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Introduction 

Technology-enhanced educational environment, pro-

vide several benefits to improve surgical education pro-

grams. For instance, simulation is one of the technologies 

that allows trainees to perform clinical activities interac-

tively by recreating such operations in a computer-based 

system without exposing patients to the associated risks 

(Maran & Glavin, 2003; Munshi, Lababidi, & Alyousef, 
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2015). However, still there is a need for research to de-

velop strategies for improving the curriculum integration 

of these systems and for creating standardized approaches.  

In this respect, the mental workload theory and the eye-

tracking technology are two important concepts that can be 

implemented in surgical education programs.  

The mental workload concept has long been accepted 

as an essential aspect of individual performance within 

complex systems (Xie & Salvendy, 2000). It is reported 

that mental workload can change the performance of indi-

viduals (Zheng, Cassera, Martinec, Spaun, & Swanström, 

2010) and further affect the competence of the whole sys-

tem (Xie & Salvendy, 2000). Accordingly, system devel-

opers need certain models to assess the mental workload 

imposed on individuals at an early stages so that alterna-

tive system designs can be appraised (Xie & Salvendy, 

2000). At the same time, mental workload can negatively 

affect performance and increase the probability of errors 

(Zheng et al., 2010), and researchers have spent a great 

deal of effort developing measures and probes of mental 

workload (Ahlstrom & Friedman-Berg, 2006). Support-

ively, Moray (1988) stated that adjusting the allocation of 

mental workload could reduce human errors, improve sys-

tem safety, and increase productivity. In earlier studies, 

three types of mental workload has been defined: intrinsic 

load, extraneous or ineffective load, and germane or effec-

tive load (Sweller, Van Merrienboer, & Paas, 1998). In-

trinsic load is an interaction between the nature of the ma-

terial being learned and the expertise of the learners (Paas, 

Tuovinen, Tabbers, & Van Gerven, 2003; Sweller et al., 

1998). Extraneous load is resulting from mainly poorly de-

signed instruction, and germane load is related to pro-

cesses that contribute to the construction and automation 

of schemas (Paas et al., 2003). 

Eye-tacking provides a valuable source of information, 

and events such as fixations, blinks, and pupil diameter can 

be used to assess the mental workload (Tsai, Viirre, Stry-

chacz, Chase, & Jung, 2007). Accordingly, there are sev-

eral studies conducted on the assessment of mental work-

load by using eye-tracking technology (Menekse Dalveren 

& Cagiltay, 2018). A precise evaluation of mental work-

load will be essential for developing systems that manage 

user attention (Atkins, Tien, Khan, Meneghetti, & Zheng, 

2013; Dalveren, Çağıltay, Özçelik, & Maraş, 2017; Iqbal, 

Zheng, & Bailey, 2004). Researchers have used eye-move-

ment events found to correlate with cognitive demands 

(Ahlstrom & Friedman-Berg, 2006). For instance, 

Benedetto et al. (2011) examined the changes in blink du-

ration and blink rate in a simple driving task and stated that 

blink events reflect the effects of visual workload. Another 

study evaluates the mental workload by developing com-

bined measures based on various physiological indices 

(Ryu & Myung, 2005). To determine the mental workload, 

three physiological signals were recorded; these are: alpha 

rhythm, eye blink interval, and heart rate variability (Ryu 

& Myung, 2005). The study of de Greef, Lafeber, van 

Oostendorp, and Lindenberg (2009) describes an approach 

for objective assessment of mental workload by analyzing 

the differences in pupil diameter and several aspects of 

eye-movement under different levels of mental workload. 

Eye-movement events are also used in medicine for diag-

noses, treatment and training purposes (Jarodzka, 

Holmqvist, & Gruber, 2017) and for clinical applications 

such as Alzheimer’s (Crawford et al., 2005), HIV-1 in-

fected patients with eye-movement dysfunction (Sweeney, 

Brew, Keilp, Sidtis, & Price, 1991), and schizophrenia 

(Flechtner, Steinacher, Sauer, & Mackert, 1997). Studies 

show that these events provide crucial information about 

how users interact with complex visual displays (Marshall, 

2002). The field of radiology and visual search (Nodine & 

Kundel, 1987) and laparoscopic surgery training (Law, At-

kins, Kirkpatrick, & Lomax, 2004; Tien, Atkins, Zheng, & 

Swindells, 2010) are among the cases in medicine where 

eye-tracking approach has been adopted. To provide an ex-

ample, according to the study by Zheng, Jiang, and Atkins 

(2015), participants perform a simulated laparoscopic pro-

cedure, and when the task difficulty is increased, the task 

completion time and pupil size also increase as a result.  

Previous studies were conducted mostly on pupil size 

changes, but there are other eye-movement events, fixation 

for example, that can be informative for understanding 

mental workload. Fixation occurs when eye-movements 

are nearly still in order to assemble necessary information. 

Accordingly, in this study fixation number and fixation du-

ration events are used to validate the mental workload im-

posed by different scenarios. As changes in eye-movement 

events, such as fixation number and fixation duration, with 

changes in mental workload are likely affected due to the 

nature of the scenarios (Tsai et al., 2007), understanding 

the surgical resident’s mental workload while performing 

surgical operations is crucial for assessing task difficulties 

(Andrzejewska & Stolińska, 2016). It is stated by Just and 

Carpenter (1976) longer fixation duration related with dif-

ficulty in interpreting the information present or a greater 

involvement in its exploration. Accordingly, it was found 
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that more complex problem results in more fixation num-

bers and longer fixation duration (Bałaj & Szubielska, 

2014; Menekse Dalveren & Cagiltay, 2018; Rayner, 

1998). Also, another study stated that the fixation duration 

might be related to the mental workload, when the mental 

workload increases the longer fixation duration for obser-

vation occurs (Brookings, Wilson, & Swain, 1996; 

Hankins & Wilson, 1998; Veltman & Gaillard, 1998; 

Wierwille, Rahimi, & Casali, 1985). Hence, this study at-

tempts to understand the mental workload changes of the 

participants through their eye-movement events, namely 

fixation number and fixation duration, while performing 

tasks having different difficulty levels in four surgical sce-

narios. Accordingly, the scenarios are developed in differ-

ent fidelity levels (high- and low-fidelity) which expected 

to affect mental workload of the participants. Additionally, 

in each scenario, the hand condition effect on mental work-

load is also investigated. Hence, in this study it is hypoth-

esized that because of the changes in the mental workload 

under these situations (different hand conditions, fidelity 

levels and task difficulties of scenarios) eye-tracking data 

would display different behaviors. The authors believe 

that, this information will be very critical to better under-

stand the mental workload of the participants in these sit-

uations. This information provides insights to the instruc-

tional system designers to better order and adapt related 

computer-based simulation technologies according to the 

skill levels and progress of the trainees. 

Methods 

In this experimental study, 23 surgical residents per-

formed the tasks assigned in four different computer-based 

simulation scenarios by their dominant hand, non-domi-

nant hand and both-hands. During this process, their eye-

movement data is recorded by an eye-tracker. The results 

were analyzed using statistical methods aimed to better un-

derstand the surgical residents’ behaviors in these different 

simulation scenarios.  

Participants 

Twenty three volunteer surgical residents participated 

in this study from the Neurosurgery and Ear-Nose-Throat 

(ENT) surgery departments of a medical school. The ma-

jority of the participants were male (87.0%) and do not use 

eye-glasses (73.9%).  

 

Apparatus 

The eye-movement data of the surgical residents were 

recorded with an eye-tracker device while the scenarios 

were performed under different hand conditions with hap-

tic devices. The data was recorded by The Eye Tribe ("The 

Eye Tribe," 2016) eye-tracker at 60 Hz with a screen reso-

lution of 1920×1080 pixels. The Eye Tribe is a Danish 

start-up company that produces eye-tracking technology 

and offers the product to software developers to be incor-

porated into different applications and programs. The com-

pany focuses on a sleek appearance and a portable struc-

ture. The Eye Tribe Eye Tracker is an affordable device, 

thereby making it a potentially available tool for research. 

According to Coyne and Sibley (2016), the Eye Tribe sys-

tem results are quite promising for human factors research-

ers. Dalmaijer (2014) stated that researchers on a budget 

can use the Eye Tribe tracker for the evaluation of fixation 

events and pupil size. 

Since haptic devices enable participants to perform 

movements in the simulated environments, for performing 

the tasks the Geomagic Touch mid-range professional hap-

tic device ("Three D Systems," 2018) is used alongside 3D 

Systems haptic devices presenting real 3D navigation and 

force feedback. 

Scenarios 

Four scenarios were developed for the collection of 

surgical residents’ eye-movement data. These scenarios 

were implemented using Unity Platform and C# Program-

ming language. The scenarios were performed with the 

dominant-hand, then with the non-dominant hand and, fi-

nally, both-hands in a given fixed period of time. For 

providing more objectivity, 12 of the participants started 

to perform the tasks by their dominant hand, and the re-

maining participants started with their non-dominant hand. 

Increasing the 3D depth perception, using the surgical in-

struments efficiently, fast-following up of objects, and im-

proving the ability to plan and strategize were the learning 

outcomes of these scenarios. Accordingly, different tasks 

were defined in each scenario to reach, move and control 

objects in 3D environments simulating real surgical condi-

tions. Current development technologies allow the recrea-

tion of real-life operations with adequate fidelity, thus pro-

foundly improving the training environment (Munshi et 

al., 2015). Accordingly, in this study two of the scenarios 

were simulated as surgical model and can be considered as 
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higher-fidelity; the other two were based on general mod-

els which can be considered as lower-fidelity. High-fidel-

ity scenarios were simulation of a human nose with the 

view of a real surgical operation and real skin texture. Also 

the tasks performed in high-fidelity scenarios were more 

complex than the low-fidelity scenarios. In addition, it is 

critical for surgical residents to improve their hand skills. 

In real operations they have to use their both hands in sim-

ultaneously. Accordingly, the simulated surgical tasks in 

this study performed in different hand conditions (domi-

nant, non-dominant and both) to represent different com-

plexity levels of the tasks. Hence, as it is defined the men-

tal load caused by the internal complexity of the learning 

materials (Sweller, 1994), the intrinsic load is expected to 

be increased in scenarios having higher complexity levels.  

In Scenario-1, it is necessary to catch the red ball (Fig-

ure 1: A) that appears at random places in a room with a 

surgical tool. After catching the red ball the aim is placing 

it on the cube, which also appears at random places (Figure 

1: B). This scenario is a general simulation model aimed 

to gain the ability to use the surgical instrument and to de-

velop depth perception and the process has to be com-

pleted 10 times in a given fixed period of time. 

 

Figure 1. Scenario-1 

In Scenario-2, it is necessary to remove the tumor like 

objects in a given fixed period of time using a surgical tool 

from a model which was designed based on the inside of a 

human nose. These tumor objects located in 10 different 

places (Figure 2: A & B). This scenario is a simulated sur-

gical model, which has made it possible for surgical resi-

dents to feel as if they are in surgical settings. Surgical res-

idents can move the endoscopic device through the nose 

using the haptic device and feel the tissue as the device 

give force feedback upon collision with any surface. By 

using the surgical tool in the most accurate way, it is ex-

pected to complete the operation by carefully removing the 

tumors from their locations.  

 

Figure 2. Scenario-2 

In Scenario-3, the aim is to approach to the red ball 

with the correct angle and explode it in a given fixed pe-

riod of time. This ball appears 10 times in different cubes 

randomly (Figure 3: A & B). If the correct angle is 

achieved, the ball will explode; otherwise it will not. In this 

scenario the aim is to develop depth perceptions and im-

prove ability to approach a certain point with the correct 

angle. This scenario is a simulation of a general model. 

 

Figure 3. Scenario-3 

In Scenario-4, surgical residents are expected to move 

the ball over a certain path in the nose model by approach-

ing it with a correct angle in a given fixed period of time 

(Figure 4: A & B). This scenario is a simulated surgical 

model and designed like inside of human nose with similar 

texture, simulating the field vision of a surgical resident 

during an actual operation. 

 

Figure 4. Scenario-4 

Procedure 

First, an instruction describing the procedure was given 

individually and the personal information of the partici-

pants were recorded. Volunteers were seated and centered 

in front of the monitor at a distance of 70cm and 9 calibra-

tion points were presented for eye-tracker device calibra-

tion. The scenarios were performed in the order of 1, 3, 2 
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and 4 representing the scenario numbers. Randomly, 

twelve of the participants started to perform the scenarios 

first with their dominant-hand and the other group with 

their non-dominant hand. Afterwards, they performed the 

tasks with their both hands, under which conditions they 

used the operation tool with their dominant hand and the 

camera tool with their non-dominant hand for lighting up 

the operation area. The recorded raw eye data was classi-

fied into number of fixation and fixation duration using an 

open-source eye-movement classification algorithm (Bin-

ocular-Individual Threshold-BIT). BIT algorithm (van der 

Lans, Wedel, & Pieters, 2011) is a velocity-based algo-

rithm to classify fixations from the data with individual-

specific thresholds which was implemented in MATLAB. 

To verify fixations, the algorithm uses the velocity thresh-

olds of both eyes. Also, BIT is a parameter-free fixation-

identification algorithm that automatically identifies task- 

and individual-specific velocity thresholds by optimally 

exploiting the statistical properties of the eye movement 

data across different eyes and directions of eye movements 

(van der Lans et al., 2011). The BIT algorithm has ad-

vantages over the existing algorithms in that it contains 

binocular viewing and uses the information about fixations 

and co-variations between the movements of both eyes to 

identify saccades; it estimates rather than pre-sets the ve-

locity threshold to identify fixations and saccades, and it 

permits the threshold to vary between eye-movement di-

rections, tasks and individuals. Also, each record exceed-

ing the threshold value contains the stochasticity which is 

spontaneous in the eye-movements so as not to be labeled 

as saccade (van der Lans et al., 2011). The other important 

feature is that BIT algorithm is independent of eye-tracker 

and sampling frequency and can be easily adapted to the 

data from varying eye-trackers with different sensitivity 

and sampling frequency (van der Lans et al., 2011). For the 

evaluation of differences based on scenario difficulties, the 

fixation number and fixation duration event values were 

analyzed. 

Measures 

Eye-tracking has been widely used to measure the 

mental workload from the eye-movement data so as to an-

alyze the cognitive processes underlying visual behavior 

(Tsai et al., 2007). Eye-tracking provides a valuable source 

of physiological data for the allocation of information pro-

cessing resources through ocular activity and are closely 

linked to the underlying neural networks in the brain 

(Bröhl et al., 2017). To understand the mental workload of 

surgical residents in these previously explained scenarios, 

specific measures in eye-tracking were used, namely fixa-

tion number and fixation duration events (van der Lans et 

al., 2011). Fixation is a slow period event when the eye-

movement is almost still with small dispersion and veloc-

ity. With other words eye movements that occur when gaze 

is dwelling on objects (Koh, Munikrishne Gowda, & 

Komogortsev, 2009). Eye-movement classification algo-

rithms can be able to classify fixation events into number 

of fixation and fixation duration. Sequences of eye fixa-

tions are basic components of eye movements in these 

fields to gain understanding in visual behavior. Different 

algorithms have been proposed to identify fixations from 

the recordings of the point of regard (POR) that the eye 

tracking equipment provides (van der Lans et al., 2011). 

Results 

In all, 276 (23 surgical residents, 4 scenarios, and 3 

hand conditions) datasets were recorded, significantly in-

creasing the accuracy of the results in this work. To eval-

uate and compare the differences among the difficulty lev-

els of the scenarios and hand condition effect, the eye-

movement events, fixation number and fixation duration 

were analyzed. 

The analysis of the data was carried out with the SPSS 

23 program and it was worked with 95% confidence level. 

The Friedman non-parametric test technique was used for 

observing the effect of the difficulty levels within scenar-

ios on the eye-movement events of the surgical residents. 

To understand the difficulty levels among four scenarios 

under dominant-, non-dominant and both-hand conditions 

post hoc analysis with Wilcoxon signed-rank tests was 

conducted with a Bonferroni correction applied, resulting 

in a significance level set at p < 0.017. 

Fixation Number 

A non-parametric Friedman test of differences among 

the repeated measures was conducted for the scenario dif-

ficulty level effect on the fixation number. The effect of 

the scenario was significant (all ps < .05) on the fixation 

number according to the results. While the hand condition 

is fixed, the results of the analysis of the repeated meas-

urements differ according to the scenarios. Based on the 

Friedman test for different measurement groups, there is a 

statistically significant difference between the fixation 

number when using the dominant hand (x2 (3) = 37.08, p 



Journal of Eye Movement Research Menekse Dalveren, G. G., Cagiltay, N. E. (2018) 

11(4):3 Using Eye-Movement Events to Determine Mental Workload 

  6 

<0.05) for different scenarios. Scenario-1 has the lowest 

mean rank for the fixation number (1.57), while Scenario-

2 has the highest (3.78). When using the non-dominant 

hand (x2 (3) = 50.18, p <0.05) for different scenarios, Sce-

nario-1 has the lowest mean rank for the fixation number 

(1.26) while Scenario-2 has the highest (3.70) fixation 

number. According to the test results when using both 

hands (x2 (3) = 52.74, p <0.05) for different scenarios, Sce-

nario-1 has the lowest mean rank for the fixation number 

(1.07) while Scenario-2 has the highest mean rank (3.80) 

for the fixation number. According to the results of the 

three hand conditions for the fixation number measure, the 

scenario that makes fixation number larger is reported 

(Figure 5). Generally, in Scenario-2 the fixation number 

becomes larger compared to the other scenarios. 

 

Figure 5. Fixation Number Differences Among Scenarios 

Wilcoxon signed-rank tests was conducted for under-

standing the difficulty levels between scenarios under 

dominant-hand, non-dominant hand and both hands condi-

tion with a Bonferroni correction (p < 0.017). The mean 

and standard deviation values for each scenario under 

dominant hand, non-dominant hand and both hands condi-

tions are given at Table1.  

Table 1. Mean and Standard Deviation values for Fixation Number 

Scenario Dominant Hand Non-Dominant Hand Both Hands 

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. 

1 24.66 4.84 26.78 4.11 25.33 5.29 

2 55.87 18.18 61.29 21.42 64.40 20.81 

3 31.00 9.93 30.54 7.13 46.46 13.48 

4 32.36 9.73 46.81 13.09 45.60 25.78 

 

According to the test results there is a significant dif-

ference under dominant hand condition between the Sce-

nario-1 and Scenario-2 (Z = -4.14, p = 0.000), Scenario-1 

and Scenario-3 (Z = -2.65, p = 0.008), Scenario-1 and Sce-

nario-4 (Z = -3.10, p = 0.002). Similarly, there is a signif-

icant difference between Scenario-2 and Scenario-3 (Z = -

4.05, p = 0.000) and between Scenario-2 and Scenario-4 

(Z = -4.06, p = 0.000). However, the difference between 

Scenario-3 and Scenario-4 is not statistically significant (Z 

= -0.68, p = 0.497) under dominant hand condition (Table 

2). 

Table 2. Wilcoxon signed-rank test results (dominant hand) 

Scenario 2 3 4 

Z p Z p Z p 

1 -4.14 0.000 -2.65 0.008 -3.10 0.002 

2   -4.05 0.000 -4.06 0.000 

3     -0.68 0.497 

 

According to the test results there is a significant dif-

ference under non-dominant hand condition between the 

Scenario-1 and Scenario-2 (Z = -4.20, p = 0.000), Sce-

nario-1 and Scenario-4 (Z = -4.13, p = 0.000). Similarly, 

there is a significant difference between Scenario-2 and 

Scenario-3 (Z = -4.17, p = 0.000), between Scenario-2 and 

Scenario-4 (Z = -2.71, p = 0.007) and Scemario-3 and Sce-

nario-4 (Z = -3.96, p = 0.000). However, the difference be-

tween Scenario-1 and Scenario-3 is not statistically signif-

icant (Z = -2.28, p = 0.022) under non-dominant hand con-

dition (Table 3). 

Table 3. Wilcoxon signed-rank test results (non-dominant hand) 

Scenario 2 3 4 

Z p Z p Z p 

1 -4.20 0.000 -2.28 0.022 -4.13 0.000 

2   -4.17 0.000 -2.71 0.007 

3     -3.96 0.000 

 

According to the test results there is a significant dif-

ference under both hands condition between the Scenario-

1 and Scenario-2 (Z = -4.20, p = 0.000), Scenario-1 and 

Scenario-3 (Z = -4.21, p = 0.000), Scenario-1 and Sce-

nario-4 (Z = -3.97, p = 0.000). Similarly, there is a signif-

icant difference between Scenario-2 and Scenario-3 (Z = -

3.97, p = 0.000) and between Scenario-2 and Scenario-4 

(Z = -3.45, p = 0.001). However, the difference between 

Scenario-3 and Scenario-4 is not statistically significant (Z 

= -0.71, p = 0.48) under both hands condition (Table 4). 

Table 4. Wilcoxon signed-rank test results (both hands) 

Scenario 2 3 4 

Z p Z p Z p 

1 -4.20 0.000 -4.21 0.000 -3.97 0.000 

2   -3.97 0.000 -3.45 0.001 

3     -0.71 0.048 
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Fixation Duration 

A non-parametric Friedman test of differences among 

the repeated measures was conducted for the scenario ef-

fect on fixation duration (msec.). The effect of scenario 

was significant (all ps < .05) on the fixation duration ac-

cording to the results. While the hand condition is fixed, 

the results of the analysis of the repeated measurements 

differ according to the scenarios. According to Friedman 

test for different measurement groups, there is a statisti-

cally significant difference between the fixation duration 

when using the dominant hand (x2 (3) = 52.41, p <0.05) for 

different scenarios. Scenario-1 has the lowest mean rank 

for the fixation duration (1.04) while Scenario-2 has the 

highest mean rank for the (3.70) fixation duration. When 

the non-dominant hand is used (x2 (3) = 54.49, p <0.05) for 

different scenarios, Scenario-1 has the lowest mean rank 

for the fixation duration (1.04) while Scenario-4 has the 

highest mean rank for the (3.52) fixation duration. In the 

both hands condition (x2 (3) = 65.56, p <0.05), Scenario-1 

has the lowest mean rank for the fixation duration (1.00) 

while Scenario-2 has the highest mean rank for the (3.96) 

fixation duration. According to the results of the three hand 

conditions, the scenario that makes the fixation duration 

longer is reported (Figure 6). In Scenario-2 and Scenario-

4 the fixation duration is becomes larger compared to the 

other scenarios. 

 

Figure 6. Fixation Duration Differences Among Scenarios 

Wilcoxon signed-rank tests was conducted for under-

standing the difficulty levels between scenarios under 

dominant-hand, non-dominant hand and both hands condi-

tions with a Bonferroni correction (p < 0.017). The mean 

and standard deviation values for each scenario under 

dominant hand, non-dominant hand and both hands condi-

tions are given at Table 5.  

 

Table 5. Mean and Standard Deviation values for Fixation Duration 

 Dominant Hand Non-Dominant Hand Both Hands 

Scenario Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. 

1 25695.94 5001.86 26697.35 2907.38 32369.00 8352.35 

2 59112.81 14626.78 64860.64 16724.14 101785.26 10333.82 

3 43239.00 10899.84 44321.84 9344.41 59903.76 9284.96 

4 50363.92 12175.10 65791.68 13479.19 77301.20 13700.74 

 

According to the test results there is a significant dif-

ference under dominant hand condition between the Sce-

nario-1 and Scenario-2 (Z = -4.19, p = 0.000), Scenario-1 

and Scenario-3 (Z = -3.68, p = 0.000), Scenario-1 and Sce-

nario-4 (Z = -4.20, p = 0.000). Similarly, there is a signif-

icant difference between Scenario-2 and Scenario-3 (Z = -

3.86, p = 0.000) and between Scenario-2 and Scenario-4 

(Z = -2.92, p = 0.003). However, the difference between 

Scenario-3 and Scenario-4 is not statistically significant (Z 

= -2.16, p = 0.030) under dominant hand condition (Table 

6). 

Table 6. Wilcoxon signed-rank test results (dominant hand) 

Scenario 2 3 4 

Z p Z p Z p 

1 -4.20 0.000 -4.21 0.000 -3.97 0.000 

2   -3.97 0.000 -3.45 0.001 

3     -0.71 0.048 

 

According to the test results there is a significant dif-

ference under non-dominant hand condition between the 

Scenario-1 and Scenario-2 (Z = -4.20, p = 0.000), Sce-

nario-1 and Scenario-3 (Z = -4.08, p = 0.000), Scenario-1 

and Scenario-4 (Z = -4.20, p = 0.000). Similarly, there is a 

significant difference between Scenario-2 and Scenario-3 

(Z = -3.71, p = 0.000) and between Scenario-3 and Sce-

nario-4 (Z = -4.17, p = 0.000) (Table 7). However, the dif-

ference between Scenario-2 and Scenario-4 is not statisti-

cally significant (Z = -0.06, p = 0.951) under non-dominant 

hand condition. 

Table 7. Wilcoxon signed-rank test results (non-dominant hand) 

Scenario 2 3 4 

Z p Z p Z p 

1 -4.20 0.000 -4.08 0.000 -4.20 0.000 

2   -3.71 0.000 -0.06 0.951 

3     -4.17 0.000 

 

According to the test results under both hands condi-

tion there is a significant difference between the Scenario-

1 and Scenario-2 (Z = -4.20, p = 0.000), Scenario-1 and 
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Scenario-3 (Z = -4.21, p = 0.000), Scenario-1 and Sce-

nario-4 (Z = -4.21, p = 0.000). Similarly, there is a signif-

icant difference between Scenario-2 and Scenario-3 (Z = -

4.21, p = 0.000), between Scenario-2 and Scenario-4 (Z = 

-3.69, p = 0.000) and between Scenario-3 and Scenario-4 

(Z = -4.14, p = 0.000) under both hands condition (Table 

8). 

Table 8. Wilcoxon signed-rank test results (both hand) 

Scenario 2 3 4 

Z p Z p Z p 

1 -4.20 0.000 -4.21 0.000 -4.21 0.000 

2   -3.21 0.000 -3.69 0.000 

3     -4.14 0.000 

 

Discussion 

This research describes an approach for an objective 

assessment of mental workload by analyzing the differ-

ences in the fixation number and fixation duration under 

different levels of mental workload while surgical resi-

dents perform simulated scenarios. The eye-movement 

data was collected with an eye-tracking device and classi-

fied into fixation number and fixation duration events with 

an eye-movement classification algorithm (BIT). These 

eye-movement events are selected because they seem to be 

most suited to provide insight about changes in mental 

workload (De Rivecourt, Kuperus, Post, & Mulder, 2008). 

There are many other eye-movement classification algo-

rithms, but in this study an open-source eye-movement 

classification algorithm, BIT, was used. The reason behind 

this choice was that BIT algorithm is eye-tracker inde-

pendent and easy to implement and use. The aim of this 

study is to examine whether the fixation number and fixa-

tion duration events can, indeed, be indicators for mental 

workload and whether there are any among the imposed 

mental workloads within different scenarios. According to 

the results, the fixation number and fixation duration both 

show a significant increase if the mental workload in-

creases. For understanding the differences between the 

scenarios, four of them were developed in this study; two 

were simulated surgical models and two were general 

models. The results can be summarized as highlighted be-

low: 

• In the dominant hand condition, Scenario-1 has 

the lowest mean rank for the fixation number (1.47) and 

fixation duration (1.04) while Scenario-2 has the highest 

mean rank for the fixation number (3.78) and fixation du-

ration (3.70).  

• When using the non-dominant hand, Scenario-1 

has the lowest mean rank for the fixation number (1.26) 

and fixation duration (1.04), while Scenario-2 has the 

highest mean rank for fixation number (3.70) and Sce-

nario-4 has the highest mean rank for fixation duration 

(3.52).  

• When using both hands, Scenario-1 has the low-

est mean rank for the fixation number (1.07) and fixation 

duration (1.00), whereas Scenario-2 has the highest mean 

rank for fixation number (3.80) and fixation duration 

(3.96). 

In general, it can be concluded that in the scenarios that 

are designed by using the models that simulate the opera-

tional area (Scenario 2 & 4), the fixation duration and fix-

ation number values become higher compared to the other 

group of scenarios (Scenario 1 & 3).  

In previous studies, it has been stated that fixation time 

both show a general significant increase if the mental 

workload increases (de Greef et al., 2009). Another study 

stated that the pupil size increased in response to task dif-

ficulty (Nakayama, Takahashi, & Shimizu, 2002). Iqbal et 

al. (2004) also stated that more difficult tasks demand 

longer processing times, induce higher subjective ratings 

of mental workload, and reliably evoke greater pupillary 

response at corresponding subtasks than a less difficult 

task. Additionally, Zheng et al. (2015) stated that the pupil 

size of surgical residents is influenced depending on the 

task difficulties increasing as the difficulty level elevates. 

It is also reported that the fidelity level is a crucial factor 

affecting the mental workload (Munshi et al., 2015). Ac-

cording to the previous studies fixation number and fixa-

tion duration are widely used eye-movement events and 

are generally believed to increase with increasing mental 

workload (He, Wang, Gao, & Chen, 2012; Maltz & Shinar, 

1999; Marquart, Cabrall, & de Winter, 2015; May, 

Kennedy, Williams, Dunlap, & Brannan, 1990; Miura, 

1990; Rayner & Morris, 1990; Recarte & Nunes, 2000). In 

support to these studies, our results show that the scenarios 

based on simulated tasks using surgical models (higher 

level of fidelity) increase surgical residents’ mental work-

loads. Hence, it can be concluded that eye-movement 

events, such as fixation number and fixation duration, can 

be used to increase our knowledge of the mental workload 
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of surgical trainees. Since the four scenarios were not per-

formed in randomized and balanced order amongst the sur-

gical residents there might be a training effect. Even this 

training affect, the results show that lately performed sce-

narios (2 and 4) are the ones having higher fixation events. 

Accordingly, this order affect can be considered as ac-

ceptable for this study. 

Additionally, as there are very limited studies analyz-

ing the eye-movement behaviors of endo-neurosurgery 

residents, there is no standards in classifying the simula-

tion content according to the level of surgical skills 

(Cagiltay & Berker, 2018; Cagiltay, Ozcelik, Sengul, & 

Berker, 2017). Similarly, the metrics that can be used to 

evaluate the skill levels of these residents are also very lim-

ited and there are no standards on these metrics, either 

(Cagiltay et al., 2017). Hence, the results of this study en-

courage researchers to develop other standardized ap-

proaches for using objective metrics in surgical skill per-

formance. Additionally, the results may guide instruc-

tional designers to better organize the content of computer-

based simulation scenarios through the eye-movement be-

haviors of the trainees. As reported in the earlier studies, 

individual characteristics, situational characteristics and 

training motivation explain incremental variance in train-

ing outcomes beyond the effects of cognitive ability 

(Colquitt, LePine, & Noe, 2000). These individual differ-

ences are more effective in the case of skill-based training 

environments such as endo-neurosurgery which requires 

development of both cognitive and psychomotor abilities. 

By using information collected from the trainees’ behav-

iors such as eye-movement data, instructional designers 

can adapt the sequence and difficulty levels of the tasks on 

each trainee to provide a training opportunity according to 

the skill and progress levels of each trainee. Hence, in the 

future the computer-based instructional software devel-

oped for skill-based training purposes will be more adap-

tive by using the data collected from the behaviors (such 

as eye-movements) and performance of the trainees. 
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