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Abstract: Tree height is an essential indicator in forestry research. This indicator is difficult to measure
directly, as well as wind disturbance adds to the measurement difficulty. Therefore, tree height
measurement has always been an issue that experts and scholars strive to improve. We propose a
tree height measurement method based on tree fisheye images to improve the accuracy of tree height
measurements. Our aim is to extract tree height extreme points in fisheye images by proposing an
improved lightweight target detection network YOLOX-tiny. We added CBAM attention mechanism,
transfer learning, and data enhancement methods to improve the recall rate, F1 score, AP, and other
indicators of YOLOX-tiny. This study improves the detection performance of YOLOX-tiny. The use
of deep learning can improve measurement efficiency while ensuring measurement accuracy and
stability. The results showed that the highest relative error of tree measurements was 4.06% and the
average relative error was 1.62%. The analysis showed that the method performed better at all stages
than in previous studies.

Keywords: tree height estimation; equidistant projection; deep learning; fisheye image

1. Introduction

Tree height is one of the most critical parameters in quantitative forest observation.
Tree height research has important implications for urban road planning, air pollution
control, and carbon neutrality. In large-scale forest stock and biomass estimation, tree height
can estimate forest stock and biomass [1,2]. However, the characteristics of trees and the
complex environment make direct measurements difficult. In addition, wind disturbance
also increases the difficulty of measurements.

Traditional forest surveys mostly use theodolites for measurements. Theodolites can
accurately obtain forest parameter factors. However, theodolites are time- and manpower-
consuming. The measurement of theodolites has long survey cycles and low efficiency,
so the real-time and spatial integrity of the data is difficult to keep consistent. A commonly
used tool for measuring tree height is the ultrasonic rangefinder. It has the advantage of
portability and real-time access to data. However, it is subject to human factors and wind
speed and varies significantly from measurement to measurement. Therefore, the measure-
ment of standing tree height remains a problem that researchers are working to improve.

Some researchers use airborne laser scanning (ALS) and terrestrial laser scanning
(TLS) to measure tree heights [3–5]. However, both ALS and TLS have certain drawbacks,
such as ALS is generally expensive and TLS is inconvenient to carry. Measurements using
drone equipment are more costly and have poor endurance. Kędra et al. compared single-
image photogrammetry (SIP) and terrestrial laser scanning (TLS). The results show that,
compared to TLS, SIP can successfully apply tree-like structure feature extractions in mature
forests [6]. Digital image-based measurement methods have obvious advantages in terms
of economic considerations. Photogrammetry has come a long way with the development
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of photography and computer vision, which has led researchers to look for new ways to
measure tree heights [7,8].

The monocular vision measurement of ordinary cameras has the advantages of easy
image acquisition and fewer calculation parameters required for calibration. However,
normal cameras have small viewing angles and require long shooting distances when mea-
suring large-scene objects. In 2000, Zhang proposed a tessellation grid calibration method
based on pinhole cameras [9]. Before this, camera calibration often required high precision
calibrators while Zhang’s calibration method only required a printed checkerboard grid.
After acquiring images of different directions from the checkerboard calibration plate,
correspondence between the target in the 3D space and the image points on the 2D image
plane can be established. After that, the internal and external parameters of the camera can
be solved. However, the method is only applicable to ordinary pinhole cameras and the
calibration effect is not suitable for wide-angle cameras. Scaramuzza proposed an omni-
directional camera modeling method based on the Taylor series model, which focuses on
the calibration of fisheye lenses and refractive lenses within 195◦ [10]. The omnidirectional
camera calibration method is widely used in fisheye camera calibrations because of its
simple, accurate, and easy-to-use features.

Photogrammetry uses vision-based measurement methods to identify measured ob-
jects in an image. Then, it uses image processing technology to obtain coordinates of
the central part of the image. The obtained coordinates are brought into the correspond-
ing mathematical model and the measured value of the measured object can be calcu-
lated [11–13]. The extraction of extreme points in the central part of the image adopts a
clustering algorithm. However, uncompressed images consume much memory which
results in a long execution time for the clustering algorithm [14,15]. The image quality
will be degraded after compression, which will affect measurement accuracy [16]. Re-
searchers need to manually set the number of clusters in the clustering process based on
experience [17]. In 2016, Redmon et al. first proposed the YOLO algorithm [18]. After that,
the YOLO series of algorithms were widely used in agriculture, medicine, and intelligent
transportation [19–21]. The YOLO series of algorithms have shown superior performance.
With the continuous development of image detection algorithms, the accuracy based on
deep learning has continued to improve. In 2021, Bochkovskiy and other researchers pro-
posed YOLOv4, whose accuracy has been significantly improved compared with previous
detection algorithms [22]. After YOLOv4, the YOLOX object detection network appeared
and showed superior performance [23]. The YOLO series algorithm can accurately extract
image feature points after training, as well as it consumes less time and does not require
human experience intervention [24–27].

In this study, we propose a highly robust method for the non-contact measurements of
tree height. The method uses a smartphone with a fisheye lens to capture images. The im-
proved YOLOX algorithm is used for tree recognition and image coordinate extraction,
improving recognition accuracy and efficiency.

2. Materials and Methods
2.1. Establishment of the Measurement Model

All characters and abbreviations appearing in this paper are located in Table A1 in
the Appendix A. The parameters of the fisheye lens and smartphone are in Table A2 in
the Appendix A. The measurement system model of this method is constructed based on
the principle of the equidistant projection model. Here, P(xw, yw, zw) is the target point in
the world coordinate system and P′ is the imaging point corresponding to P in the camera
coordinate system.

According to the isometric projection theorem, the projection relationship is expressed
as follows:

r′ = f w (1)

w = tan−1(r/L) = tan−1[(xw
2 + yw

2)
1/2

/L] (2)
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where r′ is the distance from the point P′ to the optical axis, f is the object square focal
length of the optical system, w is the incident angle of the point P relative to the optical
axis, and L is the horizontal distance between the point in the world coordinate system
and the center of the fisheye lens. Due to the distortion of the fisheye lens, to ensure the
uniformity of the image, the distortion coefficient λ is introduced to obtain the following:

r′ = λ f w (3)

The camera plane center point is Oc(x0, y0), the coordinates of the P′ point are (xc, yc),
and the coordinates of the P point are (xw, yw, zw). If the distortion coefficient components
of xc and yc axes are λx and λy, then:{

xc − x0 = r′ cos θ = λx f w cos θ
yc − y0 = r′ sin θ = λy f w sin θ

(4)

{
cos θ = xw/(xw

2 + yw
2)

1/2

sin θ = yw/(xw
2 + yw

2)
1/2 (5)

where θ is the azimuth of point P and also the azimuth of point P′ in the camera coordinate
system. The coordinates of the center point o in the image pixel coordinate system are
(u0, v0); P′ is obtained by equidistant projection P′ and the relationship between the camera
coordinate system and the corresponding points in the image pixel coordinate system is
as follows: {

u− u0 = mx(xc − x0) = λxmx f (xc − x0)
v− v0 = my(yc − y0) = λxmy f (yc − y0)

(6)

where, mx and my are the amplification factors. kx = λxmx f , ky = λymy f .
From Equations (1)–(6), the relationship between image coordinates and world coordi-

nates is as follows: 
u = xwkx√

xw2+yw2
tan−1

√
xw2+yw2

L + u0

v =
ywky√

xw2+yw2
tan−1

√
xw2+yw2

L + v0

(7)

The measurement system model consists of a fisheye lens, a rangefinder, and a smart-
phone. The measurement system model is shown in Figure 1.
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When using a smartphone equipped with a fisheye lens to take a picture of a single tree,
A′(uA′ , vA′) and B′(uB′ , vB′) are the corresponding points in the image coordinate system,
which are also the extreme points of the tree. The relationship between the corresponding
points in the world coordinate system and the image pixel coordinate system are as follows:

xw = L√
1+
[

kx(v−v0)
ky(u−u0)

]2
tan

(u−u0)

√
1+
[

kx(v−v0)
ky(u−u0)

]2

kx

yw = kx(v−v0)
ky(u−u0)

x

(8)

The coordinates of the center point of the image coordinate system are o(u0, v0).
kx and ky are the distortion coefficients of the fisheye image, which can be obtained by
the camera calibration method. L is the horizontal distance, which the following formula
can obtain:

L = h + l (9)

where h is the horizontal distance in the world coordinate system and l is the virtual
imaging distance of the fisheye lens. Through the transformation relationship between
coordinate systems, the following formula can be obtained:

xw = L√
1+
[

kx(v−v0)
ky(u−u0)

]2
tan

(u−u0)

√
1+
[

kx(v−v0)
ky(u−u0)

]2

kx

yw = kx(v−v0)L

ky(u−u0)

√
1+
[

kx(v−v0)
ky(u−u0)

]2
tan

(u−u0)

√
1+
[

kx(v−v0)
ky(u−u0)

]2

kx

(10)

According to Equation (10), H is the result obtained by the measurement system
model [28].

H = [(xA − xB)
2 + (yA − yB)

2]
1/2

(11)

In Equation (11), H is the final calculated tree height value; the extreme points
A′(uA′ , vA′) and B′(uB′ , vB′) of the tree are the parameters needed to calculate the tree height.

Tree extrema are defined as the highest and lowest points of a tree. The improved
YOLOX-tiny object detection network can detect the complete tree and extract tree extreme
points. After that, the extracted extreme points are brought into the tree height estimation
model to calculate the tree’s height. The general flow chart for estimating tree height is
shown in Figure 2.
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The procedure for calculating tree height is as follows:

• Set up measuring equipment. A smartphone with a fisheye lens is required to set up
the measuring equipment.

• Acquire images. After training is complete, only one image of the tree under test needs
to be collected.

• Extract extreme points. Deep learning methods can perform this step quickly and accurately.
• Build a tree height calculation model. This step only needs to be done once during the

initial calculation.
• Calculate tree height. Obtain results and perform error analysis.

2.2. Improved Target Detection Network

YOLOX is similar to the previous YOLO version. The whole YOLOX can be divided
into the following parts: CSPDarknet is the backbone feature extraction network of YOLOX.
The input image is extracted in CSPDarknet and the extracted features are the feature layer,
which is the feature set of the input image. FPN is an enhanced feature extraction network
of YOLOX. The feature extraction module is performed using the obtained effective feature
layers. YOLOX not only upsamples the fused features but also downsamples the fused
features. YOLO Head is a classifier of YOLOX with three enhanced effective feature layers
obtained by CSPDarknet and FPN. Each feature layer has a width, height, and number
of channels. YOLOX uses the Focus network structure, which is used in YOLOV5. In a
picture, every other pixel takes a value to get four independent feature layers and then
these four separate feature layers are stacked. First, the input image is subjected to shallow
feature extraction. Then, the three feature layers are outputted to the feature fusion part for
deep feature extraction.

The attention mechanism refers to the panorama of the image that the human vision
can focus on a certain local area. The attention mechanism is also used in the research of
deep learning. The idea is to use new weights to highlight key points in the image data and
train the network. The model identifies the location of the target of interest in the dataset.
CBAM (Convolutional Block Attention Module) is a lightweight attention module [29].

CBAM first learns the weight distribution from the relevant features. Then, it feeds
the weights back to the features to enhance the network feature recognition ability. The con-
volutional layer plays a crucial role in the process of feature extraction. The number of
channels in each convolution layer is only related to the number of convolution kernels.
The feature map is the result of the convolution operation of the input image. However,
the convolution layer contains many convolution kernels and the generated feature map
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will also have a corresponding number of channels. The existence of the attention model
plays a role in channel filtering.

In this study, embedding the CBAM module keeps the original YOLOX-tiny structure
(Attention-YOLOX-tiny). The network structure of Attention-YOLOX-tiny is shown in
Figure 3.
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Figure 3. Attention-YOLOX-tiny network structure.

To obtain better detection results, the transfer learning method is used to load the
pre-trained model [30]. The learning model needs to learn related source tasks on the
source domain and then transfer the knowledge to the target task on the target domain to
improve the model’s performance on specific tasks. Given the source domain (DS) and
the source task (TS), the target domain (DT) and target task (TT), the knowledge acquired,
and TS help the model solve the prediction function ( fT) of TT on DT . The transfer learning
process is shown in Figure 4.
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Figure 4. Transfer learning.

During the training process, mosaic data augmentation is used to augment the dataset.
Mosaic data enhancement refers to reading four pictures at a time, flipping, scaling,
and changing the color gamut of the four pictures, respectively. Then, it positions ac-
cording to the positions of the four directions and combines the pictures and frames.
The mosaic data enhancement method is shown in Figure 5.
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3. Experimental Results and Analysis
3.1. Validation of Fisheye Lens Measurement Model

After obtaining the required parameters of the tree height measurement model, the tree
height measurement model is used to measure the distance between the corner points of
the black and white chessboard. The measurement model is verified by comparing the
actual distance between the corner points.

The optical centroid is found using the Scaramuzza model and the fisheye image is pro-
cessed by directly calling the matlab2018b fisheye lens calibration toolbox. The extraction
of the checkerboard and checkerboard corners is shown in Figure 6.
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Figure 6. Checkerboard and corner extraction. (a) Fisheye image; (b) Corner extraction.

The following steps were performed: camera calibration, calculation of the distortion
coefficient corresponding to all corners in each chessboard, and the average value was
taken for subsequent calculations. Five sets of chessboard diagrams with different distances
were taken to verify the accuracy of the measurement model, as shown in Figure 7.
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Figure 7. Corner point position selection and calibration plate position selection. (a) Corner point
position, A, B, C, and D are corner points; (b) Five positions of the calibration plate.

Three sets of distances, AB, AC, and AD, were taken on the chessboard, the error was
analyzed, and the accuracy of the measurement model was verified. Table 1 shows the
calculation results of the distance between AB, AC, and AD.

Table 1. AB, AC, AD calculation results.

Measuring
Distance (mm) Corner Point Pixel Coordinate Global Coordinates Calculated

Value (mm)
Measured

Value (mm)
Relative
Error (%)

320
A (898, 687) (−285.0330, −375.9156)

656.3162 650 0.9717B (810, 2290) (−300.6751, 280.2142)

612
A (1091, 966) (−307.0069, −388.4370)

656.2374 650 0.9896B (1062, 2021) (−310.4134, 267.7916)

993
A (1179, 1160) (−375.2495, −395.9568)

657.1972 650 1.1073B (1150, 1860) (−394.4027, 260.9612)

1502
A (1374, 1282) (−274.3518, −401.1987)

652.1023 650 0.3234B (1358, 1766) (−292.3145, 250.6562)

2041
A (1405, 1346) (−312.3874, −422.4221)

654.4923 650 0.6911B (1389, 1707) (−338.4833, 231.5497)

320
A (898, 687) (−285.0330, −375.9156)

647.8777 650 0.3265C (2414, 782) (362.2036, −347.1019)

612
A (1091, 966) (−307.0069, −388.4370)

655.2693 650 0.8107C (2126, 1000) (347.9883, −369.4865)

993
A (1179, 1160) (−375.2495, −395.9568)

644.3722 650 0.8658C (1870, 1195) (267.0121, −352.6874)

1502
A (1374, 1282) (−274.3518, −401.1987)

642.8080 650 1.1065C (1850, 1301) (368.0232, −377.6071)

2041
A (1405, 1346) (−312.3874, −422.4221)

641.7176 650 1.2742C (1760, 1365) (328.3721, −387.3684)

320
A (898, 687) (−285.0330, −375.9156)

928.6904 919.238 1.0282D (2410, 2314) (344.7874, 306.5740)

612
A (1091, 966) (−307.0069, −388.4370)

921.6590 919.238 0.2633D (2086, 2065) (308.7236, 297.3699)

993
A (1179, 1160) (−375.2495, −395.9568)

928.6176 919.238 1.0203D (1850, 1890) (244.6171, 281.7389)

1502
A (1374, 1282) (−274.3518, −401.1987)

912.5988 919.238 0.7223D (1829, 1785) (335.5699, 277.6474)

2041
A (1405, 1346) (−312.3874, −422.4221)

911.4613 919.238 0.8461D (1741, 1723) (291.7372, 260.0696)

Mean value 0.8231
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The analysis and calculation results show that the average relative error is 0.823%.
The measurement error of this measurement model is low and can be applied to the
measurement of tree height.

3.2. Tree Detection and Extreme Point Extraction

Before taking pictures, 178 randomly selected trees from the Northeast Forestry Uni-
versity were marked. To improve the robustness of the model and fully consider the effect
of light in the experiments, a smartphone equipped with a fisheye lens was used to capture
fisheye images on sunny and cloudy days. We acquired 1035 photos (including 537 on
sunny days and 498 on cloudy days). The image acquisition time covers the whole day.
The dataset contains different light intensities which ensures the adaptability of the method
to different light intensities and improves the robustness of the prediction model. Figure 8
shows annotation results of the fisheye images under different weather conditions.
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To explore the network structure of YOLOX with the best detection effect, YOLOX-s,
YOLOX-tiny, and Attention-YOLOX-tiny are tested. The precision (P), recall (R), F1 score (F1),
and average precision (AP) are used to evaluate the target detection model. P is for the
prediction result and it is the proportion of correctly predicted positive samples to all pre-
dicted samples. R is for the original sample and it is the proportion of correctly predicted
positive samples out of all positive samples. F1 is an indicator and a trade-off of P and R.
AP is the area under the P–R curve. AP can measure the trained model on a single tree
prediction. These evaluation indicators are defined as the following formulas:

P =
TP

TP + FP
(12)

R =
TP

TP + FN
(13)

F1score =
2P× R
P + R

(14)

AP =
∫ 1

0
P(R)dR (15)

The acquired images were used to make a fisheye image dataset. To increase the
training efficiency, Docsmall (an image compression website) was used to compress the
images before training. The compressed images were divided into a training set and
validation set. The ratio of the training set and validation set was 9:1. The processor used
for training was Intel Core I7-10700K, 3.80 GHZ processor, 32 GB memory, 10 GB NVIDIA
RTX 3080 GPU. The training parameters are set as shown in Table 2. The evaluation results
of each network are shown in Table 3.
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Table 2. Training parameters.

Parameters Value

Input size 640 × 640
Output size 640 × 640

Learning rate adaptive
Batch size 8

Epoch 300

Table 3. Detection evaluation of different networks.

Model Epoch P (%) R (%) F1 AP (%)

YOLOX-s 300 92.57 95.90 0.94 96.27
YOLOX-tiny 300 93.03 95.90 0.94 97.26

Attention-YOLOX-tiny 300 92.27 97.95 0.95 97.80

As shown in Table 3, on the fisheye image dataset of trees, the P of Attention-YOLOX-
tiny is 92.27%, R is 97.95%, F1 is 0.95, and AP is 97.80%. Most of the performance metrics of
Attention-YOLOX-tiny, including R, F1, and AP, are better than YOLOX-s and YOLOX-tiny.
The evaluation process of the Attention-YOLOX-tiny detection model is shown in Figure 9.
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From the detection indicators in Figure 9, it can be concluded that the prediction
results of trees can meet the requirements of accurate detection of trees. The LOSS function
curve of the training process is shown in Figure 10.
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Figure 10. LOSS function change curve.

Figure 10 shows the loss variation curve of Attention-YOLOX-tiny, where the hori-
zontal and vertical axes represent training epochs and loss values. With the increasing
number of training iterations, the loss value on the training set, the loss value on the
validation set, the smooth loss value on the training set, and the smooth loss value on the
validation set of Attention-YOLOX-tiny all decrease rapidly at first, and then gradually
decrease. The loss curve of Attention-YOLOX-tiny gradually converges around 2.0 after
about 150 iterations. The loss curve has converged which indicates that the predicted
output is credible. The trained model has learned the characteristics of the tree under the
fisheye distortion and can extract the extreme points.

Figure 11 shows the detection result of the tree and the extraction result of the extreme
points of the tree. Through the above experimental analysis, it can be concluded that
Attention-YOLOX-tiny can accurately detect the target object in the picture. By extracting
the coordinates of the detection frame in the picture, the coordinates of the extreme point
A′(uA′ , vA′) and the extreme point B′(uB′ , vB′) in the model can be obtained.
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Figure 11. Tree detection and tree extreme point extraction. (a) Fisheye image of detection tree;
(b) Extract extreme points.

3.3. Tree Height Calculation

The coordinates of A′(uA′ , vA′) and B′(uB′ , vB′) are the coordinates of the midpoints
of the upper and lower frame lines in the image. The fisheye lens measurement model is
taken to obtain the predicted tree height. In this experiment, the average value of the ten
times measured by the theodolite was taken as the actual value. We selected 83 trees as
validation data and for contrastive measurements with Transponder T3. The tree height
measurement results are shown in Figure 12; Figure 12a is the comparison of the relative
errors of the fisheye model and Transponder T3 and Figure 12b is the comparison of their
measurement values.
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Figure 12. Measurement results. (a) Measurement Error; (b) Measured value.

The experimental results show that the average relative error of the method in this
paper is 1.62% and the average relative error of Transponder T3 is 3.23%. Through com-
parison, it can be found that the average error of this method is significantly smaller than
Transponder T3. The calculation result of this method is more stable than Transponder T3.

3.4. Wind Interference Experiment

The measurement environment in practical applications is variable. To verify the
accuracy of this method under windy measurement conditions, a windy day was selected.
The wind level was 5~6 (taken from China Weather Network). Transponder T3 does not
work correctly in this condition. The fisheye images of 30 trees were obtained and calculated.
The experiment shows that under the conditions of wind measurement, the average error
of this method is 2.31% and Transponder T3 has completely failed. The calculation result
of this method is shown in Figure 13. The shaded part in the Figure 13 is the absolute
error. The practicality of this method under the influence of wind is better than that of
Transponder T3.

1 
 

 
Figure 13. Errors under different measurement conditions. (a) The wind is less than level 3; (b) The wind
is at level 5~6.

When the wind reaches level 5~6, the measurement effect of the method in this paper
is affected because the wind changes the shape of the tree and affects the extreme point
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coordinates of the tree extracted by Attention-YOLOX-tiny. This eventually leads to an
increase in measurement error.

4. Conclusions

Compared with the ultrasonic rangefinder to measure tree height, the relative error of
the ultrasonic rangefinder was the highest at 6.04%, the lowest was 0.34%, and the aver-age
relative error was 3.23%. The highest relative error of the method calculated in this paper
is 4.06%, the lowest relative error is 0.5%, and the average relative error is 1.62%. In tree
detection, Attention-YOLOX-tiny can accurately and quickly extract the extreme points of
trees. Overall, the average relative error of the method in this paper is low, which is better
than the ultrasonic rangefinder in measurement accuracy. The method has the advantages
of stable measurement, compact structure, and easy portability.

Experiments were carried out to analyze the errors under different measurement
conditions. The average relative error of the method in this paper is 2.31% under the
condition of level 5–6 wind. Compared with the no-wind condition, the relative error
calculated by this method increases slightly under the gale conditions. However, it can still
complete the measurement task and maintain good accuracy.

As an important indicator for measuring forest carbon storage, tree height has always
been a hotspot in forest research. This study obtains Attention-YOLOX-tiny by improv-
ing the target detection network and proposes a new method for measuring tree height
based on Attention-YOLOX-tiny. Consisting of a mobile phone and a matching fisheye
lens, the measurement device will continue to improve with the rapid development of
electronics and manufacturing capabilities. The proposal of more accurate and lightweight
detection networks in computer vision can extract the extreme points of trees more quickly
and accurately. In future research, tree extremum points can be extracted by faster and
more accurate object detection and segmentation networks. The disadvantage of this re-
search is that it is difficult to obtain 3D information about trees only through 2D images;
3D reconstruction of trees through images is the main break-through direction in the future.
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Appendix A

Table A1. Symbols and abbreviations which appear in the text.

Symbol or Abbreviation Explanation

P The target point in the world coordinate system.
P’ The imaging point corresponding to P in the camera coordinate system.
r’ The distance from the point P’ to the optical axis.
f The object square focal length of the optical system.
w The incident angle of the point P relative to the optical axis.

L The horizontal distance between the point in the world coordinate system and the center of the
fisheye lens.

λ The distortion coefficient.
θ The azimuth of point P and the azimuth of point P’ in the camera coordinate system.

mx and my The amplification factors.
kx and ky The distortion coefficients of the fisheye image.

h The horizontal distance in the world coordinate system.
H The result was obtained by the measurement system model.

CBMA Convolutional Block Attention Module.
DS Source domain.
TS Source task.
DT Target domain.
TT Target task.
fT Target function.

Table A2. Measuring equipment parameters.

Fisheye Lens Smartphone

Attributes Value Unit Attributes Value Unit

Thread diameter 17 mm Size 148.9 × 71.1 × 8.5 mm
Angle 180 Pixel 50 million
Weight 36 g Weight 175 g

Resolution 4096 × 4096 dpi Photo resolution 8192 × 6144 dpi
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