots (CNDs). (b) Absorption spectra of supra-CNDs in aqueous solution. (c) Temperature 
evolution of various concentrations of supra-CND solutions under 655 nm laser irradiation at a 
power density of 1 W cm−2. (d) Temperature evolution of supra-CND solutions (0.5 mg mL−1) at 
various power densities. Reprinted with permission from [88]. Copyright, John Wiley and Sons 
(2019). 

4.3. NIR-II Imaging Contrast Agents 

4.3.1. Semiconducting Polymers 

Very recently, photoacoustic imaging using NIR light in the second window (NIR-II, 1000–
1700 nm) has attracted considerable attention, as NIR-II has distinct advantages, such as deeper 
penetration depth, higher sensitivity, and better resolution in comparison with NIR-I imaging, 
enabling in vivo deep-tissue imaging [89,90]. In the past, the shortage of contrast agents restricted 
the use of NIR-II imaging; however, now NIR-II fluorophore materials have been developed [91]. 
Figure 15 depicts the preparation of nanoparticles based on a low-band-gap polymer. The polymer 
was encapsulated with a biocompatible shell polymer, DSPE-PEG2000-MAL, which consists of an 
aliphatic stearyl chain, a PEG chain, and maleimide to form nanoparticles (Figure 15b), and the 
resulting particles exhibited a strong absorption in the NIR-II region as intended (Figure 15c). After 
facile nanoprecipitation, the resulting particles were then tethered with oligopeptides (c-RGD-SH) 
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Figure 14. (a) High-resolution transmission electron microscopy (HR-TEM) image of supra-carbon
nanodots (CNDs). (b) Absorption spectra of supra-CNDs in aqueous solution. (c) Temperature evolution
of various concentrations of supra-CND solutions under 655 nm laser irradiation at a power density
of 1 W cm−2. (d) Temperature evolution of supra-CND solutions (0.5 mg mL−1) at various power
densities. Reprinted with permission from [88]. Copyright, John Wiley and Sons (2019).

4.3. NIR-II Imaging Contrast Agents

4.3.1. Semiconducting Polymers

Very recently, photoacoustic imaging using NIR light in the second window (NIR-II, 1000–1700 nm)
has attracted considerable attention, as NIR-II has distinct advantages, such as deeper penetration
depth, higher sensitivity, and better resolution in comparison with NIR-I imaging, enabling in vivo
deep-tissue imaging [89,90]. In the past, the shortage of contrast agents restricted the use of NIR-II
imaging; however, now NIR-II fluorophore materials have been developed [91]. Figure 15 depicts
the preparation of nanoparticles based on a low-band-gap polymer. The polymer was encapsulated
with a biocompatible shell polymer, DSPE-PEG2000-MAL, which consists of an aliphatic stearyl chain,
a PEG chain, and maleimide to form nanoparticles (Figure 15b), and the resulting particles exhibited
a strong absorption in the NIR-II region as intended (Figure 15c). After facile nanoprecipitation,
the resulting particles were then tethered with oligopeptides (c-RGD-SH) by Michael addition reaction
as a targeting moiety to αVβ3 integrin receptors, which are expressed in endothelial cells of the brain
tumor angiogenic vasculature, as well as on glioblastoma cells. The polymeric agent enabled not
only precise PA imaging but also spatiotemporal photothermal therapy, as depicted in Figure 15d,e.
Therefore, the use of a 1064-nm laser resulted in more efficient penetration of the scalp and skull,
and provided more effective treatment of brain tumors than the common 808-nm laser [92].
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hybridization of energy levels because of the push–pull effect, and demonstrate the reduced band 
gap that results in absorption in the NIR-II window. Figure 16a depicts the semiconducting 
polymer that consists of a thiophene donor and a benzodifurandione-based acceptor. The polymer 
was further processed to nanoparticles via nanoprecipitation, providing NIR-II PA imaging and 
photothermal therapy as well under 1064 nm irradiation [93]. The combination of 
benzodithiophene (BDT) and benzobisthiadiazole (BBT) produced a semiconducting polymer that 
exhibited an extremely strong donor–acceptor strength, as depicted in Figure 16b [94]. The resultant 
polymer was used as the core material of nanoparticles, and provided highly efficient PA imaging 
for orthotopic brain tumors. A thienoisoindigo (TII)-based semiconducting polymer was introduced 
by Mei et al. (Figure 16c) [95]. The nanoparticles from the polymer demonstrated a wide NIR-II 
absorption range from 1000 to 1350 nm and a deep penetration depth of over 5 cm when measured 
on the chicken-breast tissue, which minimized the background signal interference. Bian et al. 
investigated the use of thiadiazoloquinoxaline moiety [96]. The unit demonstrated strong 

Figure 15. (a) Illustration of nanoparticle fabrication and in vivo brain tumor photothermal therapy
and photoacoustic imaging. (b) Dynamic light scattering (DLS) data and transmission electron
microscopy (TEM) image of P1RGD NPs. (c) UV–Vis spectra of P1 NPs and P1RGD NPs, respectively.
(d) Photothermal heating effects of P1 NPs at different concentrations under a 1064-nm laser (1 W cm−2).
(e) Cyclic photothermal heating and cooling of P1 NPs (0.01 mg mL−1). Reprinted with permission
from [92]. Copyright, John Wiley and Sons (2018).

Chemical structures of other notable semiconducting polymers are illustrated in Figure 16.
In general, thiophene-based polymers contain the donor–acceptor-type structures that facilitate
the hybridization of energy levels because of the push–pull effect, and demonstrate the reduced
band gap that results in absorption in the NIR-II window. Figure 16a depicts the semiconducting
polymer that consists of a thiophene donor and a benzodifurandione-based acceptor. The polymer
was further processed to nanoparticles via nanoprecipitation, providing NIR-II PA imaging and
photothermal therapy as well under 1064 nm irradiation [93]. The combination of benzodithiophene
(BDT) and benzobisthiadiazole (BBT) produced a semiconducting polymer that exhibited an extremely
strong donor–acceptor strength, as depicted in Figure 16b [94]. The resultant polymer was used
as the core material of nanoparticles, and provided highly efficient PA imaging for orthotopic
brain tumors. A thienoisoindigo (TII)-based semiconducting polymer was introduced by Mei et al.
(Figure 16c) [95]. The nanoparticles from the polymer demonstrated a wide NIR-II absorption range
from 1000 to 1350 nm and a deep penetration depth of over 5 cm when measured on the chicken-breast
tissue, which minimized the background signal interference. Bian et al. investigated the use of
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thiadiazoloquinoxaline moiety [96]. The unit demonstrated strong electron-withdrawing properties
and yielded a low-band-gap polymer when polymerized with a benzothiadiazole donor, as illustrated
in Figure 16d. The polymer enabled NIR-II PA imaging and tracking of stem cells with an enhanced
signal-to-noise ratio compared to NIR-I imaging. Copolymerization of diketopyrrolopyrrole and
thiadiazoloquinoxaline resulted in a broadband absorption ranging from NIR-I to NIR-II regions,
as demonstrated by Pu et al. (Figure 16e) [97]. The semiconducting polymer provided a feasible,
direct comparison of NIR-I or NIR-II PA imaging and a scientific foundation regarding the advantages
of NIR-II imaging, such as enhanced resolution of imaging and deep-tissue imaging, while increasing
the laser power using 1064-nm irradiation.
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Interestingly, Pramanik and Pu et al. demonstrated metabolizable SPNs using semiconducting
polymers that enable PAI in the NIR-II window (Figure 17a). The π-conjugated polymers contain
benzobisthiadiazole (BBT) that not only provides a narrow-band-gap structure with electron-donating
units but is also susceptible to oxidation that brings about biodegradability. Therefore, the semiconducting
polymers not only generated PA signals in response to NIR-II light, but also degraded in the
presence of myeloperoxidase and lipase that are abundant in phagocytes. The SPNs were obtained via
nanoprecipitation and were transformed to ultra-small, non-toxic metabolites that are further easily
removed from the living mice through both renal and hepatobiliary excretions [98]. Another type
of functional SPNs that exhibit heat-amplified PA signals was also demonstrated as shown in
Figure 17b [99]. A semiconducting polymer was synthesized from thiophene and benzothiaziazole
units, and it was further functionalized with poly(N,N-dimethylacrylamide)-r-(hydroxypropyl acrylate)
(PDMA-r-HPA) through a graft-on approach. The resulting brushed polymers formed SPNs via
self-assembly (SPNph1) and showed lower critical solution temperature (LCST) behavior due to the
random copolymer tethers. While undergoing aggregation by phase transition of the polymer grafts,
the large SPNs displayed enhanced PA signals that not only imparts a thermo-sensitive response but
also increases the signal-to-noise ratio for high-contrast imaging.
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4.3.2. Semiconducting Small Molecules 

Although most NIR-II contrast agents are based on semiconducting polymers because of their 
feasibility for long π conjugation, small molecules that have a strong donor–acceptor structure can 
also be used as NIR-II imaging agents. For example, CH1000 dye that contains a 
donor−π−acceptor−π−donor structure exhibited efficient PA imaging, as demonstrated by Cheng et 
al. [100]. The chromophore molecule (CH-dye) was synthesized using triphenylamine and 
benzobisthiadiazole, and encapsulated using PEG modified with phospholipid. The nanoparticles 
were further tethered with the antiepidermal growth factor receptor (EGFR)-affibody to target 
EGFR-positive cancer, and provided PA imaging and fluorescent imaging as well, leading to 
specific, dual-modal contrast imaging (Figure 18).  

More sophisticatedly, Xie et al. demonstrated a multi-modal contrast agent after the judicious 
chemical modification of IR-1061 dye [101]. As depicted in Figure 19, the agent not only exhibited 
NIR-II imaging properties due to the commercial NIR dye (pink), but also was biocompatible due to 
the PEG moiety (blue) and was functionalized with a cancer-targeting folic acid moiety (orange). 
Therefore, the designed probe enabled high-resolution imaging for the specific diagnosis of cancer. 

Figure 17. (a) (top) Chemical structures of semiconducting polymers, PBBT-OT, PBBT-PT, and PBBT-DT
for NIR-II photoacoustic imaging, and (bottom) depiction of in vitro biodegradation of NIR-II SPNs in
cells. (b) Chemical structure of thermoreponsive, semiconducting polymers and schematic illustration
of heat-amplified PA signals of the SPNph1. Reprinted with permission from [98,99]. Copyright,
John Wiley and Sons (2019).

4.3.2. Semiconducting Small Molecules

Although most NIR-II contrast agents are based on semiconducting polymers because of their
feasibility for longπ conjugation, small molecules that have a strong donor–acceptor structure can also be
used as NIR-II imaging agents. For example, CH1000 dye that contains a donor−π−acceptor−π−donor
structure exhibited efficient PA imaging, as demonstrated by Cheng et al. [100]. The chromophore
molecule (CH-dye) was synthesized using triphenylamine and benzobisthiadiazole, and encapsulated
using PEG modified with phospholipid. The nanoparticles were further tethered with the antiepidermal
growth factor receptor (EGFR)-affibody to target EGFR-positive cancer, and provided PA imaging and
fluorescent imaging as well, leading to specific, dual-modal contrast imaging (Figure 18).

More sophisticatedly, Xie et al. demonstrated a multi-modal contrast agent after the judicious
chemical modification of IR-1061 dye [101]. As depicted in Figure 19, the agent not only exhibited
NIR-II imaging properties due to the commercial NIR dye (pink), but also was biocompatible due
to the PEG moiety (blue) and was functionalized with a cancer-targeting folic acid moiety (orange).
Therefore, the designed probe enabled high-resolution imaging for the specific diagnosis of cancer.
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Figure 20 shows a stimuli-responsive, biocompatible, nanotheranostic agent that provides both 
photoacoustic tomography and photothermal therapy in the NIR-II window [102]. The functional 
agent consists of horseradish peroxidase (HRP) as an enzyme and 3,3’,5,5’-tetramethylbenzidine 
(TMB) as a substrate, both of which were encapsulated in a mesoporous silica container that was 
further tethered with folates as a tumor-targeting moiety. Thus, the catalase HRP promoted the 
formation of reactive radical species from H2O2 that oxidized TMB to form a charge transfer 
complex (CTC) that exhibited strong absorption in the NIR-II window. Therefore, the CTC 
substantiated the capabilities of NIR-II PAI and photothermal therapy. Furthermore, owing to the 
nature of CTC, the agent can be activated by external stimuli and also be pH-sensitive, thereby 
showing an enhanced, functional imaging performance that paves the way for the development of a 
“turn-on” theragnostic contrast agent. 

Figure 18. (a) Schematic illustration of preparation of affibody−DAPs. The DAPs were prepared
through nanoprecipitation of CH1000. The CH1000 molecules are represented as light green ovals.
The phospholipid (DSPE-PEG-5000) has two hydrophobic tails and one hydrophilic PEG chain, and is
illustrated as a purple ball with two dark gray tails and one light gray head. EGFR affibodies
(Ac-Cys-ZEGFR:1907, three α-helices) were immobilized on the surface of DAPs via a bifunctional
cross-linker. (b) Representative TEM image of negatively stained DAPs. Scale bar = 100 nm.
(c) Hydrodynamic sizes of DAPs (black line and column) and affibody−DAPs (green line and column).
(d) Zeta potentials of DAPs and affibody−DAPs. Reprinted with permission from [100]. Copyright,
American Chemical Society (2017).
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Figure 19. Chemical structure of a multifunctional small molecule that enables target-specific,
high-resolution imaging.

A turn-on-type PA agent notably enhanced the specificity and sensitivity of the PA signal. Figure 20
shows a stimuli-responsive, biocompatible, nanotheranostic agent that provides both photoacoustic
tomography and photothermal therapy in the NIR-II window [102]. The functional agent consists of
horseradish peroxidase (HRP) as an enzyme and 3,3′,5,5′-tetramethylbenzidine (TMB) as a substrate,
both of which were encapsulated in a mesoporous silica container that was further tethered with
folates as a tumor-targeting moiety. Thus, the catalase HRP promoted the formation of reactive radical
species from H2O2 that oxidized TMB to form a charge transfer complex (CTC) that exhibited strong
absorption in the NIR-II window. Therefore, the CTC substantiated the capabilities of NIR-II PAI and
photothermal therapy. Furthermore, owing to the nature of CTC, the agent can be activated by external
stimuli and also be pH-sensitive, thereby showing an enhanced, functional imaging performance that
paves the way for the development of a “turn-on” theragnostic contrast agent.
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4.3.3. Other Semiconducting Materials

Not only carbon materials, as discussed above for NIR-I imaging, but other inorganic components
have been used in PA imaging applications, such as Ag2S nanoparticles, silicon oxide nanoparticles,
and co-doped nanocrystals [103–106]. Notably, Liu et al. developed new organic–inorganic hybrid
nanoparticles based on Cu(II) ions and tetrahydroxyanthraquinone (THQ) ligands (Figure 21).
The copper complex nanoparticles (Cu(II)−THQNPs) absorbed the NIR light in the second window
due to surface plasmon resonance, and after encapsulation with PEG, the resulting nanoparticles
became biocompatible, enabled PA imaging, and also generated reactive oxygen species (ROS) from
hydrogen peroxide while undergoing a Fenton-like reaction. Thus, the material played a role as a
precise theragnostic agent for PA imaging-guided photochemotherapy using NIR-II light, and caused
the complete prevention of a cancerous growth for 14 days without demonstrating cytotoxicity [107].
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transforming photoenergy to heat. (d) Transmission electron microscopy (TEM) image of Cu(II)−THQNPs;
the inset image is the enlarged picture of Cu(II)−THQNPs. (e) Size distribution histogram based on TEM
images of Cu(II)−THQNPs. (f) Energy-dispersive X-ray spectroscopy (EDS) analysis of Cu(II)−THQNPs.
Reprinted with permission from [107]. Copyright, American Chemical Society (2018).

5. Concluding Remarks

Based on NIR light sources, PAI systems of various scales have been developed. In the case of a
microscopic system for providing high-resolution images, a depth image of 11 mm or more can be
realized while maintaining ultrasonic resolution by using a laser in the NIR region. For whole-body
small animal imaging and clinical application, PAI systems can be applied in the examination of diseases
of organs, such as breast cancer, using NIR and special ring-shaped transducers or ultrasound-based
systems. PAI imaging using NIR light is expected to be applicable in a variety of basic preclinical
studies, clinical diagnostics, and disease monitoring, while maintaining depth enhancement and
resolution quality.

In addition to modality, the development of diverse contrast agents is of significant importance for
NIR imaging applications. In general, the materials have a core–shell structure, enhance the contrast
of images, and further demonstrate sophisticatedly designed functions if necessary. Polymers have
played a crucial role in the construction of core–shell-type agents: semiconducting polymeric materials
form the photoactive core part, which is required to absorb light in the NIR region, and biocompatible
polymers encapsulate the core and render biocompatibility under aqueous conditions. In particular,
many narrow-band-gap polymers that have an alternating donor–acceptor π–conjugated structure
exhibit broad absorbance in the NIR region, and thus are extensively used in photoacoustic NIR
imaging. In addition, small molecules with strong donors or acceptors, or inorganic materials that
have broad absorption due to their characteristic electronic properties, can be used in PA imaging
when irradiated by an NIR light, thereby overcoming the shortage of materials. Further inclusion of
other functionality imparts the agent materials with, for example, multi-modal imaging, targeting,
and chemotherapy.

Many agent materials have been developed and widely used; however, the incorporation of other
components or well-designed chemical reactions can improve the performance of PA imaging or pave
the way for sought-after applications. For example, lanthanide ions can display characteristic optical
or catalytic properties while being incorporated in the agents [108–113]. Additionally, self-propagating
reactions, such as self-assembly or triggered head-to-tail depolymerization [114–118], can readily turn
on–off or even amplify the PA signal. Furthermore, addition of the PA properties to various network
materials, such as porous materials or hydrogels [119–126], can provide a non-destructible in situ
monitoring system or facile, selective manipulation of physical properties of the networks in response
to NIR.
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