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ABSTRACT Microorganisms and their communities on foods are important determi-
nants and indicators of food safety and quality. Despite growing interests in study-
ing food and food-related microbiomes, how effective and practical it is to glean
various food safety and quality information from food commodity microbiomes re-
mains underinvestigated. Microbiomes of retail chicken breast from 4 processing es-
tablishments in 3 major U.S. broiler production states displayed longitudinal consis-
tency over 7 months and cross-sectional distinctiveness associated with individual
processing environments. Packaging type and processing environment but not anti-
biotic usage and seasonality affected composition and diversity of the microbiomes.
Low abundances of antimicrobial resistance genes were found on chicken breasts,
and no significant resistome difference was observed between antibiotic-free and
conventional products. Benchmarked by culture enrichment, shotgun metagenomics
sequencing delivered sensitive and specific detection of Salmonella enterica from
chicken breasts.

IMPORTANCE Chicken has recently overtaken beef as the most-consumed meat in
the United States. The growing popularity of chicken is accompanied by frequent
occurrences of foodborne pathogens and increasing concerns over antibiotic usage.
Our study represents a proof-of-concept investigation into the possibility and practi-
cality of leveraging microbiome-informed food safety and quality. Through a longitu-
dinal and cross-sectional survey, we established the chicken microbiome as a robust
and multifaceted food microbiology attribute that could provide a variety of safety
and quality information and retain systematic signals characteristic of overall pro-
cessing environments.

KEYWORDS chicken, microbiome, shotgun metagenomics, antimicrobial resistance,
Salmonella

Microorganisms and their communities on foods are important determinants and
indicators of food safety and quality. There have been growing interests in

studying food and food-related microbiomes. Deep sequencing of food and environ-
ment microbiomes allowed the detection of multiple foodborne pathogens and the
monitoring of their relative abundances throughout the beef production chain (1).
Microbiome analyses of meat and seafood products provided a microbiological dissec-
tion of food spoilage to study microbial origin and population dynamics of the complex
process (2). Besides targeted investigations of pathogenic and spoilage microorgan-
isms, overall food microbiome profiles have been investigated to suggest how agricul-
tural and food processing practices affect resident food microbial communities in the
context of food safety and spoilage (3–5). In addition to taxonomic compositions,
particular microbiome constituents such as antimicrobial resistance genes (ARGs), or
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resistomes, have been profiled to indicate the ecological impact of antimicrobial usage
at various stages of beef (6) and poultry (7, 8) production.

While characterizing food microbiomes has the potential to inform food safety and
quality in a multifaceted and integrative manner, its application and practicality remain
understudied. Several technical challenges and knowledge gaps are yet to be ad-
dressed before making the routine use of food microbiome analysis possible. For
targeted detection and identification of particular microorganisms such as foodborne
pathogens, the performance of the microbiome approach needs to be benchmarked by
the gold standard of culture enrichment. To evaluate the overall microbiome profile as
a holistic and informative attribute of food, the consistency, reproducibility, and
distinctiveness of food microbiomes with respect to different production establish-
ments and environments need to be measured. For any type of food microbiome
application, it is important to determine a sufficient and logistically viable depth of
sequencing coverage, which likely varies among different food commodities.

Raw chicken meat is a staple food of relatively high microbial loads (�4.5 log10

CFU/ml total aerobic counts in chicken rinsates [9]). The consumption of chicken has
been steadily increasing worldwide since the 1960s (10). In the United States, chicken
overtook beef as the most consumed meat in 2013 (11). The high demands for chicken
make it important to ensure the microbiological safety and quality of raw chicken meat,
which has been a long-lasting challenge. In the United States from 1998 to 2012,
poultry was the most common food in outbreaks caused by known pathogens such as
Salmonella enterica (12). According to the Food Safety and Inspection Service (FSIS) of
the U.S. Department of Agriculture, 22.2% of half-chicken carcasses and 24.0% of raw
chicken parts in the United States in 2012 were S. enterica positive (9). Besides the
frequent occurrence of pathogens, the rapid spread of antimicrobial resistance in
poultry-associated pathogenic bacteria, such as Salmonella, has been noticed (13–15).
The widespread use of antimicrobials for growth promotion in livestock production has
been associated with the rise of antimicrobial resistance (16). In addition to microor-
ganisms of safety concerns, spoilage bacteria can also render chicken meat unaccept-
able for human consumption. While many different bacterial populations can contrib-
ute to microbial spoilage, a fraction of species and strains outcompete others during
meat storage and release undesired metabolites (17). The selection for dominant
organisms during spoilage largely depends on storage temperature and packaging
atmosphere (availability of oxygen).

In this study, we chose retail chicken breasts as a model food matrix to explore the
possibility of using microbiomes to inform multiple food safety and quality character-
istics. We hypothesized (i) that chicken breast microbiomes display longitudinal con-
sistency over time and cross-sectional distinctiveness among different production
conditions and (ii) that the microbiomes can be robustly characterized through shotgun
metagenomics sequencing on a commonly used sequencing platform to allow ARG
profiling and Salmonella detection. To test these hypotheses, we sampled 8 chicken
breast products from 4 processing establishments under 5 brands over 7 months (from
July 2017 to January 2018) (Table 1). The processing establishments were located in the
top 3 broiler-producing states in the United States (Georgia, Arkansas, and North
Carolina), which accounted for more than a third of national production in 2017 (18).
The samples represented different production and processing practices, including “No
Antibiotics Ever” versus conventional (no label regarding antibiotic usage) products and
vacuum versus ordinary, air-permeable packages.

RESULTS
Sequencing coverage of chicken breast microbiomes. By multiplexing 10 to 12

samples in a single sequencing run on a MiSeq sequencer, an average of 5.3 million
reads per sample were collected by pooling trimmed and filtered reads from two
biological replicates of the same sample sequenced in two separate runs (Table 2). An
average of 2.5 million reads per sample were classified as bacteria, corresponding to an
average of 49.9% of the total sequencing output per sample (Table 2). Estimated by
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Nonpareil (62), the sequencing coverage of chicken breast microbiomes ranged from
22.5% to 93.8%. Two samples that had a coverage below 75% were considered
insufficiently sequenced and excluded from subsequent analyses. The coverages of the
remaining 35 samples ranged from 75.6% to 93.8%, with a mean of 83.7% (Table 2). The
average aerobic plate count (APC) of these samples ranged from 4.2 to 7.0 log10 CFU/g,
with a mean of 5.9 log10 CFU/g (Table 2). There was no significant difference in APC
between vacuum-packing and air-packaging samples (P � 0.90, t test). According to
redundancy-based coverage projections by Nonpareil, �5.6 million bacterial reads
(�1.1 billion bases) are required for 95% abundance-weighted average coverage of the
chicken breast bacterial communities (see Fig. S1 in the supplemental material).

Longitudinal consistency and cross-sectional distinctiveness of chicken breast
microbiomes. Principal coordinates and hierarchical clustering analyses based on
overall microbiome similarities revealed consistent clustering of chicken breast micro-
biomes over the sampling period ranging from 6 weeks up to 3 months (Fig. 1). Four
major clusters were identified (C1 through C4), of which C2 was most distinctive and
exclusively composed of vacuum-packaged samples. Clustering of samples by process-
ing establishments was observed in other clusters, of which C1 and C3 consisted of
samples from only processing establishments I and IV, respectively. C4 was further
divided into 2 subclusters, C4-1 and C4-2. C4-1 contained all the samples from pro-
cessing establishment II, and C4-2 included all the air-permeable (nonvacuum) samples
from establishment III and a single establishment II sample (Fig. 1b). C4-2 was the only
cluster or subcluster that had samples under different brands (B, C, and D). It is worth
noting that brand D samples in C2 (D-III-ABF-V) and C4 (D-III-ABF) were both antibiotic-
free (ABF) products processed at the same establishment, differing only by package
types (vacuum versus air permeable). Two additional samples (D-III-ABF-V_A and
D-III-ABF-V_V) were sampled 11 months later after the original D-III-ABV-V samples to
confirm the packaging effect on the chicken breast microbiome as detailed below.

Packaging type and processing environment but not antibiotic usage and
seasonality affected composition and diversity of chicken breast microbiomes.
Differences in microbial compositions among chicken breast microbiomes were dem-
onstrated by examining relative abundances of bacterial genera (Fig. 2a). It was
apparent that the dominant bacteria on vacuum-packaged products were more di-
verse, including genera such as Aeromonas (20.7% � 12.2%; mean � SD), Buttiauxella
(11.0% � 8.3%), Carnobacterium (22.9% � 18.8%), Enterobacter (2.9% � 2.1%), Hafnia
(8.4% � 4.6%), Lactococcus (6.0% � 4.3%), Pseudomonas (3.9% � 3.2%), Serratia (4.3% �

1.4%), Shewanella (4.8% � 3.7%), and Yersinia (2.1% � 1.2%). In comparison, air-permeable
samples were dominated by Pseudomonas (87.3% � 18.2%) (Fig. 2a; Table S1).

Vacuum-packaged samples had significantly higher alpha diversities than air-
permeable samples (Shannon index, Fig. 2b; Simpson index, Fig. S2a). Group compar-
ison of beta diversity (Bray-Curtis dissimilarity) also showed a significant discrimination
between vacuum-packaged and air-permeable products (Table 3). To confirm the impact of

TABLE 1 Chicken breast samples for microbiome survey

Product Label Brand Processing establishment Antibiotic usage Package Location Season Quantitya

1 A-I-CONV A I CONV Air permeable Georgia Summerb 6
2 B-II-CONV B II CONV Air permeable Arkansas Summer 6
3 C-III-CONV C III CONV Air permeable North Carolina Summer 5
4 C-III-ABF C III ABFc Air permeable North Carolina Winterd 3
5 D-III-ABF-V D III ABF Vacuum North Carolina Summer 6
6 D-III-ABF D III ABF Air permeable North Carolina Winter 3
7 E-IV-ABF E IV ABF Air permeable North Carolina Summer 6
8e D-III-ABF-V_V/A D III ABF Vacuum North Carolina Summer 2
aTwo biological replicates were collected for each sample.
bSummer samples were collected from July 2017 to September 2017 except for product 8, which was collected in June 2018.
cChicken products with “No Antibiotic Ever” claim.
dWinter samples were collected from November 2017 to January 2018.
eThe two samples (D-III-ABF-V_V and D-III-ABF-V_A) were collected in June 2018 to confirm the effect of vacuum packaging on chicken breast microbiome.
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vacuum packaging on the chicken breast microbiome, we compared the microbiomes of
two additional vacuum-packaged samples by unwrapping one sample and exposing it to
air (D-III-ABF-V_A) while keeping the other one’s vacuum packaging intact (D-III-ABF-V_V)
during storage. An apparent shift in microbiome composition was observed between the
2 samples, resulting in a Pseudomonas-dominated microbiome on the unwrapped sample
(Fig. 1 and 2a). The 2 additional samples were collected 11 months after the original
D-III-ABF-V samples and had a different packaging barcode and design; their overall
microbiome profiles diverged from the earlier D-III-ABF-V samples.

Because of the significant impact of vacuum packaging on chicken breast micro-
biomes, vacuum-packaged samples were excluded from evaluating whether other
production factors affected the microbiomes, including overall processing environ-
ments (different processing establishments), antibiotic usage (ABF versus CONV prod-
ucts), and seasonality (July 2017 to September 2017 versus November 2017 to January
2018).

TABLE 2 Summary statistics of shotgun metagenomics sequencing

Samplea

APCb

(log10 CFU/g)

Estimated
sequencing
coverage (%)c

Total passed
reads (paired)d

Bacterial
reads
(paired)e

Bacterial
sequences
(%)f

A-I-CONV_1 6.4 84.3 5,481,182 3,056,476 52.5
A-I-CONV_2 4.5 86.1 6,526,130 2,518,460 38.6
A-I-CONV_3 4.2 82.4 5,448,486 1,107,782 19.4
A-I-CONV_4 5.1 87.3 4,941,042 3,800,622 79.6
A-I-CONV_5 5.6 84.8 4,900,690 3,400,858 68.9
A-I-CONV_6 4.3 88.1 4,657,918 2,717,628 59.0
B-II-CONV_1 5.8 81.8 1,869,964 1,468,654 76.9
B-II-CONV_2 5.9 82.2 5,749,824 2,679,654 49.9
B-II-CONV_3 6.7 76.4 2,006,446 1,620,716 79.5
B-II-CONV_4 6.7 77.6 4,859,556 3,358,930 70.2
B-II-CONV_5 5.4 79.4 5,175,854 2,127,380 41.4
B-II-CONV_6 5.4 79.8 5,908,820 3,072,276 50.0
C-III-CONV_1 6.0 78.2 4,172,702 2,747,400 71.0
C-III-CONV_2 6.6 86.0 5,642,726 4,634,768 82.4
C-III-CONV_3 6.9 84.3 5,520,640 4,554,954 83.1
C-III-CONV_4 6.0 86.1 6,421,858 5,290,498 82.9
C-III-CONV_5 6.5 87.2 5,689,396 4,953,032 87.1
C-III-ABF_1 6.8 88.8 7,313,912 6,111,836 84.0
C-III-ABF_2 6.4 84.9 3,857,934 3,340,052 86.6
C-III-ABF_3 6.0 87.6 6,822,072 3,162,742 50.5
D-III-ABF_1 6.3 82.2 4,410,610 2,188,946 48.5
D-III-ABF_2 6.0 80.6 3,316,508 1,134,484 35.2
D-III-ABF_3 5.4 86.0 4,839,180 2,073,838 39.8
D-III-ABF-V_1 6.1 80.5 6,965,766 923,962 14.3
D-III-ABF-V_2 6.2 78.4 6,311,318 1,381,234 22.5
D-III-ABF-V_3 6.2 80.9 6,708,452 1,505,780 24.8
D-III-ABF-V_4 6.0 77.9 12,562,666 2,380,342 18.8
D-III-ABF-V_5g 6.5 22.5 5,698,708 115,450 2.0
D-III-ABF-V_6 6.2 75.6 4,121,128 1,019,544 25.1
E-IV-ABF_1 6.5 85.5 3,795,540 2,259,584 58.1
E-IV-ABF_2 6.2 93.8 5,706,956 3,353,044 62.2
E-IV-ABF_3 6.0 87.7 5,524,596 2,874,490 53.5
E-IV-ABF_4 5.7 80.6 5,481,604 1,373,962 26.0
E-IV-ABF_5g 5.3 55.5 4,299,662 692,456 16.5
E-IV-ABF_6 6.2 89.9 4,852,236 1,481,336 32.4
D-III-ABF-V_A 7.0 85.2 2,936,008 1,300,570 45.2
D-III-ABF-V_V 5.2 90.2 7,193,950 701,334 9.3
aAll results were reported as the averages from two replicates.
bAerobic plate count.
cSequencing coverage was estimated by using Nonpareil.
dNumber of sequencing reads that passed quality control by Trimmomatic.
eNumber of sequencing reads that were classified as bacteria by KrakenUniq.
fPercentage of bacterial reads among all the sequencing reads.
gThe sample was excluded from subsequent analyses, as the estimated sequencing coverage was lower than
75%.
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Consistent with overall microbiome distinctiveness associated with processing es-
tablishments according to Bray-Curtis dissimilarities (Fig. 1), significant compositional
differences were observed among microbiomes from different establishments as mea-
sured by both alpha (Shannon index, Fig. 2b; Simpson index, Fig. S2a) and beta
(Table 3) diversities. However, the numbers of detected genera were not significantly
different among these microbiomes (Fig. S2b), suggesting that the observed micro-
biome differences were caused by genus diversity instead of genus richness.

FIG 1 Clustering of chicken breast microbiomes based on Bray-Curtis dissimilarities. (a) Principal-coordinate
analysis (PCoA). (b) Hierarchical clustering analysis. Samples were colored by products. Circles represent CONV
samples, and triangles represent ABF samples. Squares (*) indicate two additional vacuum-packaged samples, of
which D-III-ABF-V_A was unwrapped and exposed to air and D-III-ABF-V_V was kept intact during storage.
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Compared with packaging type and processing environment, antibiotic usage and
seasonality did not appear to significantly affect the composition of chicken breast
microbiomes. No significant difference in alpha (Shannon index, Fig. 2b; Simpson index,
Fig. S2a) and beta (Table 3) diversities was observed between ABF and CONV samples
as well as between brand C samples processed at the same establishment during
summer (from July 2017 to September 2017, C-III-CONV) and during winter (from
November 2017 to January 2018, C-III-ABF). The monthly average temperatures at the
location of the North Carolina processing establishment were 26.9°C, 25.3°C, and 22.4°C
from July 2017 to September 2017 and 10.6°C, 6.1°C, and 3.2°C from November 2017 to

FIG 2 Comparison of taxonomic compositions among chicken breast microbiomes. (a) Relative abundances of microbial genera in chicken microbiomes
showing compositional differences among chicken breast samples. “*” indicates two additional vacuum-packaged samples, of which D-III-ABF-V_A was
unwrapped and exposed to air and D-III-ABF-V_V was kept intact during storage. (b) Comparisons of bacterial alpha diversities (Shannon index) based on genus
profiles showing the differences between packaging types, antibiotic usage, processing establishments, and seasonality. Samples were colored by products.
Circles represent CONV samples, and triangles represent ABF samples.
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January 2018 (https://www.wunderground.com/). According to FSIS, all poultry should
be chilled immediately after processing and stored at 40°F (4.4°C) or less before
packaging and shipping (19).

Chicken breast microbiomes were distinct from other poultry-related micro-
biomes. We compared chicken breast microbiomes with other poultry-related micro-
biomes including those of whole chicken carcasses, chicken litter, and chicken feces.
Also included in this comparison were fecal microbiomes from nonpoultry animals and
humans. Principal-coordinate analysis (PCoA) of the microbiomes based on Bray-Curtis
dissimilarities identified 4 major clusters including chicken breasts, other poultry-
related sources, nonpoultry animal sources, and human feces (Fig. 3). Notably, the
average pairwise Bray-Curtis dissimilarity between chicken breasts and other poultry-
related sources (0.12 � 0.03) was smaller than that between chicken breasts and
nonpoultry animal sources (0.18 � 0.11) and that between chicken breasts and human
feces (0.32 � 0.06).

Low abundances of chicken breast resistomes. The average normalized ARG
abundance of chicken breast samples (copies of ARG per prokaryotic cell) was
0.16 � 0.16 (mean � SD), significantly lower (P � 0.05, t test) than that of other samples
analyzed except a U.S. soil microbiome (0.04 � 0.01) (Fig. 4; Tables S2 and S3). In
comparison, the average normalized ARG abundance was 5.52 � 3.12 for other poultry-
related microbiomes (cecal content, carcass wash, feces, and litter), 2.56 � 1.36 for
cattle-related microbiomes (cattle feces and cattle soil), 6.06 � 1.91 for pig feces,

TABLE 3 Comparison of Bray-Curtis dissimilarities between microbiomes under different
conditions using permutational multivariate analysis of variance (PERMANOVA)

Condition Degrees of freedom F R2 P

Package 1,32 180.45 0.8534 0.001
Antibiotic use 1,27 1.2975 0.0475 0.275
Processing establishment 3,27 3.9497 0.3305 0.002
Seasonality 1,7 0.3206 0.0507 0.979

FIG 3 Principal-coordinate analysis (PCoA) of chicken breast, poultry-related, and nonpoultry microbiomes based
on Bray-Curtis dissimilarities. Four major clusters were identified, including chicken breasts (red dashed oval), other
poultry-related sources (yellow dashed oval), nonpoultry animal sources (blue dashed oval), and human feces
(green dashed oval).
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2.21 � 1.11 for human feces, and 1.50 � 1.01 for sludge and sewage (Fig. 4). ARGs
belonging to antimicrobial classes of tetracyclines, aminoglycosides, and macrolides
had significantly lower normalized abundances (P � 0.05, t test) in chicken breast
samples than those in other poultry-related samples, cattle-related samples, and pig
feces (except aminoglycosides in cattle feces samples) (Fig. 4). These antibiotics rep-
resented the largest volume of domestic sales of medically important antimicrobial
drugs in food-producing animals in 2017 (20). The average normalized ARG abundance
of tetracyclines, aminoglycosides, and macrolides in chicken breast samples was
0.01 � 0.02, 0.05 � 0.03, and 0.0004 � 0.0004, respectively (Fig. 5a; Table S3). ARGs
belonging to the aminoglycoside class were detected in all samples, with ant(3�)-la
being the only ARG that was present in every sample (Fig. 5b; Table S2). Low abun-
dances of mobilized colistin resistance genes (mcr-3, mcr-4, mcr-7, and mcr-9) were
sporadically found in 15 samples (3 A-I-CONV samples, 2 B-II-CONV samples, 2 C-III-
CONV samples, 1 C-III-ABF sample, 5 D-III-ABF-V samples, and 2 E-IV-ABF samples)
(Fig. 5b; Table S2). The average normalized abundance of mcr genes in these samples
was 0.0007 � 0.001. Sequencing reads (n � 163) that were aligned to mcr genes (�80%
similarity) were fragments of mcr-3 variants (mcr-3.6 to mcr-3.25, n � 86), mcr-4 variants
(mcr-4.3 to mcr-4.6, n � 14), mcr-7 variant (mcr-7.1, n � 32), and mcr-9 variant (mcr-9,
n � 31). The average length of these reads was 203.7 � 55.4 bp. mcr-3-positive samples
(n � 7) were found to have a significantly higher relative abundance of Aeromonas
(P � 0.04, t test) than mcr-3-negative samples (n � 26).

Packaging type had greater impact on chicken breast resistomes than antibi-
otic usage. In total, 132 ARGs of 10 antibiotic classes were detected from chicken
breast microbiomes (Table S2 and Fig. S3). The majority (53.8%) of the detected ARGs
belonged to the classes of aminoglycosides (n � 14) and beta-lactams (n � 57) (Ta-
ble S2).

Resistome comparison between vacuum-packaged and air-permeable samples
showed significant differences in ARG abundance and composition (Fig. 5a). The

FIG 4 Normalized ARG abundances in the microbiomes of chicken breasts and other samples from various sources. The abundance of each ARG class was
calculated as the sum of normalized abundances of ARGs belonging to the class. Stacked bars are colored by ARG classes. The abundances of ARGs were
normalized by prokaryotic cell counts.
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FIG 5 Normalized ARG abundances in chicken breast microbiomes. (a) Normalized abundance of ARGs in each sample. The abundance of each ARG class was
calculated as the sum of normalized abundances of ARGs belonging to the class. Stacked bars were colored by ARG classes. (b) Normalized abundances of 35
major ARGs (�1.0 � 10	2 copies of ARG per prokaryote cell in at least one sample) in chicken breast samples. The abundances of ARGs were normalized by
prokaryotic cell counts. The two sets of horizonal annotation blocks were colored by antibiotic usage and packaging types, respectively. The vertical annotation
blocks were colored by ARG classes.
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average normalized ARG abundance of the vacuum-packaged samples (n � 5) was 4.5
times higher than that of air-permeable samples (n � 28) (Fig. 5a; Table S3). Significant
differences in alpha diversity (Shannon index) (P � 0.000, Mann-Whitney U test) of
detected ARGs were found between vacuum-packaged and air-permeable samples. The
average Shannon index was 3.33 � 0.27 for vacuum-packaged samples and 1.74 � 0.48
for air-permeably packaged samples (Table S4). The resistomes of vacuum-packaged
samples were dominated by beta-lactam ARGs, with an average relative abundance of
69.6% � 7.4% (mean � SD). In comparison, aminoglycoside ARGs appeared to be more
abundant in air-permeable samples (50.4% � 24.8%), accounting for the majority of the
resistome in 21 out of 28 samples (61.3% � 16.5%) (Fig. 5a and b).

Compared with packaging type, the impact of antibiotic usage on chicken breast
resistomes, if any, was much milder. There was no significant difference in normalized
ARG abundances (P � 0.97, t test) between ABF samples (mean abundance � 0.10) and
CONV samples (mean abundance � 0.10) with air-permeable packaging. Similarly,
when comparing the diversity of ARGs, no significantly different Shannon indices
(P � 0.834, Mann-Whitney U test) were found between CONV and ABF samples (ex-
cluding vacuum-packaged samples). The average Shannon index was 1.76 � 0.58 for
ABF samples and 1.72 � 0.42 for CONV samples (Table S4).

Cooccurrence of ARGs and taxa in chicken breast microbiomes. Comparison
between microbial diversity and ARG diversity (Shannon index) in chicken breast
microbiomes identified a significant positive correlation (� � 0.79, P � 0.000, Spearman
test) in between (Table S4). Further network analysis revealed certain taxa that strongly
cooccurred with some beta-lactam ARGs, including Aeromonas (e.g., cphA1, cphA5, and
blaOXA-427) and Shewanella (blaOXA-551) (Fig. 6). Cooccurrence of certain beta-lactam
ARGs was also observed, including that of ampH, ampS, blaFOX-4, blaFOX-7, blaFOX-8,
blaOXA-427, cphA1, and cphA5 (Fig. 6). The correlation between the two genera and
beta-lactam ARGs was confirmed by analyzing assembled metagenome contigs (Ta-
ble S5). The 3 beta-lactam ARGs (cphA1, cphA5, and blaOXA-427) that cooccurred with
Aeromonas were commonly found on contigs that were determined as chromosomal
sequences of Aeromonas. Similarly, blaOXA-551 was exclusively found on contigs that
were considered Shewanella chromosomal sequences (Table S5).

Network analysis also identified cooccurrence of certain taxa. Facultatively anaerobic
bacteria, including Yersinia, Serratia, Hafnia, Enterobacter, Citrobacter, Klebsiella, Butt-
iauxella, Raoultella, Cronobacter, Salmonella, Cedecea, Erwinia, Kosakonia, Lelliottia, and
Pluralibacter, were found to cooccur and be abundant in vacuum-packaged samples
(Fig. 6). Obligately or facultatively aerobic bacteria, such as Burkholderia, Cupriavidus,
Achromobacter, Paraburkholderia, Azotobacter, Halomonas, Marinobacter, and Xenorh-
abdus cooccurred commonly in air-permeable products (Fig. 6). Notably, correlation
analysis on normalized abundances of all detected microbial taxa identified negative
associations between the facultatively anaerobic bacteria and Pseudomonas (Fig. S4),
which was the dominant taxon in air-permeable samples (Fig. 2a).

Sensitive and specific detection of Salmonella by shotgun metagenomic se-
quencing. Salmonella was detected by culture enrichment in 4 samples of 2 products
(B-II-CONV_4, B-II-CONV_6, C-III-ABF_1, and C-III-ABF_3) (Table 4). The Salmonella-
positive rate among the 33 chicken breast samples was 12.1% (2 samples sequenced
later for evaluating vacuum packaging effect were not included for Salmonella detec-
tion), which was similar to Salmonella prevalence on retail skinless chicken breasts
(12.3%) that were surveyed spatio-temporally close to the samples used in the current
study (Atlanta metropolitan area, Georgia, in 2017) (21). Salmonella detection in met-
agenomic DNA by real-time PCR yielded negative results for all samples (Table 4).

Salmonella detection was also carried out by identifying Salmonella sequences in
shotgun sequencing data. According to MetaPhlAn2 (76) identification using reference
marker genes, no Salmonella sequence was detected in any sample. Based on
Salmonella-specific k-mers detected by KrakenUniq, 17 samples were positive for
Salmonella sequences (Table 4). Notably, the metagenomes of vacuum-packaged sam-
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ples were particularly abundant in unique k-mers classified by KrakenUniq (60) as
Salmonella (Table 4). After filtering out sequencing reads that were likely of plasmid or
phage origin by PPR_Meta, 5 samples remained as Salmonella positive, 3 of which were
Salmonella positive also by culture enrichment (Table 4).

Using Salmonella detection by culture enrichment as a benchmark, we evaluated the
sensitivity and specificity of Salmonella detection from shotgun sequencing data
(Table 4). The best overall performance was delivered by reads classification followed
by mobile genetic elements (MGE) filtering, with a sensitivity of 0.75 and specificity of
0.93. In comparison, reads classification by KrakenUniq alone delivered a sensitivity of
0.75 and specificity of 0.52 for Salmonella detection. Both real-time PCR and
MetaPhlAn2 analyses of the microbiomes yielded a sensitivity of zero by detecting
Salmonella in none of the samples.

DISCUSSION

Microbial populations on chicken experience drastic shifts in composition and
abundance over multiple stages during production including live production, poultry
processing, retail display, and storage. While microbiome characterization throughout
the “farm-to-fork” continuum is possible and has been attempted (22), a routine
practice of microbiome monitoring, if justified, would require a more targeted ap-

FIG 6 Network analysis showing cooccurrences among ARGs and microbial taxa. The red dashed ovals indicate cooccurrence
patterns on interest. Links were drawn when Spearman’s correlation coefficient (�) between two nodes (ARG or microbial
genus) was larger than 0.8 (P � 0.01). The width of each link is proportional to the value of the correlation coefficient. The size
of each node is proportional to the relative abundance of ARG or microbial genus.
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proach that is scientifically effective and logistically viable. Our study captured post-
processing and preconsumption snapshots of chicken breast microbiomes. Our results
suggest that chicken microbiomes at this junction allow robust metagenomics char-
acterization through shotgun sequencing, retain sufficient information for microbio-
logical evaluation of poultry processing, and provide multiple food safety and quality
characteristics such as the presence of Salmonella in the final products that directly
matter to consumers.

Overall, we observed distinct and temporally consistent chicken breast microbiomes
associated with individual processing establishments. The observation indicates that
variation in processing practices may lead to quantifiable and stable characteristics in
finished product microbiomes. We envision that microbiome monitoring of poultry
products can help establish a baseline of the regular chicken microbiome, which may
be characteristic of individual processing establishments and potentially useful in
signaling irregularities or perturbations to normal processing routines, such as change
or failure of antimicrobial agents or protocols. As we have shown that poultry micro-

TABLE 4 Comparison of Salmonella detection results by metagenomic sequencing and culture enrichment

Samplea

No. of
readsb

No. of unique
k-mersc Culturingd

Real-time
PCR MetaPhlAn2e KrakenUniqf

KrakenUniq �
PPR_Metag

No. of screened
readsh

A-I-CONV_1 122 2,189 	i 	 	 
 	 0
A-I-CONV_2 37 592 	 	 	 	 	 0
A-I-CONV_3 15 332 	 	 	 	 	 0
A-I-CONV_4 63 731 	 	 	 	 	 0
A-I-CONV_5 95 2,080 	 	 	 
 	 0
A-I-CONV_6 30 538 	 	 	 	 	 0
B-II-CONV_1 15 405 	 	 	 	 	 0
B-II-CONV_2 41 662 	 	 	 	 	 0
B-II-CONV_3 26 743 	 	 	 	 	 0
B-II-CONV_4 168 3,861 
j 	 	 
 
 2
B-II-CONV_5 32 748 	 	 	 	 	 0
B-II-CONV_6 322 6,009 
 	 	 
 
 1
C-III-CONV_1 81 1,606 	 	 	 
 	 0
C-III-CONV_2 77 1,415 	 	 	 
 	 0
C-III-CONV_3 134 2,260 	 	 	 
 	 0
C-III-CONV_4 64 1,268 	 	 	 
 	 0
C-III-CONV_5 78 1,893 	 	 	 
 	 0
C-III-ABF_1 81 1,825 
 	 	 
 
 8
C-III-ABF_2 37 700 	 	 	 	 	 0
C-III-ABF_3 56 640 
 	 	 	 	 0
D-III-ABF-V_1 1,258 18,338 	 	 	 
 	 0
D-III-ABF-V_2 684 13,048 	 	 	 
 	 0
D-III-ABF-V_3 924 20,307 	 	 	 
 
 2
D-III-ABF-V_4 1,849 22,405 	 	 	 
 
 3
D-III-ABF-V_6 2,293 24,645 	 	 	 
 	 0
D-III-ABF_1 29 586 	 	 	 	 	 0
D-III-ABF_2 13 300 	 	 	 	 	 0
D-III-ABF_3 42 499 	 	 	 	 	 0
E-IV-ABF_1 142 3,164 	 	 	 
 	 0
E-IV-ABF_2 29 712 	 	 	 	 	 0
E-IV-ABF_3 60 1,183 	 	 	 
 	 0
E-IV-ABF_4 17 325 	 	 	 	 	 0
E-IV-ABF_6 112 403 	 	 	 	 	 0
aTwo biological replicates were collected for each sample.
bNumber of S. enterica reads reported by KrakenUniq. The results were reported as the averages from two replicates.
cNumber of unique k-mers identified for S. enterica by KrakenUniq. The results were reported as the averages from two replicates.
dSalmonella detection results by culturing. Sample was considered positive when a Salmonella colony was detected in either of the two replicates.
eSalmonella detection results by MetaPhlAn2. Sample was considered positive when an S. enterica taxon was identified in either of the two replicates.
fSalmonella detection results by KrakenUniq. Sample was considered positive when the number of unique k-mers for S. enterica was �1,000 in either of the two
replicates.

gSalmonella detection results by KrakenUniq plus PPR_Meta. Sample was considered positive when at least one chromosomal read classified as S. enterica was
detected in either of the two replicates.

hNumbers of chromosomal reads classified as S. enterica after MGE filtering by PPR_Meta.
i	, Salmonella-negative result.
j
, Salmonella-positive result.
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biomes inform the presence of Salmonella and the composition of spoilage organisms
among other potential metagenomics markers of food safety and quality, the accumu-
lation of baseline and irregular microbiome data may help classify or rate poultry
microbiomes according to these markers, which may eventually lead to the evaluation
of processing practices and environments.

Shotgun metagenomics sequencing promises unbiased and comprehensive char-
acterization of food microbiomes unmatched by 16S rRNA amplicon sequencing.
However, its efficiency is challenged by food matrices that have high ratios of food to
microbial cells. In such cases, large proportions of sequencing output are food DNA
sequences uninformative to food safety and quality. For instance, in a recent study, over
99% of shotgun sequencing data of beef microbiomes came from the bovine genome,
leaving less than 1% of sequencing data attributed to bacteria (6). Chicken breast
rinsates sampled in this study were much less contaminated by animal cells, resulting
in an average bacterial yield being about half of the sequencing output. The relatively
high efficiency of chicken microbiome sequencing allowed the coverage of the vast
majority of microbial taxa in each microbiome sample by sequencing the equivalent of
5 or 6 samples in a MiSeq sequencing run (after combing reads from 2 replicate
samples). These results suggest that sufficient characterization of chicken breast mi-
crobiome is possible through multiplexed shotgun sequencing, which can be relatively
cost-effective and potentially practical for industrial applications.

In this study, we synchronized chicken breast microbiomes by holding samples
under refrigeration until their designated “sell by” dates. During the holding storage,
the microbiomes shifted from their earlier states off processing lines as indicated by
increasing APC over time (chicken breast APC before “sell by” dates not shown). Despite
the shift, overall microbiome profiles clustered by their association with particular
processing establishments, and the clustering largely persisted throughout the sam-
pling period with products up to 3 months apart. Such longitudinal consistency and
cross-sectional distinctiveness suggest that chicken breast microbiomes on “sell by”
dates carry over and retain sufficient metagenomic information that was reflective and
characteristic of the processing environment at individual establishments.

Poultry processing converts live birds to finished products in multiple steps, includ-
ing prescald brushing, scalding, defeathering, evisceration, rehang, on- and off-line
reprocessing, carcass washing, chilling, and postchill treatment. Such steps can have
substantial impact on the microbial ecology of processing environments and chicken
meats. Some examples include microbial contamination due to gut rupture and gut
content spillage during evisceration (23) and antimicrobial treatment during equip-
ment spraying (24) and carcass washing (25). Complete microbial monitoring of all
these steps can therefore be complex and logistically challenging for routine practices.
Alternatively, after chicken meats go through the processing steps and pick up envi-
ronmental influences along the way, the chicken meat microbiome constitutes an
endpoint sample that represents the eventual consequences of processing environ-
ments on the finished products. It is possible that microbiome characterization of
chicken meats right off processing provides closer indicators of microbial ecology of
poultry processing. However, obtaining sufficient metagenomic DNA for shotgun
sequencing from samples immediately after processing remains a challenge as we
experienced in the current study. Such samples were much less abundant in microor-
ganisms than samples held until “sell by” dates. According to our preliminary analysis
of 3 brands of chicken breast, their APC ranged from 0.9 to 2.2 log10 CFU/g when
assayed on the same day of purchase. Similarly, APCs of beef trimmings in the United
States are routinely between 2 and 3 log10 CFU/g (26). The low microbial load on beef
likely also contributed to the low output of microbial DNA in beef metagenomes (less
than 1% compared with a mean of 49.9% in this study) as previously mentioned (6).

Interestingly, microbiomes of ABF samples under the same brand, from the same
processing establishment, but collected 11 months apart diverged from each other
(D-III-ABF-V_V versus D-III-ABF-V, Fig. 1). Different packaging barcodes and designs
indicate different products. It is unknown whether any changes in the processing of the
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later product occurred. In contrast, samples of the same product collected in warm and
cold seasons from a North Carolina processing establishment did not show any
significant difference in microbial composition. This finding was inconsistent with the
seasonal differences observed in 16S amplicon sequencing-characterized chicken mi-
crobiomes from South Korea (27). In the South Korean study, seasonal samples were
collected from months of maximum and lowest rates of processing (July and January),
while year-round broiler production in the United States does not feature noticeable
seasonality (28). It is unclear whether the disparity in production volumes, any other
structural difference in the production system, or actual climatic seasonality caused the
seasonal differences found in South Korean chicken microbiomes.

Our study also demonstrated the significant influence of vacuum packaging on
chicken breast microbiomes. Microbiomes of vacuum-packaged samples were more
diverse and characteristic of a variety of facultative anaerobic bacteria, compared with
those of air-permeable samples that were dominated by Pseudomonas. Similarly,
Pseudomonas was found to become dominant on chicken cuts under modified atmo-
sphere packaging (MAP) when there was a higher percentage of oxygen in the MAP
(29) and on beef chops during refrigerated storage in air (30). While inhibited, Pseu-
domonas, an obligate aerobe, was still present on vacuum-packaged samples, which is
consistent with a previous observation that Pseudomonas was still able to grow on foal
meat under refrigerated vacuum storage (30) and suggests the presence of residual
oxygen in vacuum packages. Pseudomonas and Shewanella, which were dominant on
chicken breast samples with air-permeable packaging, are major psychrotrophic bac-
teria that cause meat spoilage under aerobic storage conditions (31). On the other
hand, Aeromonas, Buttiauxella, Carnobacterium, Hafnia, and Serratia, which were found
to be more abundant on vacuum-packaged samples, commonly occur during chilled
storage of raw meat in MAP or vacuum packaging (32). Our data suggest the potential
of food microbiome characterization in evaluating and developing packaging technol-
ogies for extending product shelf life against spoilage microorganisms.

Excessive use of antibiotics in food animal production is perceived to be an
important contributor to the rise of antibiotic resistance throughout food production
environments (33). Shotgun metagenomics has been suggested to help quantitative
risk assessment of antibiotic resistance in the food supply chain (33–35). Our resistome
comparison between CONV and ABF samples identified no significant difference in ARG
abundance and composition between the two production practices. Furthermore, ARG
abundance of the chicken breast samples was considerably lower than that of any other
livestock samples and all but one (U.S. soil) environmental samples analyzed in the
current study. These results indicate a low risk of ARG accumulation on chicken breasts
regardless of antibiotic usage in live production. Our finding is consistent with antimi-
crobial resistance surveys in beef production. It was reported that no ARG was detected
on beef products and that interventions during slaughtering and beef processing might
reduce the risk of ARG transmission to consumers (6). Similar levels of antimicrobial
resistance were measured between conventional and “Raised Without Antibiotics”
ground beef products (36) and beef cattle (37), which led to the doubt on the assumed
impact of antimicrobial use in U.S. beef production and whether significant reductions
in antimicrobial resistance could be yielded by reducing antimicrobial use. Although a
recent study identified differences in resistomes between farms with different practices
regarding antibiotic use (conventional versus “Raised Without Antibiotics”), the authors
did not conclude a cause-effect relationship between antimicrobial use and the resis-
tome differences because other factors (e.g., location, cattle source, management
practices, and diet) could have affected the resistomes (38). It should be noted that our
findings regarding the resistomes of ABF versus CONV samples were limited to
finished chicken products. It remains to be investigated whether resistome differ-
ences related to antibiotic usage exist in any production environments, and
whether such differences, if any, can be largely neutralized during poultry process-
ing, similar to cattle processing (6).

Between chicken breasts, the resistomes of vacuum-packaged products had higher
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normalized ARG abundances than the resistomes of air-permeable samples, largely due
to the higher levels of beta-lactam-class ARGs in the vacuum-adapted resistomes
(Fig. 5). The higher ARG abundances were unrelated to antibiotic use because all the
vacuum-packaged products were also ABF. The perceived resistome differences be-
tween vacuum-packaged and air-permeable samples were caused by different micro-
biome compositions as the consequence of oxygen availability. For example, Aeromo-
nas was abundant on vacuum-packaged samples and outcompeted on air-permeable
samples, whereas Pseudomonas was dominant on air-permeable samples and inhibited
on vacuum-packaged samples (Fig. 2a). Notably, Pseudomonas species have been
reported to be antagonistic against Aeromonas (39). Network analysis revealed the
cooccurrence of Aeromonas and 3 beta-lactam ARGs (cphA1, cphA5, and blaOXA-427) in
chicken breast microbiomes, which was substantiated by the fact that cphA genes were
commonly found on Aeromonas chromosomes (40) and confirmed by ARG analysis of
metagenome contigs (see Table S5 in the supplemental material). Therefore, metag-
enomics profiling of food resistome needs to be interpreted with caution when it
comes to evaluating product safety, quality, and the impact of antibiotic usage during
production. ARGs naturally occur; their presence and even elevated abundance in food
microbiomes do not necessarily indicate selection by antibiotics or occurrence of
multidrug-resistant organisms. As we showed, normalized ARG abundances (ARG cop-
ies per prokaryotic cell) vary among different bacterial populations, with densely
populated populations such as livestock soil and gut (fecal) microbiomes displaying
higher abundances. Abundant ARGs on food samples may be associated with certain
production environments naturally rich in ARGs, which does not directly translate into
higher food safety or quality risks. Therefore, food ARG abundances should not be
interpreted in isolation but considered along with their bacterial hosts and environ-
mental origins. While source attribution of ARGs using short-read metagenomics data
is challenging, cooccurrence identification by network analysis as shown in the current
and previous studies (41) can help reveal prominent associations.

Low abundances of mcr genes (variants of mcr-3, mcr-4, mcr-7, and mcr-9) were
identified in 15 out of 33 retail chicken microbiomes. Notably, mcr-3-positive micro-
biomes (n � 7) had significantly higher relative abundances of Aeromonas than mcr-3-
negative microbiomes (n � 26), indicating that Aeromonas might be a source of mcr
genes in chicken microbiomes. Indeed, chromosome-mediated mcr-3 variants have
been found in Aeromonas isolates from chicken in China (42, 43). Aeromonas has also
been speculated as a reservoir of mcr-7 (44). Other bacterial hosts of mcr genes have
also been identified in our chicken microbiomes, including Klebsiella (45) and She-
wanella (46). Together, our results provide metagenomics evidence for the prevalence
of mcr genes in poultry production (47), although we were not able to determine
whether the mcr genes were plasmid-borne and/or carried by common foodborne
pathogens such as Escherichia coli and Salmonella.

Finally, we showed that shotgun metagenomics data supported sensitive and
specific detection of S. enterica from chicken breasts as benchmarked by the gold
standard of culture enrichment. Shotgun metagenomics considerably outperformed
real-time PCR in detecting S. enterica from the same DNA samples; the latter method
failed to detect the pathogen in any of the 4 culture-confirmed chicken breast samples.
These results suggest that taxonomic classification of sequencing reads increased
detection sensitivity by allowing comprehensive screening for S. enterica signals that
may come from multiple loci of the pathogen’s genome. In comparison, real-time PCR
targeted only a single locus and was less sensitive in detecting S. enterica when only
fractional S. enterica genomes were present in DNA samples extracted from chicken
breast rinsates.

On the other hand, the specificity of taxonomic classification was compromised by
mobile genetic elements such as plasmids and phages. Using k-mer-based taxonomic
classification alone, 17 out of the 33 samples were called S. enterica positive. A similar
issue was observed in metagenomics detection of S. enterica from cattle feces and
attributed to the presence of plasmid sequences in the reference database (48). In our
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study, we found that exclusion of reads of likely plasmid and phage origins by
PPR_Meta substantially increased detection specificity (from 0.52 to 0.93, Table 4). This
method was particularly effective in correcting false-positive calls on vacuum-packaged
samples by sole taxonomic classification, which yielded large quantities of S. enterica-
like reads and unique k-mers for these samples (Table 4). It is possible that vacuum-
packaged samples, whose microbiome compositions were distinct from those of
air-permeable samples, contained non-Salmonella bacteria that shared plasmids or
phages with S. enterica.

Sequencing coverage of metagenome can affect the sensitivity of Salmonella de-
tection. In our study, except for 2 outliers that were excluded from analysis due to
exceedingly low metagenomics coverage (22.5% and 55.5%), the estimated coverage of
samples ranged from 75.6% to 93.8% (mean � 83.7%) (Table 2). These samples yielded
a sensitivity of 75% in detecting S. enterica using the metagenomics approach. The
results suggest that an estimated metagenomics coverage above 80% (�5.3 million
reads) has the potential to detect S. enterica from the vast majority of contaminated
chicken breast microbiomes. Higher coverages may improve detection sensitivity, but
it cannot be statistically determined in our study due to the limited sample size
(n � 35), and especially the small number of Salmonella-positive samples (n � 4). In
fact, the only false-negative sample by metagenomics detection had a higher coverage
(87.6% for CIII-ABF_3) than 2 of the 3 true-positive samples (77.6% for B-II-CONV_4 and
79.8% for B-II-CONV_4), suggesting stochastic coverage of a low-abundance organism
in the microbiome. Future studies of larger scale may help determine optimal levels of
metagenomics coverage that balance the sensitivity of pathogen detection and the
demand for sequencing output.

The performance of metagenomics detection of Salmonella was benchmarked by
culture enrichment that is commonly regarded as the gold standard for foodborne
pathogen detection. However, the equivalency between metagenomics and culture
detection may be skewed by the presence of Salmonella cells that are difficult or unable
to culture. The so-called viable but nonculturable (VBNC) state of Salmonella cells can
be induced by adverse environmental conditions such as chlorine treatment (49) and
starvation (50). Dead pathogen cells whose DNA molecules are still present in food
samples are considered to be a source of false-positive results by DNA-based detection
methods incapable of distinguishing between signals from live and dead cells (51). In
our study, Salmonella was detected by metagenomics sequencing in 2 samples that
were Salmonella negative by culture enrichment, which could be attributed to difficult-
to-culture or dead Salmonella cells. Further validation of metagenomics detection of
foodborne pathogens should evaluate the likelihood that DNA from dead cells could be
sequenced from food samples and whether removal of extracellular DNA during
sample preparation could mitigate or avoid sequencing DNA from dead cells. While a
Salmonella-positive chicken microbiome does not definitively suggest the presence of
live and infectious Salmonella cells on the product, it indicates the occurrence of
Salmonella in the processing environment. Recent advances in quantitative metag-
enomics analysis, such as the use of synthetic internal DNA standards (52), may allow
robust qualification of pathogen or indicator DNA in food microbiomes, which could
help develop probabilistic or quantitative risk assessment of microbial contamination in
processing establishments.

Metagenomics detection of Salmonella has also been performed by 16S rRNA
amplicon sequencing using universal primers for 16S rRNA genes on retail chicken
products from France (29) and South Korea (8). Neither study detected Salmonella; it is
not known whether the negative results reflected low Salmonella prevalence on retail
chicken in these countries or a difference in Salmonella detection sensitivity between
16S rRNA amplicon and shotgun sequencing. A recent comparison between the two
metagenomics approaches in detecting foodborne bacteria suggested superior perfor-
mance by shotgun sequencing (53). Using a mock bacterial community, 16S rRNA
amplicon sequencing based on universal primers showed a lack of consistency and
missed several pathogenic species (53). Nonetheless, it is possible to use specific
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primers for targeted amplicon sequencing to improve the detection of particular
pathogens. 16S rRNA amplicon sequencing is relatively cost-effective and able to
characterize communities with low DNA levels, which can have advantageous appli-
cations.

Conclusion. Our study represents a proof-of-concept investigation into the possi-
bility and practicality of leveraging microbiome-informed food safety and quality.
Through a longitudinal and cross-sectional survey of a household item, we established
the chicken microbiome as a robust and multifaceted food microbiology attribute that
could provide a variety of safety and quality information.

The methodology described here can apply to studying other food commodities.
The diversity of foods and their microbiomes warrants expanding the investigation to
more food matrices to better explore and evaluate metagenomics applications in food
safety and quality.

MATERIALS AND METHODS
Sample collection and preparation. Eight different retail boneless and skinless chicken breast

products under 5 brands (A, B, C, D, and E) were purchased from grocery stores in Griffin (Atlanta
metropolitan area), Georgia. For 7 products, a total of 35 samples were collected between July 2017 and
January 2018; these chicken samples were collected every other week for 3 to 6 months depending on
their retail availability. Two more samples of an additional product were later collected in June 2018 to
confirm the effect of vacuum packaging on the product microbiome. All 37 samples of the 8 products
were traced back to 4 processing establishments (I, II, III, and IV) in Georgia, Arkansas, and North Carolina
using the FSIS establishment numbers (54) on the packages. Five of the 8 products were considered
antibiotic free (ABF) according to the “No Antibiotics Ever” package label. The other 3 without any
antibiotic usage claim were classified as conventional products (CONV). Two products of 8 ABF samples
under brand D and from processing establishment III were vacuum packaged (D-III-ABF-V and D-III-ABV-
V_V/A); these products were sealed in thick oxygen-impermeable film. Other samples had air-permeable
packaging. Detailed sample information is summarized in Table 1. For each sample, two packages of the
same product were purchased and prepared as biological replicates. With the exception of sequencing
coverage estimation, for any quantitative metagenomics measurement detailed below, each replicate
was individually analyzed and the average of two measurements was taken. For the coverage estimation
and the k-mer-based clustering analyses of chicken microbiomes, sequencing reads from the two
replicates of each sample were pooled and analyzed.

Breast samples were stored at 4°C until their designated “sell by” dates. On the “sell by” date, each
sample was inspected; no visual sign of spoilage and off-odor was detected. Each aliquot of 500 g meat
was rinsed in 150 ml buffered peptone water (BPW; Acumedia, USA) by hand massage for 2 min. Thirty
milliliters of the rinsate was collected for aerobic plate count and culture-based detection of Salmonella.
One hundred milliliters of the rinsate was pelleted by a two-step centrifugation before DNA extraction.
The rinsate was first centrifuged at 100 � g for 10 min to remove heavier food particles. The supernatant
was transferred to another tube and centrifuged at 5,000 � g for 15 min to collect bacterial cells. Each
cell pellet was washed by resuspension in 10 ml of 1� phosphate-buffered saline (PBS; Fisher Scientific,
USA) followed by another round of centrifugation at 5,000 � g for 15 min. Finally, the pellet was
resuspended in 5 ml of 1� PBS and used for DNA extraction.

Aerobic plate count. Aerobic plate count was determined for each rinsate sample. Serial dilutions
(10	1 to 10	4) of the rinsates were prepared in BPW, and enumerations were performed on plate count
agar (PCA; Becton, Dickinson, USA) according to the Bacteriological Analytical Manual (BAM) (55). Plate
count agars were incubated at 35°C for 48 h, and single colonies were enumerated from the appropriate
dilutions.

Culture-based detection of Salmonella. Culture-based detection of Salmonella was conducted
according to the Microbiology Laboratory Guidebook (USDA-FSIS) (56) with modifications. Briefly, each
30-ml aliquot of BPW chicken rinsate was incubated at 37°C for 24 h. An 0.1-ml amount of each
preenriched rinsate was transferred to 10 ml of Rappaport-Vassiliadis soya (RV) broth (Acumedia, USA)
and incubated at 42°C for 24 h. After the selective enrichment in RV, a loopful of the enriched sample
was streaked on xylose-lysine-Tergitol 4 agar (XLT4 agar; Becton, Dickinson, USA) and incubated at 37°C
for 24 h. The presumptive Salmonella colonies from the XLT4 agar were plated on triple sugar iron agar
(TSI; Becton, Dickinson, USA) and lysine iron agar (LIA; Acumedia, USA) and incubated at 37°C for 24 h,
followed by confirmation using real-time PCR. Real-time PCR for the detection of Salmonella was
conducted as previously described (57). Samples with a threshold cycle (CT) value of �40 or higher than
that of negative control were considered negative results.

DNA extraction and real-time PCR detection of Salmonella in DNA samples. Pellets of chicken
rinsate samples were subjected to DNA extraction using the PowerSoil extraction kit (Mo Bio, USA)
according to the manufacturer’s instructions. DNA concentrations were determined using a Qubit BR
double-stranded DNA (dsDNA) assay kit (Invitrogen, USA) and were diluted to 0.2 ng/�l for library
preparation. Real-time PCR for Salmonella detection in DNA samples was performed as described above.

Shotgun metagenomic sequencing. DNA libraries were prepared according to the Illumina Nextera
XT DNA library prep kit reference guide. Shotgun metagenomic sequencing was performed on an
Illumina MiSeq platform with the paired-end sequencing strategy (2 � 250 bp). Initial quality inspection
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of the sequencing data was conducted using FastQC (58). Low-quality reads were removed or trimmed
by Trimmomatic (59). The leading three and the trailing three nucleotides were removed from the reads,
and a 4-nucleotide sliding window was used to remove nucleotides from the 3= ends when the average
Phred score dropped below 20. After trimming, reads that were shorter than 75 bp were discarded.

Taxonomic classification of sequencing reads. Trimmed and filtered reads were taxonomically
classified using KrakenUniq (60) with the NCBI nucleotide collection (nt) database (as of August 2018),
which yielded the highest average recall according to KrakenUniq’s performance test (60). Reads
classified as plasmid or phage sequences were discarded after taxonomic classification. The relative
abundances of microbial genus and species in sequencing samples were then determined using Bracken
(61).

Estimation of microbial diversity coverage by shotgun metagenomics sequencing. Reads
classified as “Bacteria” by KrakenUniq were used for further microbiome analyses. Nonpareil (v3.0) (62)
was used to estimate average sequencing coverage of bacterial diversity in each microbiome sample.

Similarity and clustering analyses of chicken breast microbiomes. Pairwise Bray-Curtis dissimi-
larity was calculated between shotgun metagenomics samples using Simka with default settings (63).
Simka computed the dissimilarities based on k-mer counts from sequencing reads classified as bacteria.
Hierarchical clustering and principal-coordinate analysis (PCoA) were performed using Bray-Curtis dis-
similarities with the base R package (64).

Alpha and beta diversities of chicken breast microbiomes. Genus-level read counts obtained from
analyses by KrakenUniq and Bracken were used for alpha and beta diversity calculations. Alpha diversities
were calculated using the Shannon index in the base R package and the Simpson index in the Vegan R
package (65). Beta diversities were calculated using the Bray-Curtis dissimilarities in the Vegan R package.
Genus richness was also calculated using the Vegan R package.

ARG identification from chicken breast microbiomes. Trimmed and filtered sequencing reads
were screened for ARGs using the ARGs-OAP v2.0 (66) pipeline with default settings except using a
customized reference database. ARGs were identified by aligning reads against the ResFinder database
(67) (as of June 2019) using BLAST
 blastn (68) with E value �1 � 10	7. A read was annotated as an ARG
sequence if its best hit had �80% identity and the alignment length was �75 bp (66). ARG sequence
abundances were normalized against a curated list of single-copy genes known as the universal essential
single-copy marker genes available in the ARGs-OAP pipeline (66). The abundance of ARG was expressed
as copies of ARG per prokaryote cell.

ARGs were also identified from assembled metagenome sequences. Metagenomes were de novo
assembled using classified bacterial reads (including plasmid and phage reads) with MEGAHIT (69). Only
contigs over 1 kb were kept for analysis and merged at 99% identity with CD-HIT-EST (70). The resulting
contigs were assembled again using Minimus2 from the AMOS package (71). A median of 6,719 contigs
was obtained for each sample, and the median N50 for these contigs was 2,751 bp (data not shown).
These contigs were screened for ARGs against ResFinder (67) with ABRicate (72). Only hits with sequence
identity �80% and query coverage �80% were kept. To determine the occurrence of ARGs in chromo-
somes or plasmids, we used BLAST
 blastn to align the metagenome contigs against the NCBI nt
database. Hits with sequence identity �70% and query coverage �70% were kept.

Statistical and network analyses. Statistical comparisons of microbiome diversities were performed
using Mann-Whitney U test (2 levels) or Kruskal-Wallis test (�2 levels) in the base R package. Permuta-
tional analysis of variance (PERMANOVA) was performed to compare community difference among
different categories (e.g., ABF versus CONF) using the “adonis” function in the Vegan R package.

For network analysis of microbial and ARG abundances, we first screened 48 ARGs that occurred in
at least 5 retail chicken samples, and 65 microbial genera that occurred in at least 10 retail chicken
samples. This filtering step was performed to remove the poorly represented ARGs and microbial genera
with limited occurrence across samples and thus reduce artificial association bias (41). We then con-
structed a correlation matrix by calculating all possible pairwise Spearman’s rank correlations among
ARGs and microbial genera. Only correlations with the Spearman correlation coefficient (�) �0.8 and the
P value �0.01 were considered statistically robust (41). The P values were adjusted using the Benjamini-
Hochberg method (73). The robust pairwise correlations were then used to build a cooccurrence network
between ARGs and microbial genera. The correlation analysis was performed using the psych R package
(74), and the cooccurrence network was visualized by Gephi (75).

Salmonella detection from chicken breast microbiomes. We compared different approaches for
Salmonella detection from the metagenomic shotgun sequencing data. (i) Taxonomic classification of the
sequencing reads was performed by MetaPhlAn2 with its default marker database (76). Only samples
with an assignment of “s__Salmonella_enterica” were considered positive results. (ii) Taxonomic classi-
fication was performed by KrakenUniq with the NCBI nucleotide collection (nt) database. Only samples
with unique k-mer numbers �1,000 for Salmonella enterica were considered positive results (60). (iii) To
reduce the false-positive Salmonella detection caused by Salmonella-like mobile genetic elements, such
as plasmids and phages, that were present in non-Salmonella organisms, reads classified as “Salmonella
enterica” by KrakenUniq were analyzed by PPR_Meta with default settings (77) to determine whether
these sequences came from chromosomes, plasmids, or phages. Only samples with at least one
chromosomal read classified as S. enterica were considered Salmonella positive.

Other microbiomes. Publicly available shotgun metagenomics data of various poultry and non-
poultry samples were analyzed in comparison with chicken breast microbiomes. These samples included
chicken litter (USA, n � 5), chicken carcass wash (Italy, n � 5), chicken cecal content (Italy, n � 5), chicken
feces (China, n � 3), cattle feces (USA, n � 5; China, n � 5), cattle soil (USA, n � 5), pig feces (China, n � 3;
Europe n � 5), human feces (American, n � 5; Chinese, n � 5; Spanish, n � 5; Danish, n � 5), municipal

Li et al.

September/October 2020 Volume 5 Issue 5 e00589-20 msystems.asm.org 18

https://msystems.asm.org


sludge (Hong Kong, n � 6), hospital sewage (Germany, n � 6), and agricultural soil (USA, n � 5). These
microbiomes were summarized in Table S6 in the supplemental material.

Availability of data and materials. The sequencing data from this study are available in the NCBI
Sequence Read Archive (SRA) under BioProject accession number PRJNA612140. Accession numbers for
the publicly available shotgun metagenomics data used in the study are listed in Table S6.

SUPPLEMENTAL MATERIAL
Supplemental material is available online only.
FIG S1, TIF file, 1.5 MB.
FIG S2, TIF file, 0.3 MB.
FIG S3, TIF file, 2.1 MB.
FIG S4, TIF file, 0.7 MB.
TABLE S1, XLSX file, 0.05 MB.
TABLE S2, XLSX file, 0.03 MB.
TABLE S3, XLSX file, 0.01 MB.
TABLE S4, XLSX file, 0.01 MB.
TABLE S5, XLSX file, 0.01 MB.
TABLE S6, XLSX file, 0.01 MB.
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