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Abstract: Genome stability requires tight regulation of DNA replication to ensure that the entire
genome of the cell is duplicated once and only once per cell cycle. In mammalian cells, origin
activation is controlled in space and time by a cell-specific and robust program called replication
timing. About 100,000 potential replication origins form on the chromatin in the gap 1 (G1) phase but
only 20–30% of them are active during the DNA replication of a given cell in the synthesis (S) phase.
When the progress of replication forks is slowed by exogenous or endogenous impediments, the cell
must activate some of the inactive or “dormant” origins to complete replication on time. Thus, the
many origins that may be activated are probably key to protect the genome against replication stress.
This review aims to discuss the role of these dormant origins as safeguards of the human genome
during replicative stress.

Keywords: dormant origins; replicative stress; replication timing; DNA damage; genome
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1. Introduction: Eukaryotic Origins and the Replication Program

Because of their large genomes, mammalian cells need thousands of replication forks, which
initiate from replication origins, to ensure the complete duplication of their DNA within a specific time
frame before they can divide. In human cells, the replication process takes about 10 h and involves the
activation of roughly 30,000 replication origins. In normal replication conditions, replication origins are
spread over about 100 kb of DNA, and only a single origin will be active within an individual DNA unit
that we call a replicon. A coordinated group of adjacent replicons, “replicon cluster”, can be visualized
as DNA replication foci [1]. Several studies, which compared replication timing (RT) and genome
topology, suggested the term “replication domains” for replicons clustered inside large chromatin
regions (~1 Mb), close to the size of one replication foci. They are located at discrete territories of the
nucleus in the gap 1 (G1) phase and replicate at the same moment during the synthesis (S) phase [2–4].
At any given time of the S phase, about 10% of replicons are activated and replicate simultaneously [5].
In addition, the temporal activation of origins in a specific region of the genome correlates with a
distinct pattern of replication foci as cells progress from early to late S phase. The sequential activation
of potential origins within replication domains is thought to play a direct role in defining the S phase
program or replication program. Temporal and spatial organization of DNA replication was adopted
by metazoans cells to finely control the challenging goal of replicating the entire genome in a limited
time and to overcome any obstacles that replication forks may encounter.
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1.1. Origin Licensing and Firing

Complete and robust DNA duplication requires loading of minichromosome maintenance DNA
helicase complex (MCM2–7) onto the replication origins. This step, called origin licensing, is restricted
to the G1 phase of the cell cycle. A key initial step in origin licensing is the building of pre-recognition
complex (Pre-RC) which starts with loading of the origin recognition complex (ORC) onto the
chromatin. This ORC complex marks all potential origins providing spatial control of origin position.
In higher eukaryotes, ORC binding sites were proven to be unrelated to DNA sequence, in contrast
to other organisms such as yeast and bacteria [6,7]. It is currently assumed that multiple factors can
characterize an origin, such as cytosine–phosphate–guanine (CpG) islands, G-quadruplexes, epigenetic
marks, chromatin accessibility, sites of active transcription, or secondary DNA structures [8–13].
This is the reason why it is so difficult to identify metazoan replication origins. In the budding yeast
Saccharomyces cerevisiae, a recent structural study [14] showed that two ORC molecules are required to
ensure MCM2–7 complex loading onto the chromatin. During late mitosis and the G1 phase, ORCs
bind cell division cycle 6 (Cdc6), which then interacts with chromatin licensing and DNA replication
factor 1 (Cdt1) to allow loading of the six MCM subunits (MCM2–MCM7) and formation of the Pre-RC.
The total amount of MCM complex does not change throughout the cell cycle, but the number of MCM
complexes loaded onto DNA increases from telophase to the end of the G1–S phase transition. The
final step of licensing requires the loading of Cdc45 and go-ichi-ni-san (GINS) onto the MCM complex
to form the pre-initiation complex (Pre-IC). This complex requires the activities of the Dbf4-dependent
kinase (DDK) and cyclin-dependent kinase (CDK) for its activation at the G1–S phase transition; then,
the polymerases and other replication factors are recruited to allow origin firing (Figure 1).
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Figure 1. Scheme describing origin licensing and firing. In late mitosis (M), the origin recognition 
complex (ORC) binds to origins, thus determining where replication forks might initiate, and for the 
subsequent recruitment of cell division cycle 6 (Cdc6) and chromatin licensing and DNA replication 
factor 1 (Cdt1) in the gap 1 (G1) phase. Binding of both Cdc6 and Cdt1 is necessary, in turn, for 
recruitment of the minichromosome maintenance DNA helicase complex (MCM) to form the pre-
recognition complex (Pre-RC). Each ORC has two Cdt1-binding sites, which may explain the 
cooperative loading of two MCM complexes per origin. The MCM pair remains catalytically inactive 
until the G1–synthesis (S) phase transition, when it is phosphorylated by both cyclin-dependent 
kinase (CDK) and Cdc7. Once the principal origin is fired, adjacent origins from the same replicon 
(flexible or dormant) are repressed (red dotted lines) by a yet unclear mechanism. 

Figure 1. Scheme describing origin licensing and firing. In late mitosis (M), the origin recognition
complex (ORC) binds to origins, thus determining where replication forks might initiate, and for the
subsequent recruitment of cell division cycle 6 (Cdc6) and chromatin licensing and DNA replication
factor 1 (Cdt1) in the gap 1 (G1) phase. Binding of both Cdc6 and Cdt1 is necessary, in turn,
for recruitment of the minichromosome maintenance DNA helicase complex (MCM) to form the
pre-recognition complex (Pre-RC). Each ORC has two Cdt1-binding sites, which may explain the
cooperative loading of two MCM complexes per origin. The MCM pair remains catalytically inactive
until the G1–synthesis (S) phase transition, when it is phosphorylated by both cyclin-dependent kinase
(CDK) and Cdc7. Once the principal origin is fired, adjacent origins from the same replicon (flexible or
dormant) are repressed (red dotted lines) by a yet unclear mechanism.
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During the first step of origin firing, the MCM pair slides along DNA by encircling the double
helix. Recent papers proposed a switch of the MCM double hexamer from double-stranded DNA
(dsDNA) to single-stranded DNA (ssDNA) mediated by N-tier ring movement, allowing the two
helicases complexes to pass each other within the origin and permitting lagging-strand extrusion [15,16]
(Figure 1). During the elongation step, excess MCMs that are not initiated are removed by the passage
of the replication fork [17].

The cell must balance its need for sufficient origins to replicate the entire genome against the risk
of re-replication of DNA in the S phase due to an excess of origins. Thus, the control of origin licensing
is crucial. Repression of new origin licensing during the S phase is important to avoid re-replication,
which can lead to aneuploidy, DNA double-strand breaks, gene amplification, and general genome
instability [18–20]. DNA that is not replicated due to an insufficient number of origins or to replication
fork stalling, by contrast, can also lead to genome instability and rearrangements if the DNA replication
checkpoint is inactive or deficient [21–23].

1.2. Spatial and Temporal Organization of Replication Origins

Origin usage in eukaryotes is mainly dependent on two important factors: space and time.
Replication origins fire at a defined time that remains the same among cell generations and is closely
related to their spatial organization. Early replicating origins are mainly found in replication domains
that are enriched in active epigenetic modifications and highly transcribed genes [24–29]. These
chromosomal regions have a consequent amount of MCMs, providing potential origins that replicate
early in the S phase [7,30]. Conversely, late replication occurs in origin-poor domains with low gene
density, and enriched in heterochromatin hallmarks [29,31–33].

Replication clusters are organized in the three-dimensional (3D) nuclear space, where
early-replicating domains locate mainly at the center of the nucleus while late-replicating domains are
found predominantly at the nuclear periphery (Figure 2B). Chromatin conformation mapping methods
such as Hi-C are very powerful for visualizing the spatial organization of early- and late-replicating
domains [34,35]. Replication domains are created by topological reorganization of the chromatin
in nuclear space. In metazoans, the association of particular replication domains with sub-nuclear
compartments determines their replication timing. The set-up of this compartmentalization occurs at a
specific time of the G1 phase and is called the timing decision point (TDP) [36,37] (Figure 2).

Int. J. Mol. Sci. 2018, 19, x FOR PEER REVIEW  3 of 22 

 

During the first step of origin firing, the MCM pair slides along DNA by encircling the double 
helix. Recent papers proposed a switch of the MCM double hexamer from double-stranded DNA 
(dsDNA) to single-stranded DNA (ssDNA) mediated by N-tier ring movement, allowing the two 
helicases complexes to pass each other within the origin and permitting lagging-strand extrusion 
[15,16] (Figure 1). During the elongation step, excess MCMs that are not initiated are removed by the 
passage of the replication fork [17]. 

The cell must balance its need for sufficient origins to replicate the entire genome against the 
risk of re-replication of DNA in the S phase due to an excess of origins. Thus, the control of origin 
licensing is crucial. Repression of new origin licensing during the S phase is important to avoid re-
replication, which can lead to aneuploidy, DNA double-strand breaks, gene amplification, and 
general genome instability [18–20]. DNA that is not replicated due to an insufficient number of 
origins or to replication fork stalling, by contrast, can also lead to genome instability and 
rearrangements if the DNA replication checkpoint is inactive or deficient [21–23]. 

1.2. Spatial and Temporal Organization of Replication Origins 

Origin usage in eukaryotes is mainly dependent on two important factors: space and time. 
Replication origins fire at a defined time that remains the same among cell generations and is closely 
related to their spatial organization. Early replicating origins are mainly found in replication domains 
that are enriched in active epigenetic modifications and highly transcribed genes [24–29]. These 
chromosomal regions have a consequent amount of MCMs, providing potential origins that replicate 
early in the S phase [7,30]. Conversely, late replication occurs in origin-poor domains with low gene 
density, and enriched in heterochromatin hallmarks [29,31–33]. 

Replication clusters are organized in the three-dimensional (3D) nuclear space, where early-
replicating domains locate mainly at the center of the nucleus while late-replicating domains are 
found predominantly at the nuclear periphery (Figure 2B). Chromatin conformation mapping 
methods such as Hi-C are very powerful for visualizing the spatial organization of early- and late-
replicating domains [34,35]. Replication domains are created by topological reorganization of the 
chromatin in nuclear space. In metazoans, the association of particular replication domains with sub-
nuclear compartments determines their replication timing. The set-up of this compartmentalization 
occurs at a specific time of the G1 phase and is called the timing decision point (TDP) [36,37] (Figure 2). 

 
Figure 2. Spatial organization of origins and replication timing. (A) In the early G1 phase, Pre-RCs 
(black) are assembled on the chromatin and mark potential origins; early-replicating domains (green) 
and late-replicating domains (red) are disordered in the nuclear space. (B) After the timing decision 
point (TDP), in the late G1 phase, early-replicating domains are close to center of the nucleus whereas 
late-replication domains are associated with the lamina, close to the nuclear periphery. (C) Active 
origins (yellow) cluster in replication domains that are associated to the nuclear matrix (NM), leaving 
inactive (dormant or flexible) origins in DNA loops (gray). 

Figure 2. Spatial organization of origins and replication timing. (A) In the early G1 phase, Pre-RCs
(black) are assembled on the chromatin and mark potential origins; early-replicating domains (green)
and late-replicating domains (red) are disordered in the nuclear space. (B) After the timing decision
point (TDP), in the late G1 phase, early-replicating domains are close to center of the nucleus whereas
late-replication domains are associated with the lamina, close to the nuclear periphery. (C) Active
origins (yellow) cluster in replication domains that are associated to the nuclear matrix (NM), leaving
inactive (dormant or flexible) origins in DNA loops (gray).
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Accumulating evidence indicates that DNA attachment to the nuclear matrix is important for
the initiation of DNA replication [38–42]. The nuclear matrix permits the separation of chromosome
territories and allows the formation of replication clusters [39]. The organization of replicon clusters
might, thus, reflect chromatin looping to bring the origins from different replicons into a single
domain and to exclude the flexible and/or dormant origins from this replication factory (Figure 2C).
The cohesin complex may be a key player in chromatin looping because it was found to interact
physically with the MCM complex and to be enriched at origin sites [43].

1.3. Techniques to Detect and Identify Origins

The first quantitative method for determining origin density in the genomes of bacteria and
mammalians was DNA fiber autoradiography [44,45]. This time-consuming technique is now replaced
by other assays, such as DNA combing or spreading, which label newly replicated DNA with
nucleosides analogs, including bromo-, chloro-, and iododeoxyuridine, and visualize the newly
replicated DNA by immunofluorescence microscopy using antibodies specific for the analog [46].

The use of next-generation DNA sequencing led to the discovery of tens of thousands of potential
replication origins in the human genome. Several independent approaches were used that exploit
the direct identification of DNA replication initiation intermediates. The first approach is based
on the purification and quantification of short nascent strands (SNS) of DNA [26]. In this method,
1.5–2.5-kb nascent strands specific to replication origins are purified thanks to their resistance to
λ-exonuclease digestion due to the incorporation, by the primase, of small RNA primers at their
5′ ends [47]. The exonuclease digests the large excess of broken genomic DNA that would generate a
background signal if not correctly removed. These genome-wide SNS analyses showed that active
origins often co-localize with transcription start sites (TSS) and are located in GC-rich regions, close
to CpG islands or G-quadruplexes, confirming previous microarray hybridization results [24,25,48].
A second approach [29] is based on the sequencing of an early intermediate called the DNA replication
bubble, which forms when two replication forks diverge from a single origin. The technique consists
of fragmenting the replicating DNA via a restriction endonuclease, and then trapping the circular
replication bubbles in agarose gel [29]. This so-called “bubble-seq” method led to the mapping
of more than 100,000 origins in the human genome. A third genome-wide approach relies on
sequencing purified Okazaki fragments (“OK-seq”) to determine replication fork polarity, which
allows the identification of initiation and termination sites [49]. With this approach, between 5000 and
10,000 broad initiation zones of up to 150 kb were detected. These sites are mainly non-transcribed
but often surrounded by active genes, and they contain a single randomly located initiation event.
Finally, a fourth method for identifying metazoan replication origins is called initiation-site sequencing
(“ini-seq”) [50]. In this method, initiation events are synchronized biochemically in a cell-free system
in which newly replicated DNA, synthesized a few minutes after initiation, is directly labeled and
subsequently immuno-precipitated. This original approach has the important advantage of allowing
functional genome-wide studies of origin activation. As these approaches become more and more
accurate and complementary to each other, they provide an increasingly large, novel dataset on the
characteristics of replication origins.

1.4. Origin Flexibility, Dormancy, and Efficiency

The replication initiation program of metazoan cells is remarkably flexible, with many origins
firing at disparate frequencies depending on the cell lineage. MCM complexes and all the components
of the Pre-RC are loaded in excess onto the chromatin in the G1 phase to provide this flexibility.
In addition to differences between cell lineages, origin flexibility is also observed within a cell
population [42,51].

Very few origins are activated almost all the time; they are called “constitutive” origins [52].
The majority of origins do not initiate replication in all cell cycles; these are called “flexible” origins.
Origins that are activated only when replication from adjacent origins is compromised are called
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“dormant” origins. Unlike constitutive and flexible origins, dormant origins are not detectable in
whole-genome analyses. Inter-origin distances measured by whole-genome sequencing are shorter
than those measured by single-fiber analyses. This discrepancy may be explained by the flexibility
of origin choice within replicons [53], which might also help coordinate DNA replication with
transcription [54,55] and other nuclear processes, such as DNA repair, in order to facilitate recovery
when replication is compromised. Given that there is no DNA consensus sequence for metazoan
origins and that there exists such a flexibility in establishing which potential origins are activated,
one might wonder how initiation ever occurs accurately and at consistent origins [56].

There are currently two theories to explain how origins are selected. One relies on the idea of
an origin decision point (ODP)—which occurs in the G1 phase, after the timing decision point—that
determines which origins are activated during replication [57]. The second theory postulates increasing
origin efficiency based on the random use of replication origins [58], with the idea that the efficiency
of origin firing increases throughout the S phase as the replicative DNA polymerases recycle to new
origins. Moreover, replication origin efficiency also depends on their location in the nucleus, epigenetic
marks, and mainly on the amount of loaded MCM complexes [7,59,60] or nucleosome occupancy [61].
Chromosome architecture also plays an important role in the regulation of DNA replication origin
localization and activation [62], although chromosomal loops and loop anchors are still poorly defined
biochemically. Further studies using single-cell technologies will be required in the future to better
understand the mechanism of origin choice.

2. Dormant Origin Activation in Response to Replicative Stress

2.1. The Notion of DNA Replication Stress

During DNA replication, the appearance of endogenous or exogenous sources of stress leads to
replication forks slowing or stalling. Exogenous sources of stress comprise mainly genotoxic chemicals,
and ultraviolet and ionizing radiation. Endogenous sources of stress that are considered to be barriers
to replication include repetitive sequences, G-quadruplexes, telomeres, DNA–RNA hybrids, errors
in the incorporation of ribonucleotides, collisions between replication and transcription machineries,
compaction of chromatin, deregulation of origin activity, and reduction of the deoxyribonucleotide
triphosphate (dNTP) pool. Some regions of the genome, such as early-replicating fragile sites (ERFSs)
and common fragile sites (CFSs), are more prone than others to replicative stress. Moreover, evidence
is emerging that constitutive activation or overexpression of oncogenes, such as Harvey rat sarcoma
(HRas) and myelocytomatosis (c-Myc), are a potential source of replication stress [63]. These oncogenes
promote replication initiation or origin firing, leading to an elevated risk of nucleotide pool depletion
and/or increased collisions with transcription complexes [64,65]. This may explain why supplementing
cancer cells with exogenous nucleosides helps decrease chromosomal instability [66].

The first consequence of replication stress is fork collapse, creating DNA single-strand breaks
and/or double-strand breaks. These lesions must be resolved before cell division by repair mechanisms
such as homologous recombination (HR), non-homologous end-joining (NHEJ). or micro-homology
mediated end-joining (MMEJ). In normal cells, the ataxia telangiectasia mutated (ATM) and ataxia
telangiectasia Rad3-related (ATR) checkpoint signaling pathways prevent cell division when the
genome is damaged. When some proteins of the checkpoint pathway, for example p53, are mutated,
the cell can divide despite the presence of DNA lesions (including breaks and unreplicated DNA),
which may lead to chromosome fragmentation, rearrangements, and genomic instability [67–70].

2.2. The Discovery of Dormant Origins and Their Link to Replicative Stress

In 1977, J. Herbert Taylor [71] first described the firing of new origins in response to replication
fork stalling during DNA replication in Chinese hamster ovary (CHO) cells, a finding that later
suggested the existence of dormant origins. Moreover, several studies in a range of eukaryotes,
including S. cerevisiae, Xenopus laevis, and human cells, demonstrated that MCM complexes are loaded
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onto DNA in a large excess when compared to the number of DNA-bound ORCs and the number
of active replication origins [72–77]. It was later shown in X. laevis [78] and in human cells that this
excess of MCM provides a reservoir of dormant origins, which are activated when replication forks
are arrested by agents such as aphidicolin (APH) or hydroxyurea (HU) [79,80]. These studies also
showed that depletion of MCM by small interfering RNAs leads to hypersensitivity to replication
inhibitors due to the lack of dormant origins [79,80]. Moreover, checkpoint kinase 1 (Chk1) activation
is required for firing of dormant origins within active replication clusters, as well as for repression
of other replicons that are not yet active [81], suggesting a link between the DNA damage response
and dormant origin activation. Indeed, in vertebrates, inactivation or depletion of various proteins
involved in genome maintenance, such as ATR [82,83], Chk1 [84–87], Wee1 [88,89], bloom syndrome
protein (BLM) [90], Claspin [91,92], breast cancer type 2 susceptibility protein (BRCA2), and Rad51 [93],
slows replication forks and also increases the number of initiation events, at least in studies where
initiation events were examined. This finding indicates a link between fork speed and the number of
active origins, as we examine further below.

2.3. The Density of Active Origins Depends on Replication Fork Speed

Under normal conditions, dormant origins do not fire and are passively replicated by the fork
coming from adjacent activated origins. Thus, it makes sense to assume that replication fork speed
can be a regulator of active origin density. In two complementary studies on CHO cells [62,94], it was
demonstrated that replication fork speed has a direct impact on the number of active origins. When the
fork is slowed down by HU treatment, the density of active origins increases. In contrast, in conditions
that accelerate fork speed (addition of adenine and uridine to the culture medium), fewer origins are
active. These studies further showed that the cell starts compensating for the decrease in fork speed
within half an hour of treatment by activating dormant origins, which are then able to change their
status within the S phase. Regulation of the number of initiation events occurs at the level of individual
clusters, consistent with the functional organization of origins into replicon clusters [95]. Another
study demonstrated that, in the absence of Cdc7 or ORC1, replication forks progress more rapidly
than in control cells and fewer origins fire [96], again suggesting that the number of active origins
and the fork rate are interdependent. Similarly, using chemical inhibitors of origin activity (a Cdc7
kinase inhibitor) and of DNA synthesis (APH), a more recent study found that the primary effects
of replicative stress on fork rate can be distinguished from those on origin firing [97]. Collectively,
these results support the conclusion that the density of origin firing depends on fork speed and, thus,
is affected by endogenous or exogenous replicative stress.

2.4. CFS Fragility Due to the Lack of Dormant Origins

CFSs play a major role in cancer initiation because of their instability in conditions of replication
stress. CFSs were first described as gaps and constrictions in the metaphase chromosomes of human
lymphocytes grown under mild replication stress conditions (i.e., a low dose of APH) [98]. These
observations were since seen in other organisms and are very likely to be the consequence of
under-replication and/or DNA breaks caused by replication stress [99,100].

Although CFSs have been known for over two decades, the cause of their fragility is still
controversial [55,101]. CFS fragility was first linked to non-B DNA sequences, such as AT-rich
sequences, which are able to adopt secondary structures, constituting barriers to replication
forks [102–105]. Deletion of these sequences from some cancer cell lines does not prevent breaks
at these loci [106–108], suggesting that DNA sequence is not the sole reason for the instability of CFSs.
Genome-wide analysis of replication and DNA combing experiments found a paucity of replication
origins within the core of CFSs [109,110] and an incapacity to activate additional origins in response
to replicative stress [111]. This suggests that, in order to replicate these regions, the fork must pass
through long stretches of DNA containing multiple non-B DNA conformation sequences, and that
their fragility correlates with the absence of additional replication origin firing when replication is
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slowed down. Most CFSs correspond to long genes (>300 kb), which might increase the risk of collision
between the transcription and replication machineries [112]. Although one study showed that the
transcription of large genes does not systematically dictate CFS fragility [113], other studies found that
replication stress induces locus- and cell-type-specific genomic instability at active, large transcription
units corresponding to CFSs [114,115]. Moreover, it is thought that fragility of these sites result from
entry into mitosis before their complete replication [116,117]. Taken together, these observations
suggest that replication defects at fragile sites may be due to a low density of licensed origins or may
reflect inefficient or delayed activation of replication forks under replication stress.

3. Regulation of Dormant Origins: A Passive or Active Mechanism?

3.1. Activation of Dormant Origins by a “Passive” Mechanism

It is currently not clear what drives the firing of dormant origins when forks are slowed down or
inhibited. One first hypothesis could be that it does not involve an active mechanism, but occurs as
a consequence of the stochastic nature of origin firing [18,79]. Dormant origins have a precise lap of
time to fire before being passively replicated then inactivated by forks from adjacent origins. When
fork progression is impeded, the replication at dormant origins is delayed and, therefore, they have
an increased probability to fire. By means of computational modeling, a study showed that the same
levels of dormant origin activation seen in vivo can be reproduced by a passive mechanism [118].
In this model, the mechanism relies simply on the stochastic nature of origin firing, without any need
for additional regulatory pathways.

This simple theory can be sufficient to explain the activation of dormant origins in response to
replicative stress. Nonetheless, it cannot be ruled out that dormant origins may also be regulated by
active mechanisms, involving DNA damage response and other replication-related pathways.

3.2. Regulation of Dormant Origins by “Active” Mechanisms

3.2.1. ATR/Chk1 Kinases as Modulators of Origin Activation

The inhibition of replication forks activates the DNA damage checkpoint kinases ATR–Chk1 and
ATM–Chk2, which have many different functions, including stabilizing replication forks, delaying
or blocking the progress of the cell cycle, and promoting DNA lesion repair [119–121]. It may seem
surprising that, in response to replication stress, the cell can both activate dormant origins and suppress
overall origin initiation; however, when replication forks stall, it makes sense that dormant origins
should be activated in their vicinity and not elsewhere in the genome.

In the normal S phase, Chk1 affects replication fork speed by inhibiting excess origin
firing [23,85,86]. In response to low levels of replication stress induced by APH or HU, ATR and
Chk1 impede the activation of new replicon clusters while allowing dormant origins to fire within
those already activated and affected by the drug [79,81], thereby avoiding the deleterious impact
of replication fork stalling (Figure 3). The mechanism responsible for this phenomenon is not yet
elucidated, but one possibility is that ATR and Chk1 mildly reduce CDK levels, resulting in activation
of fewer replication clusters [122]. Alternatively, Chk1 might directly inhibit the initiation process
through an interaction with Treslin, which is required to stabilize Cdc45, GINS, and the MCM complex
together with topoisomerase 2-binding protein 1 (TOPBP1) [123–127]. Moreover, a recent study found
that an ATR inhibitor not only induced unscheduled origin firing, but also revealed another mechanism
of origin regulation through a Cdc7-dependent phosphorylation of GINS [128]. Finally, a very recent
study found that the ATR-activation domain of TOPBP1 is required to suppress origin firing during
the S phase [129], further supporting an important role for the ATR–Chk1 pathway in regulating the
activation of origins.
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3.2.2. Mannose Receptor C-Type 1 (Mrc1)/Claspin Is a Central Regulator of Origin Firing under
Normal and Stressed Replication

S. cerevisiae Mrc1 and its metazoan ortholog Claspin are not only involved in the S phase
checkpoint signaling pathway, but are also important components of replication forks. They interact
with many factors known to function in or to regulate DNA replication, including MCM4, MCM10,
ATR, Chk1, Cdc7, Cdc45, DNA polymerases α, δ, and ε, and proliferating cell nuclear antigen
(PCNA) [130–133]. The presence of Mrc1/Claspin is necessary for normal DNA replication [91,92,134,135],
probably by making a connection between the helicase components and replicative polymerases at the
replication fork. Also, Claspin plays another role in the initiation of DNA replication in human cells
during the normal S phase by recruiting Cdc7 to facilitate phosphorylation of MCM proteins [136].
It was recently discovered in yeast that Mrc1 has two crucial functions in regulating the firing of
origins: a checkpoint independent-role to activate early-firing origins during normal replication, and a
checkpoint dependent-function to inhibit late/dormant origins in the presence of HU [137].

3.2.3. Fanconi Anemia Proteins in the Regulation of Dormant Origins

The role of the Fanconi anemia (FA) pathway in the DNA repair of interstrand cross-links (ICLs)
was studied for many years. A clear model emerged describing that FA proteins orchestrate the
interplay between multiple DNA repair pathways, including homologous recombination (HR) and
translesion synthesis (TLS) [138–140]. However, treatment of cells with a low dose APH robustly
activates the FA pathway, indicating a role of the FA proteins during DNA replication [141].

FA complementation group 1 (FANCI) was shown to be involved in dormant origin firing upon
low replication stress through a FA pathway-independent mechanism [142]. FANCI associates with
MCM3 and MCM5, localizes with replication origins, and acts as a regulator of DDK activity to allow
the activation of the MCM2–7 helicase complex in response to mild replicative stress. In contrast,
under high replicative stress, FANCI is phosphorylated by ATR. This phosphorylated form of FANCI
negatively regulates dormant origin firing and activates replication fork restart/DNA repair that is
FA-dependent. In this context, FA complementation group D2 (FANCD2), which is known as a close
partner of FANCI, acts as a negative regulator of dormant origin firing [142].

Finally, FANCD2 was shown to facilitate replication of repeat-rich genomic regions such as CFSs
by decreasing DNA–RNA hybrid accumulation, thus reducing the need for dormant origin firing [143].

3.2.4. Rap1-Interacting Factor 1 (RIF1) Orchestrates Origins and Replication Timing

RIF1 (Rap1-interacting factor 1) was first discovered in budding yeast as a telomeric
chromatin-interacting protein required for the regulation of telomere length via its interaction with
Rap1 [144,145]. It was then demonstrated in S. cerevisiae that RIF1 inhibits activation of the DNA



Int. J. Mol. Sci. 2018, 19, 3569 9 of 22

damage checkpoint close to telomeres [146,147] and affects telomere replication timing [148]. Although
the RIF1 protein is evolutionarily conserved, in metazoans, it was described not to play a specific
role at telomeres, but rather to orchestrate the DNA double-strand break repair pathway and DNA
recombination [149–153].

Further studies implicated RIF1 from the fission yeast Schizosaccharomyces pombe and mammalian
RIF1 in regulating genome-wide DNA replication. S. pombe RIF1 binds selectively not only to telomeres,
but also to specific regions of the genome where it may regulate the choice and timing of origin firing
in late-replicating regions of chromosomes [154]. In RIF1-deficient cells, activation of dormant or late
origins is concomitant with suppression of some active early-firing origins, indicating that RIF1 is a
crucial player in the genome-wide origin activation program in S. pombe. In human cells, depletion
of RIF1 results in increased early-S phase initiation events, loss of mid-S phase replication foci, and
global changes in replication timing domain structures. Domains that normally replicate in the early S
phase are delayed, whereas those that normally replicate in the late S phase are advanced [155]. Thus,
replication timing is completely disturbed in the absence of RIF1. Another study observed that, in the
absence of RIF1, the distance between origins is greater than in control cells during the normal S phase,
and there are fewer dormant origins upon replication stress [156].

Also, RIF1 binds tightly to insoluble nuclear structures in late mitosis and the early G1 phase,
and regulates chromatin-loop size [155]. Interestingly, RIF1 binding to consensus G-quadruplex-like
sequences in fission yeast was identified [157]. These sequences tend to be near dormant origins, and
the binding of RIF1 on these sites would allow their repression over a great distance. Overall, these
findings indicate that RIF1, through its role in organizing higher-order chromatin architecture, is an
essential regulator of replication timing.

Thus, the accumulating data suggest that, through its interaction with chromatin and nuclear
structures, RIF1 plays an important role in the regulation of dormant origin availability not only in
response to replicative stress, but also in normal conditions.

3.2.5. Chromatin Loop Size Correlates with Dormant Origin Activation

The fluorescent DNA halo technique was essential for establishing the link between chromatin
loops and replicon size [158], and for describing the importance of replicon remodeling events
in Xenopus embryonic development [159]. Basically, the technique relies on cell permeabilization
and soluble protein extraction, allowing supercoiled DNA loops to unroll around an insoluble
scaffold, the nuclear matrix. Those structures called DNA “halos” can be visualized by
4′,6-diamidino-2-phenylindole (DAPI) fluorescent staining. Active origins are in or near the nuclear
matrix, whereas dormant/inactive origins are in the DNA loops [160] (Figure 2C).

Using the fluorescent DNA halo technique, one study [62] observed a strict correlation between
dormant origin activation at a given S phase and reduced chromatin loop size in the next G1/S phase.
Combining the DNA halo experiment with fluorescent in situ hybridization (FISH) using a probe
targeting the highly amplified adenosine monophosphate deaminase 2 (AMPD2)-specific locus in
CHO cells, they demonstrated that, in response to replication stress, activation of dormant origins
relocates this locus toward the nuclear matrix.

Cohesin also influences the size of interphase chromatin loops since its absence results in longer
chromatin loops due to a limited origin usage [43], showing that, independently of the effect of cohesin
acetylation on replication fork progression [161], this structural protein is present at origins and impacts
their activity. Finally, chromatin loop size increases in RIF1-depleted cells [155], suggesting that the
RIF1 protein is required for proper chromatin loop formation, as already mentioned above.
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4. Dormant Origin Deficiency, Genome Stability, and Pathologies

4.1. MCM Mutants and Dormant Origins in Mice

Homozygosity for a null allele of any of the six Mcm genes in mice (Mcm2–7) causes embryonic
lethality [162–164], consistent with the evidence that these Mcm genes are essential for DNA replication.
Only hypomorphic alleles such as Mcm4Chaos3 and Mcm2IRES-CreERT2 (IRES, internal ribosome entry
site; ERT2, estrogen receptor 2) result in mice that are viable into adulthood. The Mcm2IRES-CreERT2

allele expresses a tamoxifen-inducible Cre recombinase (CreERT2) inserted into the 3′ untranslated
region (UTR) of the endogenous Mcm2 locus, which reduces the expression of MCM2 by 65% when
compared to wild-type cells [165]. The Mcm4Chaos3 allele produces an MCM4 protein with a Phe345Ile
mutation, which does not affect the helicase activity of the MCM complex in vitro, but does reduce the
efficiency of its assembly [164].

Surprisingly, mouse embryonic fibroblasts (MEFs) from Mcm4Chaos3 mice also have a reduced
MCM7 protein level in addition to MCM4 [164]. Moreover, immortalized homozygous Mcm4Chaos3

cells display less stable association of MCM2–7 at replication forks compared to wild-type cells [166].
Finally, Mcm4Chaos3/Chaos3 MEFs exhibit about a half reduction in chromatin bound MCM2–7 that causes
a lower ability to activate dormant origins in response to treatment with low doses of APH [162,167].

Mice with only one-third of the normal MCM2 level were shown to develop lymphomas at a
very young age, and have diverse stem cell proliferation defects. Similarly to Mcm4Chaos3, these mice
also have 27% less MCM7 protein than wild-type mice. Moreover, Mcm2IRES-CreERT2 cells exhibit
decreased replication origin usage due to lower dormant origin availability even in the presence of
HU, as demonstrated by DNA combing experiments [165,168].

Hence, these two mouse models are close phenotypically, showing dormant origin deficiency
due to reduced levels of loaded MCM onto the chromatin. Even in an unchallenged S phase,
the inability to activate dormant origins leads to accumulation of stalled replication forks that
reach mitosis and interfere with chromosome segregation. Both phenotypes lead to improper
chromosome stability and premature tumorigenesis, with several differences in the latency of disease
development [165,166,168,169].

4.2. MCM Mutants and Dormant Origins in Stem/Progenitor Cells

The fact that Mcm2 expression has a global effect on cell proliferation within many tissues might
explain why the majority of Mcm2IRES-CreERT2 mice develop tumors and display a range of additional
hallmarks of age-related disorders. A study that set out to determine the effect of Mcm2 deficiency
observed an approximately threefold reduction in the level of neurogenesis within the sub-ventricular
zone in Mcm2IRES-CreERT2 mouse brains [165], fewer stem cells in intestinal crypts and in skeletal muscle,
and a modest increase in DNA damage.

Consistent with the conclusion that Mcm mutants affect stem cells, neural stem-cell progenitors in
Mcm4Chaos3/Chaos3 mouse embryos display a high level of Chk1 activation, increased phosphorylated
H2A histone family X (γH2AX) and p53-binding protein 1 (53BP1) foci, an accumulation in the
G2–M phase, and more apoptosis, resulting in a reduced ability to form neurospheres in vitro [170].
The renewal of stem cells in the brain appears to be normal, but their ability to differentiate into
intermediate progenitors is highly reduced due to an increase of apoptotic cells in the sub-ventricular
and intermediate zones [170].

These observations suggest that normal expression of MCM complex proteins is essential for
stem/progenitor cell function by reducing the risk of replication-associated genome instability, an idea
that was supported by two other studies. One demonstrated that human embryonic stem cells,
which have a remarkably short G1 phase, load MCM onto chromatin very rapidly when compared
to differentiated cells, in order to have a similar total amount of loaded MCM at the G1–S phase
transition [171]. In the second study, hypomorphic expression of the origin licensing factor MCM3
in mouse reduced the number of licensed origins and affected the function of hematopoietic stem
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cells, as well as the differentiation of highly proliferative erythrocyte precursors, thus demonstrating
that the rate of MCM loading is crucial for correct organism development [163]. These observations
suggest that hematopoietic progenitors are exceptionally sensitive to replication stress, and that they
must license an excess of origins to ensure their correct differentiation and function.

Intriguingly, aging hematopoietic stem cells suffer from replication stress even in wild-type mice.
This might be due to the fact that old stem cells have reduced expression of MCM complex proteins,
resulting in reduced numbers of dormant origins and, as a consequence, more chromosome instability
and cell-cycle defects [172].

4.3. Consequences of Limited Licensing and Firing in Humans

A mutation in the Mcm4 gene, which results in a truncated form of this protein lacking the N-terminal
serine/threonine-rich domain, was identified in a group of patients with a syndrome including growth
delay, natural killer cell deficiency, adrenal insufficiency, and genome instability [173–175]. This
truncated form of MCM4 does not affect MCM complex loading [174]. Nevertheless, immortalized
fibroblasts from these patients have a high level of chromosome breakage and defects in cell-cycle
progression, and they are sensitive to low doses of APH [174], suggesting that the N-terminal amino
acids of MCM4 protein are involved in the maintenance of genome integrity during replication.
Further studies will be necessary to elucidate the mechanism via which normal MCM4 ensures genome
maintenance. One possibility is the role of MCM4 phosphorylation in the checkpoint response, where
it was shown that the N-terminal domain of MCM4 has a crucial role. In unperturbed replication,
this domain exerts an inhibitory effect on replication initiation, and this inhibitory effect is relieved
upon its phosphorylation by DDK. However, in the context of replication stress, this N-terminal
phosphorylation by DDK becomes a prerequisite for proper checkpoint activation [176].

Another disease that appears to involve defective replication origin licensing is Meier–Gorlin
syndrome (MGS), an autosomal recessive primordial dwarfism syndrome characterized by pre- and
post-natal impaired growth. Several studies identified marked locus heterogeneity in this syndrome
including mutations in five genes encoding components of the Pre-RC: Orc1, Orc4, Orc6, Cdt1, and
Cdc6 [177,178]. The molecular and cellular phenotypes include impaired licensing, altered S phase
progression, and proliferation defects, which partially overlap with the phenotypes due to MCM
mutations, except for chromosomal instability, and an increased predisposition to cancer. Nonetheless,
MGS mutations in Orc1 and Orc6 can cause quite a significant reduction in MCM loading and
replication origin licensing [177,179,180].

Mice and human phenotypes caused by mutations in the licensing system illustrate our limited
understanding of what happens to cells when the DNA replication program is compromised.
For example, the threshold value for the number of licensed origins needed to activate the licensing
checkpoint is still not known, nor whether this value varies between cell types.

5. Conclusion and Prospects

Dormant origins are now recognized as an important safeguard against under-replication of the
genome, thus ensuring genome maintenance. Activation of dormant origins plays a central role in
the rescue of stalled forks in the context of replicative stress, contributing to the complete replication
of the DNA. The interactions between dormant origins and other fork restart mechanisms (such as
TLS) are mostly unknown, even though some links with DNA damage checkpoint or FA pathways are
becoming evident. What determines whether the cell activates dormant origins or induces these other
mechanisms in response to fork stalling still remains to be investigated.

How replicon clusters are activated at the molecular level remains unclear, although we know that
origin activation is regulated by both Chk1 and CDKs. The RIF1 protein might be the most interesting
factor in this process since it is present both at the replication fork and at replication origins, where it
plays a role in the DNA damage response, as well as in replication timing.
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The study that found a direct correlation between origin activation and chromatin loop size [62]
also reported that origins located near the anchorage sites of chromatin loops are preferentially
activated in the S phase of the following cell generation (Figure 4). This suggests that cells respond to
changes in fork dynamics by adapting origin usage in the next cell cycle, in addition to their rapid
response of origin activation. It appears that cells can adapt to grow under conditions of fork slowing
by increasing the efficiency of some origins that are usually dormant in normal growth conditions.

Perhaps most exciting is the prospect that the regulation of dormant origins might be different
in cancer cells to that in normal cells. MCM complex proteins are often misregulated at the early
stage of cancer [18,181,182], and tumor cells are more sensitive to replicative stress when they have
a reduced origin licensing capacity [183]. Mice hypomorphic for Mcm gene expression demonstrate
the real importance of dormant origins, but any link with spontaneous cancer development remains
to be determined to see whether this information can be useful to deal with anti-cancer molecules
more accurately.
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Figure 4. Summary diagram showing the importance of dormant origin activation in response to
replicative stress. During normal replication, only the principal origin is activated. If there is no
replicative stress, this same principal origin is also activated in the next S phase. Under conditions of
mild replicative stress, adjacent or dormant origins fire to compensate for fork slowing and to allow
complete replication on time. Many proteins (ATR/Chk1, mannose receptor C-type 1 (Mrc1)/Claspin,
Fanconi anemia complementation group 1 (FANCI)/ Fanconi anemia complementation group D2
(FANCD2), and Rap1-interacting factor 1 (RIF1)) are thought to be involved in the regulation of
dormant origins under mild replicative stress. RIF1 and Cohesin are two good candidates to explain
the persistence of some origin activation in the next S phase. Finally, when cells have few origins or
a deficiency in dormant origins, replicative stress leads inevitably to fork stalling, DNA breaks, and
genomic instability with a consequent risk of tumorigenesis.
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