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INTRODUCTION
Exposure estimates from spatio-temporal air pollution models 
are commonly used as exposure variables in epidemiological 

analyses of air pollution and health. However, measurement 
error may be introduced into model predictions due to over-
smoothing the pollutant surface (i.e., Berkson-like error), and 
classical-like error may be introduced due to model parameter 
prediction.1 The magnitude of these errors is generally assessed 
using data from validation studies comparing monitor and 
model outputs and calculating standard metrics such as the 
residual mean square error.2–4 These metrics are informative 
about the level of bias in individual exposure estimates, but less 
informative when trying to assess the total adverse impact of 
measurement error on effect estimation in epidemiological anal-
yses of air pollution and health.

This has led to the use of statistical simulation as an alter-
native approach to assessing pollution model performance.1,5–9 
Although some of these studies have observed marked negative 
bias (i.e., towards the null) in health effect estimation due to 
additive classical error in model outputs,5–9 others have observed 
some positive bias (i.e., away from the null) if the Berkson com-
ponent of error is additive on a log scale.5–7 However, a simu-
lation study by Szpiro et al,1 investigating the use of exposure 

What this study adds
This study demonstrates how statistical simulation methodol-
ogy can be employed to compare the performance of different 
air pollution models in terms of their use in providing exposure 
variables for complex epidemiological analyses of air pollution 
and health. It illustrates that combining outputs from different 
models, such as those based on land use regression or disper-
sion, maybe a way forward in reducing bias in health effect 
estimation and preserving coverage probability and statistical 
power. It also highlights the potential benefits of combining such 
outputs using generalized additive models (GAM).
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Background: Using modeled air pollutant predictions as exposure variables in epidemiological analyses can produce bias 
in health effect estimation. We used statistical simulation to estimate these biases and compare different air pollution models 
for London.
Methods: Our simulations were based on a sample of 1,000 small geographical areas within London, United Kingdom. “True” 
pollutant data (daily mean nitrogen dioxide [NO2] and ozone [O3]) were simulated to include spatio-temporal variation and spatial 
covariance. All-cause mortality and cardiovascular hospital admissions were simulated from “true” pollution data using prespecified 
effect parameters for short and long-term exposure within a multilevel Poisson model. We compared: land use regression (LUR) 
models, dispersion models, LUR models including dispersion output as a spline (hybrid1), and generalized additive models com-
bining splines in LUR and dispersion outputs (hybrid2). Validation datasets (model versus fixed-site monitor) were used to define 
simulation scenarios.
Results: For the LUR models, bias estimates ranged from −56% to +7% for short-term exposure and −98% to −68% for long-
term exposure and for the dispersion models from −33% to −15% and −52% to +0.5%, respectively. Hybrid1 provided little if any 
additional benefit, but hybrid2 appeared optimal in terms of bias estimates for short-term (−17% to +11%) and long-term (−28% to 
+11%) exposure and in preserving coverage probability and statistical power.
Conclusions: Although exposure error can produce substantial negative bias (i.e., towards the null), combining outputs from differ-
ent air pollution modeling approaches may reduce bias in health effect estimation leading to improved impact evaluation of abate-
ment policies.
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predictions from a land use regression (LUR) model in a linear 
regression analysis, observed little difference in health effect 
bias when the accuracy of exposure predictions was compro-
mised by dropping an important geographic variable from the 
LUR. Although this suggests that improving the accuracy of 
exposure prediction may not improve health effect estimation, 
whether we would observe similar results under newly proposed 
approaches to pollution modeling or more complex outcome 
analyses is unclear and merits investigation.

As part of the project entitled, “Comparative evaluation of 
Spatio-Temporal Exposure Assessment Methods for estimating 
health effects of air pollution” (STEAM), we use statistical sim-
ulation methods, described in our previous article,5 to assess the 
impact of measurement error introduced by using model out-
puts as exposures in a single pollutant multilevel epidemiologi-
cal analysis. Our aim is to compare the performance of different 
London based pollutant models for NO2 and O3. The models 
were developed using 4 different modeling approaches, namely 
LUR, dispersion, and two hybrid models combining both tech-
niques (hybrid1 and hybrid2).

Methods
The context of our simulations is a sample of 1,000 Lower Super 
Output Areas (LSOA) within the London M25 orbital motor-
way and a spatio-temporal epidemiological analysis conducted 
at the LSOA level, over the period 2009–2013, and facilitating 
the joint estimation of health effects from both short-term (daily 
mean) and long-term (5-year mean) pollutant exposures.10 An 
LSOA is a small geographic area, with an average population 
of approximately 1,500 residents.11 Our simulations consider 
scenarios each defined by a combination of outcome measure 
(all-cause mortality or cardiovascular hospital admissions), pol-
lutant (NO2, O3), error type (additional, proportional), pollu-
tion model (LUR, dispersion, hybrid1, and hybrid2), and site 
type (urban/suburban background or roadside/kerbside). The 
inclusion of two outcome measures allowed us to investigate the 
effect of changing the baseline disease rate and the underlying 
concentration-response functions.

Monitor data

Daily measurements of the gaseous pollutants were obtained 
for 2009–2013 from NO2 monitoring sites within the M25 
London road network and O3 monitoring sites within the wider 
southeast region. NO2, data were available from 72 roadside/
kerbside sites and 47 urban/suburban background sites. For 
O3, the corresponding figures were 10 and 36. These data were 
obtained from the London Air Quality Network,12 and Air 
Quality England,13 and include data from the Automatic Urban 
and Rural Network (AURN).14

Meteorological data

Meteorological related variables used to inform pollutant mod-
els were obtained from the UK Met Office through the Centre 
for Environmental Data Analysis (CEDA).15

Pollutant modeling

Land use regression

We developed spatio-temporal semiparametric models, of the 
form:

f poll f S h geogp it it
T

l

q

l l it ij it( ) ,= + ( ) + ( ) +
=
∑ϖ B

1

µ

where pollit  is the measurement of the air pollutant at loca-
tion i  on day t, fl().  is an unspecified smooth function reflecting 

the nonlinear effect of covariate Sl it,  on the transformed pol-
lutant concentration f pollp it( ), Sl it,  stands for the lth smoothed 
covariate; h is a bivariate smooth function of geographical 
coordinates (latitude and longitude) accounting for residual cor-
relation between locations i  and j; ϖit is the vector of covariates 
that have a linear effect on ( )f pollp it ; B is the corresponding 
vector of regression coefficients; and µit ~ ( , )N 0 2σµ . For NO2, 
f poll log pollp it e it( ) = ( ) and for O3, f poll pollp it it( ) =

Dispersion

The Community Multiscale Air Quality (CMAQ-urban) 
model16,17 combines emissions data with the Weather Research 
and Forecasting (WRF) meteorological model v3.6.1 (National 
Centre for Atmospheric Research, Boulder, CO),18 and the 
Community Multiscale Air Quality (CMAQ) model v5.0.2 (U.S. 
Environmental Protection Agency, Washington, DC),19 which has 
been coupled to the Atmospheric Dispersion Modeling System 
(ADMS) roads model v4 (Cambridge Environmental Research 
Consultants, Cambridge, UK).20 For this study, the anthro-
pogenic emissions data were obtained by combining the UK 
National Atmospheric Emissions Inventory (NAEI),21 the London 
Atmospheric Emissions Inventory,22 King’s road transport emis-
sions model,23 and the European Monitoring and Evaluation 
Programme European emissions.24 The biogenic emissions from 
vegetation and soils were estimated using the Biogenic Emission 
Inventory System version 3 (BEIS3) model  (U.S. Environmental 
Protection Agency).25 Sea-salt emissions were calculated in line in 
CMAQ. The CMAQ-urban model outputs hourly air pollution 
concentrations at 20 m grid resolution across study domain. The 
model provides nitrogen oxides (NOX), NO2 and O3, with the 
ADMS roads model used to describe the near field dispersion from 
roadways and NO2 and O3, using a simple chemical scheme.26

Hybrid models

Hybrid1: For each pollutant, we constructed a combined LUR-
dispersion model by incorporating into the LUR, daily predicted 
air pollutant values estimated from the CMAQ-urban disper-
sion model at fixed-site air pollution monitoring locations, as a 
nonlinear covariate. The resulting models took the form:

f poll f S h geog s tp it it
T

l

q

l l it ij it( ) = + ( ) + ( ) + +
=
∑ϖ B Mg

1
, ( , ) µ

where M( , )s t  is a spatio-temporal spline representing the CTM 
model predictions with coefficient, g.

Hybrid2: For each pollutant, using R version 3.3.3 (R 
Foundation for Statistical Computing, Vienna, Austria),27 and 
library mgcv with generalized cross-validation smoothing,28 a 
generalized additive model (GAM) approach was applied to 
combine predicted pollutant concentrations at fixed-site mon-
itoring locations from the developed spatio-temporal LUR and 
CMAQ-urban dispersion models. The GAM was developed by 
fitting two corresponding splines of the predicted variables to 
measurements at fixed monitoring sites. For the LUR, we used 
10-fold cross-validated predictions.

Validation data

For dispersion modeling, validation data consisted of model 
NO2 and O3 predictions for 2009–2013 for all monitoring sites, 
linked to their corresponding monitor measurements, which 
played no role in the modeling. For models that included mon-
itoring data in the modeling process (i.e., LUR, hybrid1, and 
hybrid2), a 10% leave-out rule was used by which 10% of mon-
itors were omitted, the model recalibrated, and used to predict 
pollutant outputs at the left-out sites. This process was repeated 
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until a full model-monitor dataset was achieved, predicting val-
ues for the complete set of monitors.

Simulation strategy

Following the same general approach as detailed in our previous 
article,5 our simulation strategy consisted of 4 basic steps:

Step1: Simulating “true” daily mean outdoor air pollutant 
data for the geographic centroid of each LSOA using a simple 
pollutant site-type specific spatio-temporal model developed 
from monitor measurements in our validation datasets. As in 
our previous article,5 the model incorporated spatio-temporal 
variances and covariances as well as adjusting for instrument 
error in the monitor measurements.

Step2: Simulating “true” outcome data from the “true” pol-
lutant data, incorporating a relationship between the two based 
on a multilevel Poisson regression model,10 with three prespec-
ified regression coefficients representing: baseline disease rate 
(exp c( ))3 ; the short-term concentration-response function (CRF) 
per 1 µg/m3 change in pollutant (β1); and the long-term CRF per 
1 µg/m3 change in pollutant (β2). The values of these coefficients 
used for each pollutant and outcome combination are listed in 
eTable 1; http://links.lww.com/EE/A86.

Step3: Simulating pseudo-modeled daily pollutant data from 
the “true” pollutant data prespecifying both the temporal (αt)
and spatial (αs) Pearson correlation coefficients between the 
two and their temporal (γ t) and spatial (γ s) variance ratios 
(model versus “true”). For each pollution model, pollutant, and 
site type, these parameters (α α γ γt s t s, , )and  were estimated from 
an analysis of validation data with correction for instrument 
error in monitor measurements as described in ePage 3; http://
links.lww.com/EE/A86.

Step4: Refitting the multilevel Poisson regression model, 
replacing “true” pollutant data with the corresponding pseu-
do-modeled data. This provides us with estimates of β1 10×  and 
β2 10×  (i.e., expressed per 10 µg/m3) and their corresponding 
standard errors.

For NO2, we considered not only additive measurement error 
but proportional error (i.e., additive on a log scale). Proportional 
error scenarios use loge(NO2) as the pollutant leading to the sim-
ulation of “true” loge(NO2) data and pseudo-modeled loge(NO2) 
data. Simulated “true” and pseudo-modeled loge(NO2) data are 
back-transformed to NO2 for simulating “true” outcome data 
and refitting the Poisson regression model, respectively.

Simulations were run in R version 3.4.3,27 using libraries 
Hmisc,29 lme4,30 MASS,31 and foreign.32

Performance assessment

For each combination of pollutant (NO2 [with additive or pro-
portional error], O3 [with additive error]), site type, pollution 
model, and outcome, we ran 1,000 simulations and obtained 
1,000 estimates of: β β β β1 2 1 210 10 10 10× × ×( ) ×, , , ( )se se , 
from which we calculated, for both long and short-term expo-
sure, the average health effect estimate, average standard error, 
percent bias in health effect estimation, coverage probability as 
the percentage of 95% confidence intervals containing the true 
concentration-response function, and power as the percentage 
of significance tests that were statistically significant at the 5% 
level.33 Using our simulated health effect estimates, we tested 
for differences from their respective “true” values by calculating 
simple one-sample t-tests.

Standard performance metrics

For each pollutant, pollution model, and site type, we also cal-
culated: mean bias; normalized mean bias; normalized mean 
gross error; root mean square error; and FAC2 (i.e., fraction of 
estimates within a factor of 2).2,3

Results
Table 1 contains estimated correlation coefficients and variance 
ratios obtained from the validation datasets and used to define 
our scenarios. It illustrates that in a real-world example, the 
spatial and temporal variance ratios may differ quite markedly 
as can the spatial and temporal correlation coefficients. The 
hybrid1 model provided out-of-plausible range predictions for 
one roadside/kerbside O3 monitoring site, resulting in a large 
spatial variance ratio and a small negative spatial correlation 
coefficient (Table 1).

Simulation results

Simulation findings for all-cause mortality are summarized in 
Tables 2–4. For all pollutant-site-type scenarios, the LUR exposure 
estimates produced a sizeable downward bias in the estimated 
health effect of long-term exposure ranging from −91% for road-
side/kerbside NO2 to −68% for roadside/kerbside O3. For short-
term exposure, bias also tended to be negative though not as large 
(i.e., −56% to −23%), although for urban/suburban O3, bias was 
small and positive (4%). When dispersion exposure estimates were 
used, negative biases were generally smaller, substantially in some 
cases, and the previously positive bias for short-term exposure to 
urban/suburban O3 became negative (−18%). Including dispersion 
outputs as an additional covariate in the LUR model produced 
out-of-plausible exposure range predictions for one roadside/
kerbside O3 monitoring site and only marginal improvements in 
health effect estimation for other pollutant site-type combinations. 
However, combining both LUR and dispersion predictions in a 
generalized additive model tended to minimize bias in health effect 
estimates, which ranged from −28% to 11% for long-term expo-
sure and −17% to 11% for short-term exposure.

The hybrid2 model also appeared optimal for coverage prob-
ability and statistical power, with values of the former ranging 
from 92.3% to 95.4% and values of the latter for short-term 
exposure to NO2 ranging from 84.2% to 98.1%. For long-term 
exposure, due to smaller sample size, and for short-term exposure 
to O3, due to a very small CRF, statistical power was much lower 
but was nevertheless, with one exception, (short-term exposure 
to urban/suburban O3) higher for the hybrid2 model than for the 
other modeling approaches. For the dispersion model, the low-
est (worst) coverage probability was 75.3% observed for short-
term exposure to roadside/kerbside NO2 (proportional error), 
although the corresponding figure for long-term exposure was 
92.4%. For LUR, coverage probabilities for O3 scenarios were 
greater than 87%. However, this was not the case for NO2, espe-
cially for long-term exposure at roadside/kerbside sites, where a 
coverage probability of 0% was obtained.

Results from our simulations based on hospital admissions for 
cardiovascular disease can be found in eTables 2–4; http://links.
lww.com/EE/A86;  and exhibit similar patterns to mortality.

Standard performance metrics

Validation statistics of mean bias, normalized mean bias, nor-
malized gross mean error, root mean square error, and FAC2 
(Table  5) also favored the hybrid2 model. Nevertheless, it is 
noteworthy that the LUR model produced the lowest mean bias 
for roadside/kerbside NO2 (i.e., the smallest absolute difference 
between modeled and measured daily mean NO2 concentrations 
averaged across roadside/kerbside sites).

Discussion

Summary of findings and context

We find that with either additive or multiplicative error, the bias 
induced in health studies is negative (i.e., towards the null) and 
generally substantially negative. From our simulation results 

http://links.lww.com/EE/A86
http://links.lww.com/EE/A86
http://links.lww.com/EE/A86
http://links.lww.com/EE/A86
http://links.lww.com/EE/A86
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and standard performance metrics, the hybrid2 model combin-
ing LUR and dispersion predictions was the preferred choice for 
use in a multilevel analyses of air pollution and health within 
the London area, in terms of minimizing the downward bias.

Standard measurement error theory considers two error 
types, that is, classical and Berkson.34 Additive classical error 
is evidenced by a high variance ratio (model versus “true”) and 
generally leads to downward bias in health effect estimates, 
underestimation of standard errors and reduced coverage of 
95% confidence intervals, whereas pure additive Berkson error 
is evidenced by a low variance ratio (model versus “true”) 
and results in inflated standard errors and reduced statistical 
power.34,35 However, measurement error introduced into mod-
eled air pollution data may be more complex. This has led 
Szpiro et al,1 in the context of LUR modeling, to describe clas-
sical-like error (i.e., behaving like classical error) introduced 
by parameter estimation and Berkson-like error introduced by 
oversmoothing. Given that total measurement error depends 
not only on the variances of both modeled and “true” data but 
also on their covariance, it is important to consider not only 
the variance ratio (model versus “true”) but also the correlation 
coefficient (model versus “true”) when assessing the impact of 
both classical/classical-like and Berkson/Berkson-like error in 
an epidemiological analysis.5 Here and in line with the findings 
of our previous simulation work,5 we observed some small bias 
away from the null when a high correlation was paired with a 
low variance ratio and substantial bias towards the null when a 
high variance ratio was paired with a low correlation coefficient 
(Tables 1–4).

Based on our simulations, the LUR model predictions per-
formed well for short-term exposure to urban/suburban O3, 
producing only a small positive bias in the health effect estimate, 
although for long-term exposure bias was large and negative. 
For scenarios involving NO2, the dispersion model rather than 
the LUR model consistently produced lower bias, higher cover-
age probability, and higher statistical power.

For NO2, which is often found to have a positive skew distri-
bution, we explored the effects of both additive and proportional 
measurement error, but contrary to some other simulation stud-
ies,6,7 observed few differences in our results (see Tables 2 and 
3). However, when we plotted histograms of site-mean corrected 
NO2 measurements by site type, we observed little positive skew, 
which may explain these findings.

Some writers have argued that substantial upward bias can 
result from measurement error in air pollution studies. For exam-
ple, Crump36 conducted simulation studies in linear regression 
and reported upward bias with proportional measurement error, 
whereas we generally observed downward bias in our simulations 
with proportional error. We think this likely reflects his focus on a 
restricted set of dose-response relationships (Y~bXn), whereas our 
analysis examines the more usual case of a log-linear relationship.

Standard metrics of exposure error, such as mean bias, which 
address the issue of how closely the model predicts true exposure 
on a daily basis, provide limited insight into the magnitude of 
biases introduced into a complex epidemiological analysis and 
may, in some instances, be misleading. For example, in Table 5, 
for roadside/kerbside NO2, the LUR model produced the smallest 
mean bias, and yet, our simulations indicate that its use in a mul-
tilevel analysis of air pollution and health, leads to substantial 
underestimation of health effect estimates for both short-term 
and long-term exposure, poor coverage probabilities, and low 
statistical power. Nevertheless, when various standard metrics 
were viewed as a whole, they supported our overall conclusion.

Possible explanations

Given our validation data compares modeled output to monitor-
ing data and is, therefore, focused on a point (i.e., the coordinates 
of the monitoring station), we might expect the LUR model to 
have an advantage. However, the LUR is trained at monitoring 
sites whose distribution is not random, and this may provide a 
disadvantage for predictions at other locations, including held 

Table 1.

Estimates of correlation coefficients (α αs t)and  and variance ratiosa (γ γs t)and  comparing model and “true” data within sites and 
between sites, respectively.

Pollutant Site type Method

Within sitesb (temporal) Between sitesc (spatial)

αα t γγ t αα s γγs

NO
2

Urban/Suburban background LUR 0.735 1.376 0.441 11.567
Dispersion 0.885 1.096 0.902 1.819
Hybrid1 0.877 1.161 0.660 5.528
Hybrid2 0.938 0.759 0.973 1.540

Roadside/Kerbside LUR 0.586 1.741 0.168 3.580
Dispersion 0.975 1.535 0.887 0.777
Hybrid1 0.871 1.805 0.365 2.374
Hybrid2 0.953 1.031 0.961 0.751

Log
e
(NO

2
) Urban/Suburban background LUR 0.864 0.503 0.518 4.307

Dispersion 0.906 0.789 0.890 1.121
Hybrid1 0.965 0.814 0.653 3.757
Hybrid2 0.960 0.763 0.974 1.409

Roadside/Kerbside LUR 0.813 0.896 0.275 2.932
Dispersion 1.000 1.336 0.872 0.810
Hybrid1 1.000 1.277 0.478 1.942
Hybrid2 1.000 1.108 0.963 0.919

O
3

Urban/Suburban background LUR 0.837 0.615 0.223 3.663
Dispersion 0.782 0.852 0.790 2.081
Hybrid1 0.906 0.783 0.216 2.820
Hybrid2 0.893 0.714 0.956 1.447

Roadside/Kerbside LUR 0.795 1.097 0.444 2.352
Dispersion 0.839 1.325 0.954 1.128
Hybrid1 0.913 1.162 -0.094 170.225
Hybrid2 0.911 0.980 0.991 1.033

aVariance ratio = variance of model data divided by variance of “true” data.
bComparing model and “true” daily mean data within sites.
cComparing model and “true” 5-year means between sites.
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out monitoring stations. Further, the dispersion model predicts 
to a high level of spatial resolution (i.e., 20 m) and then estimates 
pollutant exposure at a point using bilinear interpolation. The 
high spatial resolution of the dispersion model and the use of 
the 10% leave-out method for the LUR model may explain part 
of our findings, although the fact that the dispersion model per-
formed better overall especially with respect to the traffic-related 
pollutant (NO2) may suggest that the LUR is simply missing some 
potentially important covariates or more complex associations 

between those considered. Nevertheless, as Szpiro et al1 found 
in their simulation study, simply dropping an important variable 
from a correctly specified LUR may have little impact on health 
effect bias, as any loss of prediction accuracy may be counter-bal-
anced by a reduction in the amount of classical measurement 
error introduced through model parameter estimation.

When a spline in the dispersion output was added to the LUR 
model as a covariate, the overall improvement in performance 
was marginal. The superiority of hybrid2, therefore, suggests 

Table 2.

All-cause mortality and NO2 (measurement error: additive): β β1 210 0 00707 10 0 0402× = × =. , .and .

Pollutant Model

Estimating the health effect of short-term exposure Estimating the health effect of long-term exposure

ββ1 10
�

××

( ( )se ββ1
� ×× 10)

Biasa  
(%)

Coverage  
probability (%)

Power  
(%)

ββ2
� ×× 10

 
( ( )se ββ2

�
×× 10)

Biasa  
(%)

Coverage  
probability (%)

Power  
(%)

NO
2
 (Urban / Suburban) LUR 0.00438 (0.00188) −38.0 69.1 63.5 0.0051 (0.0108) −87.3 11.4 9.3

Dispersion 0.00590 (0.00211) −16.5 91.3 79.4 0.0260 (0.0266) −35.3 90.4 18.2
Hybrid1 0.00572 (0.00205) −19.1 90.9 80.3 0.0100 (0.0155) −75.1 51.9 10.5
Hybrid2 0.00754 (0.00254) 6.6 94.6 84.2 0.0306 (0.0290) −23.9 92.8 18.3

NO
2
 (Roadside / Kerbside) LUR 0.00311 (0.00127) −56.0 12.9 67.0 0.0036 (0.0066) −91.0 0.0 8.8

Dispersion 0.00556 (0.00136) −21.4 80.9 98.1 0.0404 (0.0141) 0.5b 94.5 81.5
Hybrid1 0.00460 (0.00125) −34.9 49.8 95.7 0.0098 (0.0081) −75.6 3.7 23.3
Hybrid2 0.00661 (0.00166) −6.5 94.8 97.7 0.0446 (0.0143) 10.9 93.7 86.7

aPercent bias is highlighted in bold when positive (i.e., away from the null) rather than negative (i.e., towards the null).
bBias not statistically significant at the 5% level (P>0.05) based on a simple 1 sample t-test.

Table 3.

All-cause mortality and NO2 (measurement error: proportional): β β1 210 0 00707 10 0 0402× = × =. , .and .

Pollutant Model

Estimating the health effect of short-term exposure Estimating the health effect of long-term exposure

ββ1
�

××10
 

( ( )se ββ1
�

×× 10)
Biasa  
(%)

Coverage  
probability (%)

Power  
(%)

ββ2
� ×× 10

 
( ( )se ββ2

�
×× 10)

Biasa  
(%)

Coverage  
Probability (%)

Power  
(%)

NO
2
 (Urban / Suburban)b LUR 0.00544 (0.00190) −23.1 85.8 81.1 0.0055 (0.0120) −86.3 19.5 7.5

Dispersion 0.00588 (0.00178) −16.8 89.8 91.2 0.0249 (0.0273) −38.1 90.0 17.6
Hybrid1 0.00582 (0.00176) −17.7 87.4 90.2 0.0099 (0.0156) −75.4 51.0 10.0
Hybrid2 0.00787 (0.00222) 11.3 92.3 93.1 0.0325 (0.0311) −19.2 93.5 19.7

NO
2
 (Roadside / Kerbside)b LUR 0.00413 (0.00150) −41.6 50.9 76.8 0.0040 (0.0087) −90.0 1.6 8.4

Dispersion 0.00539 (0.00131) −23.8 75.3 97.6 0.0325 (0.0175) −19.2 92.4 44.8
Hybrid1 0.00450 (0.00120) −36.4 41.7 96.2 0.0097 (0.0101) −75.9 15.5 15.9
Hybrid2 0.00666 (0.00160) −5.8 94.2 98.1 0.0393 (0.0187) −2.2c 94.5 56.1

aPercent bias is highlighted in bold when positive (i.e., away from the null) rather than negative (i.e., towards the null).
bWe simulate logged “true” and model data but use the untransformed data for modeling.
cBias not statistically significant at the 5% level (P>0.05) based on a simple 1 sample t-test.

Table 4.

All-cause mortality and O3 (measurement error: additive): β β1 210 0 00090 10 0 0204× = × = −. , .and .

Pollutant Model

Estimating the health effect of short-term exposure Estimating the health effect of long-term exposure

ββ1
� ××10

 
( ( )se ββ1

� ×× 10)
Biasa  
(%)

Coverage  
probability (%)

Power  
(%)

ββ2
�

×× 10
 

( ( )se ββ2
�

×× 10)
Biasa  
(%)

Coverage  
Probability (%)

Power  
(%)

O
3
 (Urban/Suburban) LUR 0.00094 (0.00220) 4.4b 95.2 7.2 −0.0021 (0.0245) −89.7 87.7 4.8

Dispersion 0.00074 (0.00187) −17.8 94.2 8.0 −0.0098 (0.0319) −52.0 91.9 6.3
Hybrid1 0.00090 (0.00195) 0.0b 94.9 7.3 −0.0019 (0.0277) −90.7 89.5 4.9
Hybrid2 0.00094 (0.00204) 4.4b 94.9 6.8 −0.0146 (0.0381) −28.4 93.5 8.1

O
3
 (Roadside/Kerbside) LUR 0.00065 (0.00214) −27.8 94.9 5.5 −0.0065 (0.0213) −68.1 89.9 7.5

Dispersion 0.00060 (0.00195) −33.3 93.9 5.7 −0.0193 (0.0304) −5.4b 94.3 9.0
Hybrid1c         
Hybrid2 0.00075 (0.00227) −16.7 95.4 6.8 −0.0204 (0.0320) 0.0b 93.9 10.4

aPercent bias is highlighted in bold when positive (i.e., away from the null) rather than negative (i.e., towards the null).
bBias not statistically significant at the 5% level (P>0.05) based on a simple 1 sample t-test.
cThe model provided out-of-plausible range predictions for one monitoring site, which caused convergence problems in our simulation program.
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that the performance of both LUR and dispersion outputs may 
not be uniform across the range of pollutant exposures and that 
combining them using penalized splines within a GAM facili-
tates better compensation of one for the deficiencies of the other. 
Di et al37 has recently reported that using penalized splines to 
ensemble average different predictors for particulate matter of 
diameter <2.5 μm also reduced error precisely because the rela-
tive fit between models changed with concentration.

Study strengths and limitations

The statistical model used within our simulations enabled us 
to estimate the within-LSOA effect of short-term exposure and 
the between-LSOA effect of long-term exposure. Details of the 
model and a consideration of its strengths and limitations can 
be found in the original article by Kloog et al.10

It is possible that some bias observed in our health effect esti-
mates is an artifact of random error introduced by the simula-
tion procedure itself. However, this bias is likely to be small, as 
evidenced from our one-sample t-tests for all-cause mortality 
(Tables 2–4), which were significant for all bias estimates >4.4% 
away from the null or >5.4% towards the null.

One advantage of our study is that we tried to evaluate and 
correct for classical measurement error in the day to day mon-
itored data so that the variance ratios and correlation coeffi-
cients used in our simulations better-reflected comparisons 
between modeled and “true” data as opposed to modeled and 
monitored data.5,7,8 Having generated “true” data with given 
spatio-temporal variation and spatial covariance, we then sim-
ulated pseudo-modeled data from the “true” by using these 
metrics (i.e., the correlation coefficients and variance ratios) 
to introduce measurement error (see ePage 7; http://links.lww.
com/EE/A86 for checks on simulations). This approach did not 
specifically allow for the fact that measurement error intro-
duced by spatio-temporal modeling maybe both heteroscedastic 
and spatially correlated.38 Nevertheless, some of the variance 
ratio / correlation coefficient combinations obtained from the 
validation study naturally introduced a lack of independence 
between the Berkson component and pseudo-modeled data and 
/ or the classical component and “true” data. One limitation of 
our approach is that it does not provide insight into the effects 
of including covariates in the analysis, which, if correlated with 
the pollutant of interest, may lead to additional bias in health 
effect estimation. The nature of this bias depends on many fac-
tors, including the type of error in the pollution data (i.e., clas-
sical, Berkson, additive, proportional), whether the covariates 
are themselves measured with error, the relationship between 

the pollutant data and the covariates, and whether their respec-
tive measurement errors are correlated.39 Thus, although some 
of these issues have been considered by other simulation stud-
ies,9 they are very specific to the covariates or combinations of 
covariates to be included and whether the same covariates have 
been used in developing the air pollution model e.g. temporal 
covariates in LUR models.

Conclusions
Although our study is confined to the London area and four 
examples of different modeling approaches, it illustrates how 
the choice of air pollution model or combination thereof can 
be informed by using simulation as well as more conventional 
validation metrics.
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