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Abstract: Cancer is a worldwide epidemic and represents a major threat to human health and survival.
Reactive oxygen species (ROS) play a dual role in cancer cells, which includes both promoting and
inhibiting carcinogenesis. Tea remains one of the most prevalent beverages consumed due in part
to its anti- or pro-oxidative properties. The active compounds in tea, particularly tea polyphenols,
can directly or indirectly scavenge ROS to reduce oncogenesis and cancerometastasis. Interestingly,
the excessive levels of ROS induced by consuming tea could induce programmed cell death (PCD)
or non-PCD of cancer cells. On the basis of illustrating the relationship between ROS and cancer,
the current review discusses the composition and efficacy of tea including the redox-relative (including
anti-oxidative and pro-oxidative activity) mechanisms and their role along with other components in
preventing and treating cancer. This information will highlight the basis for the clinical utilization of
tea extracts in the prevention or treatment of cancer in the future.
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1. Introduction

Tea (Camellia sinensis) is highly consumed making it one of the most prevalent beverages in
the world [1]. There are diverse classifications of the methods used for tea production in different
regions. According to the degree of fermentation tea is generally classified into three main types,
including the unfermented green tea, the partially fermented oolong tea, and the fully fermented black
or pu-erh tea [2]. The functional composition of tea consists of tea polyphenols, tea polysaccharides,
L-theanine, tea pigments, caffeine, and tea saponin, some of which are secondary metabolites generated
by tea. These active chemicals contribute to the many important properties of tea, such as anti-cancer,
anti-aging, anti-microbial, anti-inflammatory, hypoglycemic, and hypotensive activities, along with
maintaining health and controlling diseases in human [3–7]. As a major compound, polyphenols are
rich in tea (about 30%) and possess anti- or pro-oxidative properties that have been studied widely for
more than 30 years.

The redox balance is critical for the health of humans. Reactive oxygen species (ROS) are
by-products of normal cellular metabolism which have been found to be associated with cancer.
Generally, ROS accumulation can cause damage to DNA, proteins, and lipids, and eventually lead
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to carcinogenesis [8]. However, ROS-mediated oxidative stress may also induce the death of cancer
cells [9]. Hence, modulating ROS production may be a potential strategy for cancer therapies. In this
review, we will integrate the available information on the relationship between ROS and cancer, and the
anti-cancer compounds found in tea, thereby summarizing the potential mechanisms of tea protecting
against cancer.

2. Cancer

While cancer is a major cause of death little remains definitively known about it. Cancer,
also known as malignant tumor or neoplasms, is a family of diseases that involve abnormal cell
growth with the potential to invade or spread to other parts of the body [10,11]. However, cancer
(particularly cervical cancer) barely produces obvious symptoms in the initial period leading to a
late diagnosis and limited treatment options [12]. Cancer is a chronic disease requiring ongoing
supports in four key areas, including prevention, surveillance, intervention for consequences of cancer
and its treatment, and coordination between specialists and generalist providers [13]. Currently,
the modern biomedical science community has accepted a theory that carcinogenesis is attributed
to somatic mutation [14]. Somatic cells accumulate mutations in three stages, initially cell survival
and proliferation are promoted, followed by the induction of mutations [15]. Thus, gene alterations,
especially the activation of oncogenes and the inactivation of cancer suppressor genes, are the main
causes of cancer [16–20].

3. ROS and Cancer

3.1. ROS Homeostasis and Regulation

ROS are a group of highly reactive ions and molecules that are derived from molecular oxygen
(O2) [21]. The endogenous generation of ROS is primarily derived from the mitochondrial electron
transport chain (ETC), a family of membrane-bound NADPH oxidases (NOXs) and 5-Lipoxygenase
(5-LOX) [22].

ROS homeostasis is required for normal cell survival and proper cell signaling. Under normal
circumstances low levels of ROS can stimulate signaling pathways to regulate intracellular homeostasis
and physiological functioning [21,23,24]. However, their fugitive properties and numerous cellular
effects potentially make them indiscriminate and lethal oxidants [25]. Irregular ROS accumulation
mainly stems from decreasing their elimination and increasing their production. Therefore, in order to
guarantee ROS homeostasis, the antioxidant defense system must actively regulate ROS levels.

Enzymatic antioxidants and non-enzymatic antioxidants are the major components of the
antioxidant defense system. Enzymatic antioxidants mainly consist of superoxide dismutases (SODs),
peroxiredoxins (PRXs), glutathione peroxidases (GPXs), and catalase (CAT) [26,27]. ROS (i.e., O2

−,
H2O2, OH•, NO, and ONOO−) can be cleaned up and catalyzed to H2O by these antioxidant enzymes
(Figure 1). The removal of ROS will then inhibit biomolecule damage, including DNA damage,
lipid peroxidation, and protein denaturation [8,26,28,29]. Some non-enzymatic materials also play
an important role for antioxidation. Glutathione (GSH) is the main non-enzymatic antioxidant in
cells. Two molecules of GSH are oxidized by H2O2 which will produce glutathione disulfide (GSSG),
and then GSSG is converted back to GSH by glutathione reductase (GR) and NADPH [30]. In addition,
activation of nuclear factor erythroid 2–related factor 2 (Nrf2)-antioxidant response element signaling
pathway can stimulate the cellular expression of antioxidant enzymes [31]. The tumor suppressor gene
p53 is also implicated in the expression of some important antioxidant genes, and participates in the
antioxidant defense system [32]. Thus, Nrf2 and p53 signaling may be considered as the important
intracellular pathways for regulating antioxidant capacity.
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Figure 1. Reactive oxygen species (ROS) generation and homeostasis. The endogenous generation of 
ROS is primarily derived from the mitochondrial electron transport chain (ETC), including a family 
of membrane-bound NADPH oxidases (NOXs) and 5-Lipoxygenase (5-LOX). As a precursor of H2O2 
and OH•, O2—can be converted into H2O2 by three isoforms of superoxide dismutases (SOD) (i.e., 
SOD1, 2, and 3) that locate in the cytoplasm, mitochondria matrix, and extracellular matrix. O2— reacts 
with nitric oxide (NO), and produces peroxynitrite (ONOO−), which will decrease antioxidant 
capacity. OH• is the production of H2O2 undergoing Fenton chemistry, and it owns the strongest 
chemistry activity, which can cause damage to biomolecules (such as DNA damage, lipid 
peroxidation, and protein denaturation). In addition, H2O2 can be catalyzed to H2O by peroxiredoxins 
(PRXs), glutathione peroxidases (GPXs), and catalase (CAT). Glutathione (GSH) is the main non-
enzymatic antioxidant in cells, and plays an important role in the degradation of H2O2. Two molecules 
of GSH are oxidized by H2O2 through GPX, and are converted into glutathione disulfide (GSSG), and 
then are regenerated GSH via glutathione reductase (GR) and NADPH. 

3.2. ROS and Carcinogenesis 

Compared with normal cells cancer cells have higher levels of ROS and may maintain a 
persistent pro-oxidative state, impairing ROS homeostasis, and leading to an intrinsic oxidative stress 
[33]. Oxidative stress results from the massive accumulation of ROS and may induce carcinogenesis 
in normal cells [34]. Lipid peroxidation can be induced through ROS reacting with polyunsaturated 
fatty acids, and its end products includes malonaldehyde (MDA) and 4-hydroxynonenal (HNE) 
having mutagenicity and tumorigenicity on mammalian cells [35,36]. As a major hallmark lesion 8-
oxo-7-hydrodeoxyguanosine (8-oxo-dG) is also generated by ROS reacting with both the DNA and 
nucleotide pool [37]. Moreover, ROS can specifically hyperactivate the mitogen-activated protein 
kinase (MAPK) and phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of 
rapamycin (mTOR) signaling pathways, stimulating some intracellular signaling cascades, and 
resulting in tumor development and metastasis through the regulation of cellular phenotypes 
including cancer cells survival, proliferation, and angiogenesis [38]. Riemann et al. showed that ROS 
prevented acidosis-induced MAPK phosphorylation, whereas the addition of H2O2 enhanced it in 
AT1 R-3327 prostate carcinoma cells [39]. Reuter et al. and Chetram et al. have reported that the ROS-
mediated PTEN function further activating Akt is the hub of complex signaling networks that 
integrate a multitude of potentially oncogenic signals [40,41]. 

In addition, ROS act as inflammatory factors which can lead to carcinogenesis. First of all, ROS 
are involved in the respiratory burst of neutrophils, tumor-associated macrophages (TAM), and 
lymphocytes, as well as recruiting inflammatory cells into sites of inflammation [42]. Secondly, some 
studies have revealed that the development of cancer was associated with chronic inflammation 
[43,44]. The induction of chronic inflammation that predisposes cancers include microbial infections 
(such as Helicobacter pylori for gastric cancer and mucosal lymphoma), autoimmune diseases (such as 
inflammatory bowel disease for colon cancer), and inflammatory conditions of uncertain origin (such 

Figure 1. Reactive oxygen species (ROS) generation and homeostasis. The endogenous generation of
ROS is primarily derived from the mitochondrial electron transport chain (ETC), including a family of
membrane-bound NADPH oxidases (NOXs) and 5-Lipoxygenase (5-LOX). As a precursor of H2O2 and
OH•, O2

− can be converted into H2O2 by three isoforms of superoxide dismutases (SOD) (i.e., SOD1, 2,
and 3) that locate in the cytoplasm, mitochondria matrix, and extracellular matrix. O2

− reacts with nitric
oxide (NO), and produces peroxynitrite (ONOO−), which will decrease antioxidant capacity. OH• is the
production of H2O2 undergoing Fenton chemistry, and it owns the strongest chemistry activity, which
can cause damage to biomolecules (such as DNA damage, lipid peroxidation, and protein denaturation).
In addition, H2O2 can be catalyzed to H2O by peroxiredoxins (PRXs), glutathione peroxidases (GPXs),
and catalase (CAT). Glutathione (GSH) is the main non-enzymatic antioxidant in cells, and plays an
important role in the degradation of H2O2. Two molecules of GSH are oxidized by H2O2 through GPX,
and are converted into glutathione disulfide (GSSG), and then are regenerated GSH via glutathione
reductase (GR) and NADPH.

3.2. ROS and Carcinogenesis

Compared with normal cells cancer cells have higher levels of ROS and may maintain a persistent
pro-oxidative state, impairing ROS homeostasis, and leading to an intrinsic oxidative stress [33].
Oxidative stress results from the massive accumulation of ROS and may induce carcinogenesis in
normal cells [34]. Lipid peroxidation can be induced through ROS reacting with polyunsaturated
fatty acids, and its end products includes malonaldehyde (MDA) and 4-hydroxynonenal (HNE)
having mutagenicity and tumorigenicity on mammalian cells [35,36]. As a major hallmark lesion
8-oxo-7-hydrodeoxyguanosine (8-oxo-dG) is also generated by ROS reacting with both the DNA and
nucleotide pool [37]. Moreover, ROS can specifically hyperactivate the mitogen-activated protein kinase
(MAPK) and phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin
(mTOR) signaling pathways, stimulating some intracellular signaling cascades, and resulting in
tumor development and metastasis through the regulation of cellular phenotypes including cancer
cells survival, proliferation, and angiogenesis [38]. Riemann et al. showed that ROS prevented
acidosis-induced MAPK phosphorylation, whereas the addition of H2O2 enhanced it in AT1 R-3327
prostate carcinoma cells [39]. Reuter et al. and Chetram et al. have reported that the ROS-mediated
PTEN function further activating Akt is the hub of complex signaling networks that integrate a
multitude of potentially oncogenic signals [40,41].

In addition, ROS act as inflammatory factors which can lead to carcinogenesis. First of all,
ROS are involved in the respiratory burst of neutrophils, tumor-associated macrophages (TAM),
and lymphocytes, as well as recruiting inflammatory cells into sites of inflammation [42]. Secondly, some
studies have revealed that the development of cancer was associated with chronic inflammation [43,44].
The induction of chronic inflammation that predisposes cancers include microbial infections (such
as Helicobacter pylori for gastric cancer and mucosal lymphoma), autoimmune diseases (such as
inflammatory bowel disease for colon cancer), and inflammatory conditions of uncertain origin (such
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as prostatitis for prostate cancer) [45–47]. Zhang et al. also found that esophageal adenocarcinoma cells
successfully achieved metastasis and progression through ROS-induced NF-κB signaling pathways,
which increased the expression of tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-8 [48].

Besides inducing oxidative stress and inflammation, ROS-induced tumor progression and
metastatic are also related to the neovascular response [49]. The increased levels of ROS and Akt
phosphorylation promote angiogenesis and tube formation [50]. Vascular endothelial growth factor
(VEGF) may be up-regulated by oxidative stress, which is known to play a crucial role in tumor
angiogenesis [51]. Therefore, decreasing levels of ROS could prevent carcinogenesis and the proliferation
of cancer cells.

3.3. ROS as a Cancer Therapy Agent

Interestingly, ROS are appreciated for having a dual role in cancer cells. If the generation
of ROS exceeds the tolerance range of cancer cells, by using an oxidative stress inducer (such as
STA-4783, ampelopsin), this will result in a threat to survival and even the death of cancer cells [9,52].
ROS promotes cancer cell death and autophagy through the activation of c-Jun N-terminal kinase
(JNK) and p38 signaling pathways [53]. Recently, it has been shown that apoptotic cell death can
occur through activating the endoplasmic reticulum (ER) stress/ROS/JNK axis and inhibiting Akt
pro-survival signaling in colon cancer cells [54]. Therefore, cancer cells maintain ROS at a level
without inducing cell death by promoting pro-tumorigenic signaling pathways and triggering their
antioxidant capacity [27] along with controlling the production of mitochondrial ROS (mROS) via
cytosolic isocitrate dehydrogenase-1 (IDH1)-dependent reductive carboxylation [55]. These evidences
are in opposition to previously published studies. Then what is the true relationship between ROS
and cancer? The role of ROS as an oncogenesis agent or a cancer therapy agent is determined by the
concentrate and types of ROS, and its local antioxidant capacity [56]. Currently, it is unreliable to use
ROS generators as a mono-approach to treat cancer in the clinic and the redox adaptation of cancer
cells, which is largely in charge of therapeutic resistance and tumor relapse, needs to be taken into
consideration when treating cancer.

4. Tea Resists Carcinogenesis

The major tea-producing countries are China, India, Japan, Sri Lanka, Indonesia, and Central
African countries [57]. The argument that tea is a cancer preventive agent is no longer new. A pioneering
study in the mid-1990s summarized the available epidemiologic information and found that tea
consumption is likely to have beneficial effects on reducing the cancer risk in some people [1]. Recently,
a meta-analysis found an inverse association between tea consumption and cancer risk [4,58–61].
However, some evidence does not support the hypothesis that tea can reduce the risk of cancer [62,63].
The above conflicting results could be due to variations in the types, dosage, and drinking manner
of tea. In fact, the components and quality of tea are variable by the category, growth environment,
storage time, and method of production, which will affect the original beneficial effects of tea.

4.1. Tea Polyphenols

Tea polyphenols are one of the most important ingredients in regulating the redox balance of tea.
Our previous in vivo and in vitro studies reported that tea polyphenols have strong anti-oxidative
capacities [64–66]. Tea polyphenols can reduce the incidence and development of tumors in the
stomach, intestines, liver, lungs, skin and other parts of the whole body [67–71]. Catechins are the most
abundant polyphenols in tea, mainly including epigallocatechin-3-gallate (EGCG), epigallocatechin
(EGC), epicatechin-3-gallate (ECG), and epicatechin (EC) [34]. Among them, EGCG is the major
catechin in tea, and may account for 50–80% of the total catechins [72].

Tea polyphenols could decrease the risk of skin cancer through inhibiting ultraviolet light B
(UVB)-induced oxidative stress, such as the depletion of antioxidant enzymes, lipid oxidation, and the
infiltration of inflammatory cells [68]. In a two-stage model of diethylnitrosamine (DEN)/phenobarbital
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(PB)-induced hepatocarcinogenesis of Sprague-Dawley rats, oral gavage of tea polyphenols five times
weekly could significantly increase the total antioxidant capacity (T-AOC) and GPX activity in livers [67].
In the multistage mouse skin carcinogenesis model, peracetylated EGCG treatment could decrease the
expression of oxidative enzymes, such as inducible nitric oxide synthase (iNOS) and cyclooxygenase
(COX)-2 [73]. In addition, tea polyphenols show a pro-oxidative activity. EGCG-induced oxidative
stress and mitochondrial dysfunction, and played an anti-cancer role in oral cancer [74].

In addition to acting as preventive agents, tea polyphenols can also be used as adjuvant therapies
for various cancers. When EGCG is combined with a conventional cancer therapy additive, synergistic
effects have been proposed, which are mainly due to its anti-inflammatory and anti-oxidative activities
that improve the side effects during cancer treatment [75]. Zhang et al. found that the administration of
400 mg EGCC three times daily potentiated the efficacy of radiotherapy in patients [3]. However, EGCG
also has antagonistic interactions with PS-341, which will limit its clinical use. PS-341 is an anti-myeloma
drug which activity would be blocked by EGCG through vicinal diols on polyphenols interacting with
the boronic acid of PS-341 [76]. As a consequence, pre-clinical studies on tea polyphenols (particularly
on the bioactive utilization, mechanism of action, and safety of EGCG) need to be carried out.

4.2. Others

In the cancer field studies involving tea polysaccharides (TPS), L-theanine, tea pigments,
and caffeine are not adequate. TPS are a group of hetero-polysaccharides bonded with proteins [77].
Yang et al. reported that TPS (400–800 µg/mL) significantly improved the anti-oxidative capacity in a
dose-dependent manner, and inhibited the cancerometastasis of gastric cancer in mice [78]. Selenium
(Se)-containing TPS (IC50 of 140.1 µg/mL) induced ROS generation which made cells undergo G2/M
phase arrest and apoptosis and exhibited effective inhibition of human breast cancer MCF-7 cell
growth [79]. Moreover, compared with the utilization of doxorubicin (DOX) alone, a combination of
TPS and DOX has a better suppression efficiency in lung cancer A549 cells [80].

L-theanine is a natural amino acid which is found specifically in tea plants and makes up 1–2% of
the dry weight of tea leaves [81]. Liu et al. found that theanine and its derivates had no toxicity in
mice [82]. Recent studies have shown that, in addition to relieving depression, memory improvement,
and neuroprotection [83–85], L-theanine may also have anti-tumor activities. Adriamycin (ADR) was
used to efficiently treat Ehrlich ascites carcinoma cells and its side effects, such as reducing antioxidant
enzyme activity and increasing the level of lipid peroxidation, can be alleviated by the combined
utilization of L-theanine [86].

Tea pigments are the oxidized products of polyphenols and their derivatives in tea leaves and
mainly consist of theaflavins (TFs), thearubigins (TRs), and theabrownin [87]. The composition of tea
pigments in black tea are similar to that of the tea polyphenols in green tea, but the former is chemically
stable and may be an ideal chemopreventive agent [88]. In a rat liver precancerous lesion model the
treatment with tea pigments suppressed cancer biomarkers such as glutathione S-transferase Pi (GST-Pi)
mRNA and protein [89]. Furthermore, in an in vivo trial on 1,2-dimethylhydrazine (DMH)-induced
rat colorectal carcinogenesis, treatment with 0.1% tea pigments reduced aberrant cryptic foci (ACF)
and colonic tumor formation [90].

Caffeine, the most abundant alkaloid in tea, makes up 2–4% of the dry weight, and its structure
is identified as 1,3,7-trimethylxanthine [91]. Caffeine has been shown to have both positive and
negative health effects. The cancer preventative effects of caffeine in rodent hepatocellular carcinoma
(HCC) models have also been demonstrated [92]. Chronic caffeine ingestion inhibited rat breast
cancer, neither by interfering with the high prolactin levels that is a necessary step in murine tumor
development, nor by causing hypocaloric intake [93]. However, an in vivo trial showed that the rats
consuming caffeine and unsaturated fat had the earliest tumor development and the most multiple
tumor occurrence [94].
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4.3. Tea Types and Anti-Cancer

Along with studying the different components of tea, studies should also be undertaken to analyze
their anti-cancer properties. Generally, tea is divided into three main types based on production,
namely unfermented green tea, partially fermented oolong tea, and fully fermented black tea or pu-erh
tea [2]. We have already summarized and discussed the anti-oxidant capacity of tea polyphenols
derived from the differently produced teas but remain unable to draw a consistent conclusion [34].
The individual effects of green tea, black tea, and oolong tea on cancer are difficult to confirm using
epidemiological research, mainly due to many consuming several tea types [95]. However, it appears
that when comparing the anti-cancer effects between green tea and black tea, the former is more
efficient [96,97]. This can be associated with the stronger antioxidant capacity and protective effects
of green tea [95,98]. However, Record and Dreosti reported that treatment with black tea provided
more protection than green tea in solar irradiation-induced skin cancer in hairless mice [99]. Until now,
there has been no direct evidence that oolong tea, a semi-fermented tea, has the ability to fight cancer.
Only one in vitro experiment showed that oolong tea has the worst inhibiting effect on the invasion
and proliferation of AH109A compared with green and black teas [100].

5. Anti-Cancer Mechanisms of Tea through Regulating ROS Homeostasis

5.1. Anti-Oxidant Capacity of Tea

Even though a great amount of anti-cancer mechanisms of tea has been discovered the anti-oxidant
capacity of tea is still considered as the most important mechanism (Figure 2). Tea polyphenols are the
main anti-oxidant capacity component in tea. Tea polyphenols have higher antioxidant capacity than
vitamins and offset vitamin’s disadvantages, including photosensitivity from natural vitamin intake
and the side effects of synthetic vitamin [101].
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the phenolic hydroxyl group. Tea can also indirectly eliminate ROS through improving anti-oxidative
enzymes activities, decreasing the effects of the oxidases, decreasing by-products (including MDA, HNE,
and 8-oxo-dG) formation, and decreasing the inflammatory reaction, which involves the regulation of
Nrf2 and NF-κB signaling pathways. Moreover, tea can regulate the drug-metabolizing pathways or
become a chelating agent to scavenge ROS. Pro-oxidative activity of tea. With pro-oxidative activity,
tea can selectively induce programmed cell death (PCD) or non-PCD of cancer cells, and it is considered
as a potential anti-cancer candidate. PCD of cancer cells includes ROS-induced apoptosis or autophagy
by mitochondrial dysfunction, the reduction of Trx/TrxR, and ROS-induced hyperactivation of p38,
JNK, and p53, which activate the expression of downstream apoptotic proteins (such as Bax, caspase-3,
and caspase-9). In addition, tea can induce non-PCD of cancer cells through ROS-induced DNA
degradation by endogenous copper and ROS-mediated lysosomal membrane permeabilization.

5.1.1. Tea as a Direct ROS Scavenger

In an in vitro oxidative hemolysis model of human red blood cells (RBC) green tea polyphenols,
as natural antioxidants, efficiently suppressed the hemolysis in the sequence of EGCG > EGC >

ECG ≈ EC [102]. Cancer induced by oxidative stress will produce abnormal levels of MDA, HNE,
and 8-oxo-dG, which can be mitigated by tea polyphenols [34,103]. Oxidative DNA and protein
damage was mitigated by the consumption of tea polyphenols in a mice model with prostate cancer
cell subcutaneous xenografts [104]. The decrease of ROS-induced biomolecule damage could depend
on EGCG, which is the most effective scavenger for O2

−, OH•, and 1,1-diphenyl-2-picrylhydrazyl
radicals among tea catechins [105]. EGCG scavenges ROS mainly through oxidizing the B and D ring
of the galloyl group, and the oxidation of ECG occurs initially in the D ring [106]. After the phenolic
hydroxyl groups of tea polyphenols combine with ROS, phenoxy radical is formed, and then the levels
of ROS decrease [107].

Besides tea polyphenols, other components of tea may directly clean up ROS. Theabrownin exerts
a ROS scavenging activity because it is the derivative of tea polyphenols [108]. In addition, TPS also
can be a direct scavenger to eliminate excessive ROS, but the ROS scavenging activity of TPS depends
on the preparation method, drying method, and its concentration [109–111].

5.1.2. Tea as an Indirect ROS Scavenger

EGCG may indirectly enhance the antioxidant capacity to suppress carcinogenesis, which is
derived from the increasing activities of the antioxidant enzyme and the decreasing effects of the
oxidases [103]. TPS can also improve the anti-oxidant function in gastric cancer mice via decreasing
the levels of MDA and increasing the activity of antioxidant enzymes [78,112]. Tea extract could
attenuate oxidative damage by improving the expression of SOD, CAT, and GPX, and downregulating
the expression of iNOS and COX-2 in mice [113]. Further studies showed that EGCG inhibited iNOS
gene expression, iNOS kinase and COX activities, which would reduce the generation of NO and
prostacyclin, and decrease protein and DNA damage, and ultimately inhibit cancer [114,115].

Nrf2/the antioxidant response element (ARE), is the redox-sensitive signaling pathway that
regulates antioxidant enzymes and xenobiotic detoxification of enzymes against oxidative stress
to maintain the redox balance in normal cells [116]. In addition, multiple protein kinases such as
MAPKs, extracellular regulated protein kinases (ERK), and protein kinase C (PKC), were involved
in the regulation of Nrf2 transcriptional activity by inducing the phosphorylation of Nrf2 [117,118].
Tea polyphenols pretreatment could modulate the nuclear translocation of Nrf2 by stimulating the
ERK1/2 phosphorylation and transcriptionally regulating the expression of antioxidant enzymes
downstream (including heme oxygenase (HO)-1 and NQO-1) in HepG2 cells [117]. Gao et al. also
reported that EGCG could upregulate the level of HO-1 to improve contrast-induced oxidative stress
against carcinogenesis [119]. Interestingly, several studies have indicated that Nrf2 and HO-1 are
frequently upregulated in cancer and correlate with a poor prognosis [120,121]. The dark side of the
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Nrf2/HO-1 axis could be inhibited by the combination of EGCG and metformin, reaching to a level
suppressing lung cancer [122].

The ability of tea extracts to scavenge ROS involves the NF-κB signaling pathway [113]. NF-κB
also modulates the expression of cancer-associated cytokines such as TNF-α and IL-8 [123]. Following
combining with tumor necrosis factor receptor (TNFR), TNF-α stimulates the NOX complex-induced
ROS via NF-κB activation and induces carcinogenesis [124–126]. IL-8 is a potent neutrophil
chemoattractant which can promote the generation of ROS by activating NF-κB [127]. Fabiola
et al. and Tomtitchong et al. found that treating gastric epithelial cells with different factors (such as
IL-1β and Helicobacter pylori) can enhance IL-8 secretion, and tea polyphenols treatment decreased
the risk of gastric cancer via inhibition of NF-κB [5,6]. In an analysis report, black tea consumption
could mitigate ROS-induced DNA damage, and then prevent carcinogenesis by inhibiting NF-κB
transcriptional expression in tobacco users [128].

The above-mentioned information implied that there is a potential cross relationship between
Nrf2 and NF-κB that could be regulated by tea and its components during the inhibition of
carcinogenesis [113,129]. A study found that the increasing susceptibility of Nrf2 deficient mice
to dextran sulfate sodium (DSS)-induced colitis and colorectal cancer was associated with the
decreased expression of antioxidant/phase II detoxifying enzymes, in parallel with the enhancement of
pro-inflammatory cytokines through stimulating the NF-κB signaling pathways [130]. Furthermore,
Li et al. found that tea polyphenols suppressed NF-κB-dependent inflammation, promoted Nrf2
nuclear translocation, and improved the antioxidant capacity during nonalcoholic steatohepatitis in
mice fed a high-fat diet [113].

Some drug-metabolizing pathways also are targets of tea and its components. The aryl hydrocarbon
receptor (AhR) and cytochrome P450 (CYP450) may convert procarcinogens into carcinogens, which
induces cellular toxicity by regulating the generation of ROS [131]. Several studies reported that
CYP450 took part in polycyclic aromatic hydrocarbons (PAHs) metabolism, and there is a carcinogenesis
possibility causing oxidative DNA damage via ROS generation [132–134]. However, green tea and
black tea decrease the risk of cancer through inhibiting AhR activation pathways and CYP450 activity
in the rat liver [135]. Therefore, it is possible that tea and its components potentially are able to inhibit
carcinogenesis through influencing drug-metabolizing pathways to impede ROS production.

Moreover, the antioxidant activity of EGCG reaching anti-carcinogenesis is also attributed to its
chelation with metal ions [136]. Iron is required for neoplastic cells and will be prone to depletion [137].
Iron ion supplementation promotes tumor-associated macrophage (TAM) formation because of
increased ROS production [138]. But the B ring of tea polyphenols may competitively bind metal ions
(including iron), which will decrease the iron intake and ROS level in neoplastic cells [137,139]. Thus,
tea polyphenols may reduce ROS generation via competing for metal ions.

5.2. Pro-Oxidative Activity of Tea

Pro-oxidative activity tea with its components are considered anti-cancer candidates.
They selectively cause programmed cell death (PCD) of cancer cells, but do not damage normal
cells (Figure 2). PCD of cancer cells involves hyperactivation of p38, JNK, and p53, which activates
the expression of downstream apoptotic proteins (such as Bax, caspase-3, and caspase-9) [53,140–142].
In contrast to the anti-oxidative property of tea, EGCG-induced apoptosis or autophagy in cancer
cells were due to the significant decrease in mitochondrial membrane potential, which results
in mitochondrial dysfunction and increased intracellular ROS [143,144]. Then, as an important
mitochondrial redox modulator, sirtuin 3 (SIRT3) and its downstream targets (including GSH and SOD)
transcription could be inhibited through decreasing the nuclear localization of the estrogen-related
receptor α (ERRα) by EGCG in oral cancer cells [145]. Thioredoxin (Trx) and thioredoxin reductase
(TrxR), known as antioxidant agents and anti-apoptotic proteins, commonly are overexpressed in the
human cancer cells [146]. EGCG treatment may reduce Trx/TrxR via the formation of EGCG-Trx1
(Cys(32)) and EGCG-TrxR (Cys/Sec) conjugates and promote cancer cell death [147]. Human telomerase
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reverse transcriptase (hTERT) is expressed in over 90% of cancers but not in normal cells [148].
Compared with normal cells, EGCG specifically induced ROS production (especially H2O2) in cancer
cells; and ROS down-regulated hTERT expression to promote the apoptosis of cancer cells [149].
Interestingly, Nrf2 frequently overexpresses in human cancer cells and will improve the anti-oxidative
activity of cancer cells [150]. However, a combination of EGCG (30 µM) with luteolin (10 µM) efficiently
inhibits Nrf2 and synergistically increased apoptosis in the head and neck as well as lung cancer cell
lines, including A549 [151].

Tea can also induce the non-programmed cell death of cancer cells. Tea and its components were
also prone to have pro-oxidative activity with an excessive concentration of transition metal ions.
For examples, tea polyphenols mediated the cellular DNA degradation of ROS-induced lymphoma
through the involvement of endogenous copper [152]. Moreover, EGCG induces non-apoptotic
death of human cancer cells (both HepG2 and HeLa) via ROS-mediated lysosomal membrane
permeabilization [153].

6. Conclusions

ROS were appreciated for having a dual role in human cancer including promoting and inhibiting
carcinogenesis. Generally, tea and its components act as efficient scavengers of ROS in direct and
indirect manners. Interestingly, excessive tea-induced ROS can also cause the PCD or non-PCD of
cancer cells. Therefore, tea could potentially be a cancer therapy agent. Moreover, we discussed tea
and its bioactive components, especially tea polyphenols, on the basis of their anti- or pro-oxidative
activity resisting oncogenesis and cancerometastasis through regulating human redox balance.

In addition, tea and its components may have synergistic effects with conventional anti-cancer
measures in clinical practice. However, tea and its components still encounter lots of challenges for
clinical application. Usage and dosage of tea and its components, and the various cancer types, may be
the prerequisite regulating the bioavailability of tea and its components. Thus, further studies need to
be done. For example, how to deliver tea and its components effectively to target sites and protect
them from degradation. Furthermore, except for tea polyphenols, other components of tea need more
studies in cancer treatment. Thus, we strongly recommend extensive clinical studies of the application
of tea and its components with regards to its use as both a preventative and potential therapeutic
for cancer.
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