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Navigation by mammals is believed to rely on a network of neurons in the hippocampal
formation, which includes the hippocampus, the medial entorhinal cortex (MEC), and
additional nearby regions. Neurons in these regions represent spatial information by
tuning to the position, orientation, and speed of the animal in the form of head direction
cells, speed cells, grid cells, border cells, and unclassified spatially modulated cells.
While the properties of single cells are well studied, little is known about the functional
structure of the network in the MEC. Here, we use a generalized linear model to study
the network of spatially modulated cells in the MEC. We found connectivity patterns
between all spatially encoding cells and not only grid cells. In addition, the neurons’ past
activity contributed to the overall activity patterns. Finally, position-modulated cells and
head direction cells differed in the dependence of the activity on the history. Our results
indicate that MEC neurons form a local interacting network to support spatial information
representations and suggest an explanation for their complex temporal properties.

Keywords: navigation, grid cell, entorinal cortex, generalized linear model, head direction cells, theta oscillation,
speed cells

INTRODUCTION

The way mammals navigate is considered to rely on networks of neurons in the hippocampal
formation, which includes the hippocampus, the dentate gyrus, the subiculum, and the medial
entorhinal cortex (MEC). The MEC is an extensively investigated area in the brain, and it is
considered to encode the position and orientation of the animal (Moser et al., 2017).

Most studies on navigational information representations in the MEC and related areas have
characterized the properties of single cells in the form of a tuning curve to space. In other words,
correlating the cellular response with spatial variables (e.g., position, head direction, or speed)
can indicate how the cells’ firing rates are related to these variables. This approach has led to the
discovery of many types of neurons that encode navigational variables and are located in the MEC,
including grid cells (Hafting et al., 2005), border cells (Solstad et al., 2008), head direction cells
(Taube et al., 1990), speed cells (Kropff et al., 2015), spatial-modulated cells (Fyhn, 2004), and cells
with a conjunctive representation of these spatial variables (Sargolini, 2006; Hardcastle et al., 2017).
In addition to pure cell types, a study using an unbiased statistical approach recently reported a
high degree of mixed selectivity to navigational variables and heterogeneity in the responses of
MEC neurons (Hardcastle et al., 2017).
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While most experimental efforts devoted to the neural circuit
underlying navigation have explored single cell properties, efforts
to understand the mechanism of these cellular properties tend
to remain on the network level of description. This has resulted
in the development of several theoretical models (Zhang, 1996;
Fuhs, 2006; McNaughton et al., 2006; Kropff and Treves, 2008;
Burak and Fiete, 2009; Couey et al., 2013; Stepanyuk, 2015;
Dordek et al., 2016; D’Albis and Kempter, 2017; Monsalve-
Mercado and Leibold, 2017; Weber and Sprekeler, 2018) designed
to account for the cellular properties of grid and head direction
cells in terms of the architecture of neural networks.

One of the key theoretical approaches is the family
of continuous attractor models (Zhang, 1996; Fuhs, 2006;
McNaughton et al., 2006; Burak and Fiete, 2009; Couey et al.,
2013), which predicts the connectivity structure of cells within
networks where the firing pattern of head direction and grid
cells is modeled using a Mexican-hat connectivity pattern.
Here, cells with similar functional properties (e.g., a similar
directional preference for head direction cells) excite each other,
whereas cells with different functional properties (e.g., opposite
directional preference for head direction cells) inhibit each
other (Zhang, 1996). This pattern of connectivity in grid cells
implies that neurons with a closer phase distance excite each
other, whereas those with a larger phase distance inhibit each
other (Fuhs, 2006; McNaughton et al., 2006; Burak and Fiete,
2009). A statistical analysis of electrophysiological recordings
of grid neurons showed that correlation patterns between cells
are consistent with the theoretical prediction (Dunn et al.,
2015). However, these findings do not shed light on the
detailed structure of the network connectivity patterns. Clearly,
to understand how networks of neurons in the MEC encode
information, both the spatial variables as well as the interaction
between neurons in the network must be taken into account.

To address this question, we used the generalized linear model
(GLM), a flexible generalization of linear regression that makes
it possible to capture a response that is non-linear using a link
function (Nelder and Wedderburn, 1972). In neural coding, GLM
can model the neural response with a set of spatial and temporal
filters. Here, we present the GLM of Space Representation,
a model that includes stimulus-dependent filters of position,
head direction, speed, and theta phase, together with temporal
filters, which include postspike influence and, most importantly,
interactions between neurons (Figure 1).

Although this model is phenomenological by nature, its
components can be compared to biophysical mechanisms
and used to reveal network structure. The statistical model
architecture (see section “Materials and Methods”, Generalized
Linear Model), extend the linear–non-linear model (Hardcastle
et al., 2017) by taking the temporal correlation within and
between neurons into account, as shown earlier in other systems
(Pillow et al., 2008; Archer et al., 2014; Park et al., 2014).

Using this model, we study network structure and show that
network properties determine the temporal profile of correlations
between cells and includes all spatially tuned cells. This result
suggests that the interaction between cells extends beyond pure
cell types, thus implying that a revision of the prominent models
in the field may be in order.

MATERIALS AND METHODS

Data
The data were taken from a publicly available Dataset1 (see
Supplementary Table 1 for more details) (Sargolini Centre for
the Biology of Memory, 2014). The data were collected from
rats (n = 8) foraging in a 2D environment (100 × 100 cm),
while neural activity from the medial entorhinal cortex was
recorded using tetrodes. We used 10 min sessions that included
the animal’s location, the activity of simultaneously recorded
neurons, and the local field potential (LFP). All variables were
up-sampled into 1 ms bins. The phase of the theta oscillation was
computed from the LFP using the Hilbert transform.

Code Availability
All codes were written in Matlab and are available at https://
github.com/SegevLab/NavigationalGLM.git.

Generalized Linear Model
The neuron firing rate is modeled by a linear–non-linear Poisson
(LNP) model. In this model, the stimulus (x) is multiplied by a
set of linear filters (w) and then is transferred to a static non-
linear function (exponent) that gives rise to the instantaneous
firing rate. The model can be described as:

λk
(
t
)
= exp

[
µk +

4∑
m=1

L(m)∑
i=1

w(m)
i,k · x

(m)
i,t +
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hk,τ · yk,τ

+
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]

(1)

where λk (t) represents the firing rate of neuron k at a given
time t. The term exp ( µk) describes the baseline firing rate. The

expression
4∑

m=1

L(m)∑
i=1

w(m)
i,k · x

(m)
i,t represents the influence of the

stimulus on the firing rate of neuron k. The term w(m)
i,k denotes

a stimulus filter of the neuron, where (m) represent the stimulus
type (position, head direction, speed, and theta phase), L (m) is
the filter length (625, 30, 10, and 10, respectively). The stimulus
at time t is represented by a one-hot vector x(m)

i,t in which the
index that represents the position at time t is set to 1 and all other
indices are set to 0.

The expression
t−1∑

τ=t−n
hk,τ · yk,τ represents the history filter

influence on the current firing rate, i.e., the influence of the
neuron past activity on the current activity. The term hk,τ
represents the postspike filter of the neuron k at past time τ,
yk,τ represents the spike train of neuron k at past time τ, and
n represents the number of past time steps that influence the
current neuron activity.

The expression
∑
j 6=k

t−1∑
τ=t−n

lj,k,τ · yj,τ represents the coupling

filter influence on the current firing rate. The coupling filter

1http://www.ntnu.edu/kavli/research/grid-cell-data
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FIGURE 1 | Generalized linear model (GLM) of space representation. Schematic of the GLM framework for two paired neurons. Each neuron’s activity was modeled
by a set of stimulus filters (position, head direction, speed, and theta phase) together with the postspike filter and interaction filter between paired neurons. The sum
of the stimulus filters’ output with its history and coupling interaction was subjected to exponential non-linearity to generate the instantaneous firing rate of the neuron.
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models the influence of the other neurons’ past activity on
the current activity of neuron k. The term lj,k,τ represents the
interaction strength between neuron k to neuron j at past time
τ, yj,τ represents the spike train of neuron j at past time τ, and
n represents the number of past time steps that influence the
current neuron activity.

The animal’s position in the arena is described by x(Position),
which contains 625 bins, where each bin refers to 16 cm2 of
the environment. The animal’s head direction is described by
x(Head Direction), which contains 30 bins, where each bin represents
12
◦

. Speed is described by x(Speed), which contains 10 bins, each
of which represents 5 cm/s. The theta phase is described by
x(Theta Phase), which contains 10 bins.

The postspike filter hk,τ is constructed by a linear sum of a
basis of raised cosine “bumps” as described in Pillow et al. (2008).
We used 16 basis functions to model the temporal structure of the
postspike filter for 150–200 ms. To model the interaction between
neurons, we used two types of interaction filters: 1. simple
Interaction – which uses one base function, ce−α · t, and is active
from the third millisecond after the spike and decays slowly until
ablation to zero after 54 ms, where c is the interaction strength,
and we set α = 0.1 for all cells (Supplementary Figure 10A, red
line) 2. complex interaction – a set of four bases of raised cosine
“bumps” as described in Pillow et al. (2008) (Supplementary
Figure 10A, yellow line).

Model Fit
We fit the stimulus parameters w, as well as the history filter h and
interaction filters l using 60% of the data (6 min). This was done
by maximizing the log likelihood of the measured cell firing rate
rt , given the model’s firing rate λt (Hardcastle et al., 2017; Pillow
et al., 2008):

ŵk, ĥk, l̂j,k, µ̂k = argmaxwk,hk, lj,k, µk

{∑
t

log P
(
rt|λk

)
−

4∑
m=1

β(m)

L(m)−1∑
i=1

(
w(m)
i,k − w(m)

i+1,k

)}
(2)

In the left term, k resembles the kth neuron. The rightmost
term represents a penalty, which is based on prior knowledge
that stimulus parameters should be smooth. The i indicator
represents an index in the vector w(m). Parameter β(m) represents
the smoothing hyperparameter (i.e., a parameter whose value is
set before the learning process begins) for variable w(m), and
was chosen for each variable separately but was the same for
all neurons. The β(m) parameter was chosen by a prior step
of parameter tuning. The position parameters were smoothed
in two dimensions. Following Hardcastle et al., the parameters
were optimized by using MATLAB’s fminunc function. In the
training step, model performance was quantified by computing
the log-likelihood of held-out data under the model. A K-fold
cross-validation procedure was carried out during the training
step (10-fold). The parameters for each fold were kept separately,
and the mean of the parameters across all folds was considered as
the model’s parameters, similar to Hardcastle et al. (2017).

Model Selection
For each neuron, multiple models were fit. First, simple models
with only stimulus information x(m) were fit to the data. For
each neuron, 15 simple models were fit; one model for every
variable i (position, head direction, speed, and theta phase), one
for each combination of two or three variables, and one for
all the variables.

To evaluate model performance, we used the same procedure
as described in Hardcastle et al. (2017). First, we divided
the validation set (20%, 2 min) into sixfold, and for each
fold, we quantified the log-likelihood increase from a fixed
mean firing rate. To select the simplest model that best
described the neural data, we first found the single model
with the highest performance. Then, we selected the two
variables model with the highest performance that included
the selected variable. Next, we compared these models by
running a one-sided rank test with a significance value
of 0.05. If the more complex model did not perform
significantly better than the simpler model, the simpler model
was chosen. This procedure was repeated for three and
four variables.

After choosing the best model for each neuron, we again
ran the training step for this neuron with the selected simple
model but now added a postspike filter to the model. This
was done for each neuron separately. To take into account
the interaction between neurons, we ran the training step
one more time with the selected model, postspike filter, and
interaction filters. In this way, for each neuron, we had three
models: a stimulus filter only model, a postspike filter model,
and a full model.

Model Performance
To evaluate model performance, we used the remaining unused
part of the data as a test set (20% of the data, 2 min). For
each model (stimulus filter only, postspike filter, and full model),
100 simulated repeats of the spike train were made. We then
calculated the poststimulus time histogram in 20 ms bins,
smoothed it using a Gaussian filter with a sigma of 40 ms, and
then compared it to the experimental data by calculating the
correlation coefficient (Kass et al., 2003).

To test whether the model was able to generalize, we
used the correlation coefficient between the predicted PSTH
and the experimental data. For each model, 1,000 shuffling
procedures were conducted, where the PSTH was shifted. For
each shift, the correlation coefficient was calculated. For neuron
classification, we considered all neurons for which one of their
models had a p-value below 0.05. For further analysis, only
neurons for which all of their models had a p-value below
0.05 were included.

Model Fitting and Data Testing
The fitting procedure was as follows: 6 min was used to train
each model. Then, additional 2 min was used for model selection,
that is, selecting which model best describes the cells in terms
of stimulus filter only, i.e., position, head direction, speed, and
theta. Finally, the remaining 2 min were used as test sets to
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quantify the success of the model. To quantify the success of the
postspike filter model in predicting interspike interval (ISI) and
autocorrelation, we used the full last 4 min to test the success
of the model. In the case of the full model, we also used the last
4 min to test the success in predicting the cross-correlation. We
adopted this strategy due to the short data available. However,
this strategy can be adopted since the last 4 min was not used to
train the model.

Spike-Train Simulation
The simulation was done by a point process taken from Pillow
et al. (2008), using the learned parameters. For the coupling
model, we used two types of simulations. When comparing
the models’ firing rates, we used the precise spike time of
simultaneously recorded neurons and projected them into the
interaction filters. To quantify the interaction between neurons,
we simulated the neurons in the session simultaneously without
the precise spike time from the experiment.

Classic Grid and Border Scores
The grid and border scores were calculated by first computing
the smoothed position tuning curve (Gaussian smoothing filter,
σ = 2 cm). Each bin in the position tuning curve corresponded
to 2 cm × 2 cm in the environment, and the mean number
of spikes/s for each bin was computed. The grid score was
calculated using code taken from Ismakov et al. (2017). The
grid score was computed as the symmetric rotational score on
the 2D autocorrelogram of the position tuning curve (Sargolini,
2006). Neurons with a grid score above 0.5 that passed the
null hypothesis test were classified as grid cells. The border
scores were computed as CM−DM

CM+DM , where CM represents the
max fraction of bins along a wall of all firing fields, and
DM is a normalization of the product between the distance
of a bin from the nearest wall with the firing rate. The
analysis was only done on neighboring bins with a firing rate
exceeding the 0.3 max firing rate, covering a total area of
200 cm2 (Solstad et al., 2008). Neurons with border score
above 0.5 that passed the null hypothesis test were classified
as border cells.

The head direction tuning curve was calculated as the mean
firing rate in 12 bins (30◦). The head direction score was
defined as the mean Rayleigh vector length of the tuning curve
(Hardcastle et al., 2017). The threshold for the head direction
score was set to 0.3.

Speed scores were computed as the correlation between the
firing rate (20 ms bins, Gaussian smoothing with σ = 40 ms) and
the running speeds (2–100 cm/s) (Kropff et al., 2015). The speed
stability was computed as the mean correlation between speed
tuning curves (mean firing rate for 5 cm/s bin) using quarters
of the session (Kropff et al., 2015). Speed cells were considered
neurons that passed both the speed score (above 0.1) and the
speed stability test.

To calculate the spatial coherence score, we first computed the
position-tuning curve without smoothing for 2 cm × 2 cm bins.
The arch tangent of the correlation coefficient between a pixel
in the tuning curve and the average of the neighboring pixels
for all pixels in the tuning curve was defined as the coherence

score (Brun et al., 2008). The threshold for the spatial coherence
test was set to 0.5.

Classic Test Score Threshold
The threshold for distinguishing between cell classes and non-
classified cells for each test (grid, head direction, border, speed,
and spatial coherence) was computed by taking the 99th
percentile of a null (shuffled) distribution of scores. The null
distribution of scores was calculated by 1,000 circular shifts of the
firing rate of single neurons by a random time shift (minimum
1 s). For each shift, the test scores values were recorded.

Cross-Correlation Index
The normalized cross-correlation function between two neurons
spike trains y1 and y2was computed as follows:

C (τ) =

(∑
t

y1 (t) y2 (t + τ)

)
/
∑
t

y2(t) (3)

We calculated the cross-correlation in 10 ms bins, limited
for 300 ms around a spike. To get a cross-correlation index,
we computed the correlation coefficient between the MEC
neurons cross-correlation to the GLM-simulated neurons cross-
correlation.

Moreover, we computed the cross-correlation between every
two MEC neurons using the train-set data and calculated
its correlation with the MEC test-set cross-correlation. This
enabled us to compare the raw data estimator (training
set cross-correlation) to the GLM estimator (simulated
data cross-correlation), either in the full model or one
interaction trimmed model.

Noise Correlation
The position noise correlation was computed by dividing the
arena into 4 cm × 4 cm bins, where for each bin, we calculated
the correlation coefficient between the firing rate of two neurons,
at a 1 ms resolution (Gaussian smoothing with σ = 2 ms). The
mean of the correlation coefficient over all bins was considered as
the position noise correlation (Cohen and Kohn, 2011).

Firing Rate Correlation
The firing rate correlation was defined as the correlation
coefficient between a pair of neurons’ firing rates, smoothed with
a Gaussian window with a sigma of 2 ms.

Place Field Similarity
Place field similarity was computed using position tuning curves
with 4 cm × 4 cm bins, smoothed with a Gaussian window
with a sigma of 2 ms. The correlation coefficient between the
position tuning curves of two neurons was defined as the place
field similarity (Cohen and Kohn, 2011).

Relative Spatial Phase
The relative spatial phase between two grid cells from the same
module was defined as the shift with the highest correlation value
in their spatial cross-correlation, as described in Langston et al.
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(2010). In order to select neurons from the same module, we only
used grid neurons whose radius difference was < 10 cm.

Autocorrelation Index
The autocorrelations of a neuron were computed in the same way
as the cross-correlation. The autocorrelation index was defined as
the correlation coefficient between two autocorrelation vectors of
the MEC and GLM neurons after setting the bin in τ = 0 to zero.

Interspike Interval Index
The interspike interval distribution was calculated as the
histogram of the time difference between two adjacent spikes,
at a 1 ms resolution, divided by the number of spikes. The
interspike interval index was computed as the correlation
coefficient between two interspike interval distributions of the
MEC and the GLM neuron.

Index Comparison
The index comparison was calculated using the test and
validation data (40%, 4 min), given the size of the dataset.

Two Postspike Filters
For each neuron, we used two postspike filters. The first
filter was applied only after spikes in which the interval
from the previous spike exceeded 35 ms. These spikes can
be seen as the first spike in a time window or the first
spike in a burst. The second post spike filter was applied
for all spikes. In this way, we could differentiate between
the first spike in a burst and the subsequent spikes. The
inclusion of a second postspike filter was motivated by
observation in the retina that additional filter in the GLM allows
capturing additional information in the neuronal response (albeit
small, Tkačik et al., 2014). Here, we wanted to test whether
such an additional filter provides such improvement in the
model performance.

RESULTS

We used the GLM approach to quantify the coding properties
of MEC neurons in a 2D square arena. We used online available
data recorded from rats (Sargolini, 2006), exploring a 1 m × 1 m
environment, used by permission from http://www.ntnu.edu/
kavli/research/grid-cell-data. The dataset contains a total of 265
neurons recorded from eight different animals.

The GLM approach is based on the well-known linear non-
linear Poisson (LNP) model where the input of each cell
is described by a set of linear filters (Figure 1). Each filter
acts on one of the stimulus modalities (i.e., position, head
direction, speed, and theta phase) and thus represents the
tuning curve of the cell in time and space. In addition, a
history filter, which acts on the cell’s own activity (also known
as a postspike filter), captures the interaction between the
spikes of the cell. This mechanism introduces refractoriness
into the neuronal activity and long-term adaptation in the
spike train. One of the key features of the GLM used here
is the existence of coupling between cells in the networks

through a set of coupling filters. These filters capture the
dependencies on the recent spiking of other cells. Overall,
for each neuron, the sum of all inputs (stimulus-based,
history and network-based) is transferred to a static non-
linear function that gives rise to the instantaneous firing
rate (Figure 1, see section “Materials and Methods”, Model
Description for details).

To determine the contribution of each component of the
model; i.e., the stimulus filters, postspike filter, and interaction
filters, the analysis was conducted in an iterative manner
such that the complexity of the model increased gradually.
First, we fitted a GLM that only included stimulus filters
(i.e., position, head direction, speed, and theta phase) and
selected which stimulus filters produced the best prediction
of activity. Then, we included a postspike filter in the
model to obtain a more complete view of the single cell
dynamics. Finally, we extended the analysis to the full model
where we allowed interactions between cells and studied
network properties.

Representation of Space: GLM Can
Capture Single Neurons’ Response
Structure
First, we estimated the quality of the models. Three examples
of neuron activity were compared to the prediction of the
models with increasing complexity as shown in Figure 2A.
The GLM model successfully captured the main firing
events but not the detailed structure of individual firing
events. However, the differences between the predictions
of the firing rate between models that incorporate space
variables alone (i.e., position, head direction, and speed)
and the model that included a history filter or interactions
were minimal. This also emerged clearly when we looked
at the population histogram of the correlation coefficients
between cellular activity and the predictions (Figures 2B,C and
Supplementary Figure 1).

In the following sections, we analyze the differences between
the different models in more detail, discuss the ways in which the
complex models predict neuronal activity structure better, and
what conclusions can be inferred from these results.

GLM-Based Classification Reveals the
Complex Encoding Schemes of Space
Variables
To assess the spatial-encoding properties of the neurons, we used
the traditional tuning curve-based classification and the GLM-
based approach. First, we used the classical classification for head
direction (Hardcastle et al., 2017), speed (Kropff et al., 2015),
border (Solstad et al., 2008), and grid encoding (Langston et al.,
2010) (see section “Materials and Methods”, Classic Test Scores
for details). The classification of neurons using these tests (73% of
the neurons) is presented in Figures 3A,B (test scores for whole
population are presented in Supplementary Figure 2).

Based on Hardcastle et al. (2017), we then used the GLM-
based approach to identify the encoding properties of the
neurons that cannot be captured by the classical approach. This
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FIGURE 2 | Generalized linear model (GLM) captures single neurons’ response structure. (A) Three examples of neurons’ firing rate vs. the models’ predictions over
1 min from the test set. The models increase in complexity from a model based on stimulus filters alone, through a model with a postspike filter to the full model
where the interactions between neurons within the network are included. Medial entorhinal cortex (MEC) neurons (gray) compared to GLM prediction: GLM with
stimulus filters only (brown), GLM with a postspike filter (blue), and full GLM with interactions (red). (B) Histogram of the models’ correlation coefficient: stimulus filter
only (brown), postspike filter (blue), and full model (red). The correlation coefficient expresses the extent of the model’s success in predicting the real firing rate of a
neuron. (C) Average correlation coefficient. The differences between models with different complexities were small. **Indicate p_value < 0.05 and *** indicates
p_value < 0.01.
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FIGURE 3 | Generalized linear model (GLM) reveals complex encoding scheme of space variables. (A) Histogram of the cells population classification using the
classical tuning curve approach and the GLM-based approach. (B) Cell-by-cell comparison of cell classification using the classical classification and the GLM
classification. The color code represent the cell classification; cell marked in gray were unclassified. (C) Comparison between the classical head direction
classification and the GLM-based classification. Each dot represents a neuron. Head direction classified by GLM (red), non-head direction classified by GLM (black),
and non-classified by GLM neurons (yellow). The dashed line represents the head direction score threshold for the classical test. (D) Comparison of the classical
position encoding (spatial coherence score) classification and the GLM based classification (red = position encoding GLM based, black = non-position encoding,
yellow = non-GLM classified neurons, gray dashed line represents the spatial coherence score threshold for classical test). (E) Spatial coherence vs. grid score for all
cells: neurons that were classified by GLM as position encoding in red, non-position encoding (black) and non-GLM classified neurons (yellow). Gray dashed line
represent spatial coherence and grid threshold. The grid cells are a subset of the spatially coherent neurons.
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approach made it possible to classify 223 of the 265 neurons in
the dataset (84% of the neurons). More specifically, the GLM
model classify 88% of the traditional classified cells and 80%
of the traditional unclassified cells. Figures 3A,B present the
coding properties of these neurons. Most of the neurons were
classified as position or head direction encoding. In addition, a
substantial group of neurons, 24%, encoded two or three space
variables, which is indicative of the complex encoding scheme
of the population.

A comparison of the classical classification and the GLM-
based classification showed that, for most cells, the GLM
classification was consistent with the classical method (Figures
3B–E). However, as shown in Supplementary Figures 3–5, the
GLM-based response profiles were heterogeneous and captured
irregular shapes in the tuning of the neural response to
spatial variables.

Finally, we checked whether a model containing three distinct
filters for grid, border, and place cells instead of the general
spatial filter would outperform the GLM model with one
general spatial filter to classify the cells. We found that while
this model is good in predicting the firing rate of grid cells,
the overall classification is poorer than the one obtained by
a general spatial filter (model details and results appear in
Supplementary Material and Supplementary Figure 6). To
conclude, the model presented here is superior to any other
model tested in the overall classification of the entire the
cell population.

A Postspike Filter Increases GLM’s
Ability to Predict the Temporal Structure
of Single Cell Activity
We extend the best model for each neuron by incorporating the
neuron’s history by introducing a postspike filter that is activated
whenever the neuron generates an action potential and influences
neuronal activity in the near future.

We compared three types of models in this analysis: 1. a
basic model where no postspike filter was used 2. a model
with a postspike filter, and 3. a model with two different
postspike filters. One filter was used for the first spike in
a burst and the other postspike filter for all other spikes
in the burst (for the definition of a burst, see section
“Materials and Methods”, Two Postspike Filters). The third
model tested whether the contribution of the first spike differed
from the subsequent spikes. Examples of postspike filters for
three sample neurons are presented in Figures 4A–C and
Supplementary Figure 7.

The findings showed that introducing a postspike filter
increased the model’s ability to predict the temporal structure of
the neuronal response. This was apparent by visual inspection
of the interspike interval histogram (Figures 4D–F) and in the
autocorrelation function of the neuron’s activity (Figures 4G–I).
It is worth noting that various amounts of postspike filters
constitute a bump after 100 ms (Figures 4A–C) that contributes
to the theta oscillatory activity pattern (Figures 4G–I). In
addition, in general GLM, firing rate is lower than the MEC
neurons firing rate.

Analysis of the population of cells revealed that the model’s
ability to predict the interspike interval histogram and the
autocorrelation function increased considerably when we
introduced a postspike filter (Figure 4J). Specifically, both
models with postspike filters outperformed the model
with a stimulus filter (Figure 4K, P < 0.001). We assessed
the similarity in autocorrelations between the data and
the model (see section “Materials and Methods”). The
models with postspike filters were significantly better in
capturing the autocorrelation structure (Figures 4L,M,
P < 0.001).

Finally, we tested the impact of introducing a second
type of postspike contribution to the cellular activity that
combined the two postfilters, i.e., a postspike filter for the
first spike in a burst and another for all other spikes
in a burst (see section “Materials and Methods” for burst
definition). However, this did not increase the predictive
power of the model substantially (Figures 4K,M and see
Supplementary Figure 8 for additional analysis). Thus, a
single postspike filter appears to be sufficient to increase
the predictive power of the GLM in terms of single cell
temporal correlations.

Moreover, we tested whether the prediction power of firing
rate is linked to the power to predict the history (i.e., ISI
and autocorrelation function). We found that the ability to
the predict the ISI profile is linked to the autocorrelation
but weakly connected to the ability to predict the firing rate
(Supplementary Figure 9).

Spatially Modulated Cells and Head
Direction Cells Differ in the Dependence
on History
To test the dependence of history of different cell types, we
calculated the principle components of the entire group of
postspike filters of all cells (Figures 5A–C). We found that the
first principle component increases both the neuron’s tendency
to bursts and oscillations, while the second principle component
contributes for bursts alone.

Then, we projected each postspike filter on the three principal
components with largest variance (Figures 5D–F). We found
that this subspace of the postspike filter of spatially modulated
cells differed in the contribution of history from the group
of head direction cells (Figure 5D). Specifically, the position-
modulated cells tended to burst and oscillate more than the head
direction cells.

Analysis of Interactions Between
Neurons
To reveal the network connection properties, we first
measured the firing rate correlation between neurons
(Figure 6A) and found that most of the simultaneously
recorded neurons were weakly correlated. Then, for each
recorded neuron, we fit a model that combined stimulus
filters (position, head direction, speed, and theta phase),
history information (postspike filter), and the spike activity
of all other recorded neurons using a temporal interaction
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FIGURE 4 | Postspike filter increases prediction accuracy of the temporal structure of single cell activity. (A–C) Examples of postspike filters of three cells. The case
where the model was based on stimulus filter only is equivalent to a model with a constant postspike filter (brown). The postspike filters capture different aspects of
the neuronal dynamics such as bursting and theta oscillations. (D–F) Interspike interval of medial entorhinal cortex (MEC) neurons (gray), generalized linear model
(GLM) with stimulus filter only (brown), GLM with one postspike filter (blue), and GLM with two postspike filters (green) using filters from (A–C), respectively.
(G–I) Autocorrelation of MEC neurons (gray), GLM with stimulus filter (brown), GLM with one postspike filter (blue), and GLM with two postspike filters (green) using
filters from (A–C), respectively. (J) Comparison of the interspike interval index across GLM models. (K) Population of interspike interval index for different models.
Median (black), mean (white). (L) Comparison of the autocorrelation index between GLM models with stimulus filter only and with one postspike filter reveals that one
postspike filter increases the accuracy of the prediction of autocorrelation function. (M) Population of the autocorrelation index for stimulus filter only (brown), one
postspike filter (blue) and two postspike filters (green), median (black), and mean (white). All comparisons were done on held out data.
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FIGURE 5 | The connection between post-spike filter structure and cell type. (A–C) First three eigenvectors of the population postspike filter. (D–F) Projection of the
postspike filters into two dimensions using the three eigenvectors from (A–C). The projections are shown for position (black), head direction (red), and conjunctive
(blue) classified neurons.

filter (section “Materials and Methods”, Generalized
Linear Model). In this way, we fit a filter to describe the
strength of effective interactions between the neuron and
all other neurons in the network. We tested two types of
interaction filters: (a) one-base function of exponential
form with a fixed decay constant, which could be either
positive or negative; (b) a flexible interaction filter with
a set of four-base functions (for more information, see
section “Materials and Methods”, Generalized Linear
Model, Supplementary Figure 10A). Note that the flexible
interaction filter could be both with an excitatory lobe and an
inhibitory lobe.

The one-base function interaction filter between neurons
could be excitatory with an interaction strength larger than
one or inhibitory with an interaction strength less than
one (Figure 6B). As depicted in the distribution of this
model’s coefficients (Figure 6B), most of the interaction
coefficients were centered on one, thus yielding no functional
interaction between the majority of the recorded neurons. Finally,
the interaction filters between neurons could be symmetric
(Figures 6C,D, and corresponding cross-correlation between
units, Figures 6G,H), asymmetric (Figure 6E; cross-correlation,

Figure 6I), or unidirectional (Figure 6F; cross-correlation,
Figure 6J).

The Interacting Model Increases the
Predictive Ability of Cross-Correlations
Between Cells
Using the interaction filters, we predicted the cross-correlations
between neurons and compared them to the model without
interactions. To quantify the ability of the model to capture
these interaction properties, we calculated a similarity index
between the MEC data and the prediction of cross-correlation
across all neuron pairs (section “Materials and Methods”, Cross-
Correlation Index).

We found that there was a significant improvement in the
similarity index when interaction filter between neurons was
included in the model (Figures 7A,B). The flexible interaction
outperformed the single base function interaction and both
outperformed the non-interacting models (stimulus filter only).

Introducing interaction with one-base function improved the
cross-correlation index prediction but did not influence the
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FIGURE 6 | Analysis of interaction between neurons. (A) Histogram of neuron pairs’ correlation coefficients. (B) Log-scale histogram of the learned interaction
strength using the full model with one-base function interaction filter. Linear-scale histogram is presented as inset. (C–F) Interaction filters of four pairs of neurons,
using full generalized linear model (GLM): one-base function interaction filter (red and pink) and flexible interaction filter (yellow and black). (G–J) Cross-correlation
between two medial entorhinal cortex (MEC) neurons (gray) and GLM-simulated neurons composed of postspike filter (blue) and full model composed of one
base-function interaction filter (red) and flexible interaction filter (yellow), using filters from (C–F).

interspike interval index (mean = 0.55) and autocorrelation
index (mean = 0.68).

Finally, we tested what is the contribution of the single
interaction to the network activity. For this purpose, we
trimmed one interaction between two cells at a time and
generated a prediction of the activity by the one-interaction
trimmed network. Then, we calculated the cross-correlation

between the two cells and tested how good was this activity in
predicting the actual cross-correlation between cells in the MEC
data. Specifically, the quality of this prediction was compared
with the ability of the MEC data itself to predict, i.e., the
cross-correlation between the two cells in the training set,
to predict the cross-correlation between the two cells in the
test set.
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FIGURE 7 | Analysis of the contribution of a single interaction to the ability to predict the cross-correlation between the two cells. Comparisons between the ability of
medial entorhinal cortex (MEC) data training set to predict the cross-correlation in the test set with the ability of the generalized linear model (GLM) with the trimmed
interaction to predict the. (A) Full model with flexible interaction filter. (B) Full model with one base function interaction filter. (C) Full model with one-base function
interaction filter trimmed. (D) Postspike filter. (E) The slopes of (A–D): when a single interaction is trimmed, the ability to predict the cross-correlation function
between the two cells is dropped by factor of about 0.4. All comparisons were done on held out data. The flexible interaction outperformed (R2 = 0.23, P < 0.01) the
single-base function interaction (R2 = 0.1, P < 0.01) and both outperformed the non-interacting models (stimulus filter only R2 = 0.01, postspike filter R2 = 0.04,
P < 0.01).

In summary, the MEC data were then compared with
models with full interaction (Figure 7A), full model with simple
interaction (Figure 7B), model with one trimmed interaction
(Figure 7C), and postspike filter model (Figure 7D).

Using this approach, we were able to test whether the
single interaction is critical in predicting the cross-correlation
between cell pairs. We found that the eliminating one interaction
at a time brought the ability to predict the cross-correlation
between the two cells, which were separated to the level of no-
interaction (i.e., stimulus only) models (Figure 7E). Therefore,
we conclude that the interactions are critical in predicting the
cross-correlation between units.

Dependence of Grid Cells Connectivity
on Spatial Phase Difference
Figure 8A presents the relationship between the interaction
strength and relative spatial phase between grid neurons. The

interaction between cells was high for cells with a small
relative spatial phase.

The Connectivity Between Cells Extends
Beyond the Grid Cell Group
To further investigate the connectivity between neurons and to
generalize the results obtained within the grid cell population, we
examined the interaction strength between all position-encoding
neurons (Figure 8B). Naturally, relative spatial phase cannot be
used as a measure for a functional distance between cells since
the population in this case contains non-grid cells. Thus, we
used place field similarity as a measure of the similarity between
the space-encoding properties of neurons (see section “Materials
and Methods”). The place field similarity is defined as a Pearson
correlation between the position tuning curves of the two cells.
The analysis was performed on all position-encoding neurons,
non-grid cells, and grid cells.
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FIGURE 8 | The connectivity between cells extends beyond the grid cell group. (A) Generalized linear model (GLM) functional interaction strength vs. grid neurons’
relative spatial phase reveals that grid cells that are functionally near each other have stronger interaction filters. (B) Several examples of a schematic of network
interactions between the position encoding neurons found in the dataset. Grid neurons (gray) and spatially modulated neuron (black) connected by excitatory and
inhibitory interactions (red and blue lines), where thickness represents connection strength. (C) Dependence of noise correlation on place field similarity is consistent
with previous findings. (D) The dependence of the full GLM functional interaction on place field similarity; dashed blue line represents no interaction. (E–G)
Comparison between place field similarity and full GLM functional interaction strength for grid pairs (E), grid and non-grid pairs (F), and non-grid pairs (G).
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The findings indicated that the interaction strength was high,
i.e., excitatory, for cell pairs with high place field similarity,
and low, i.e., inhibitory, for cell pairs with low place field
similarity (Figure 8D). To further disentangle the contribution
of different cell types, we divided the cell pairs into three
groups: grid cell pairs (Figure 8E), a grid cell and a non-grid
cell pairs (Figure 8F), and non-grid cell pairs (Figure 8G).
There was a similar relationship between place field similarity
and interaction strength for all groups (Figures 8F,G). This
result extends the interaction between neurons as which were
found in previous studies not only for grid cells but also for
all spatial-modulated cells along with grid cells in the MEC.
Finally, we also compared the correlation between place field
similarity and noise correlation (see section “Materials and
Methods”) and found that a higher similarity of place fields
resulted in a higher noise correlation (Figure 8C), suggesting
that neurons with closer spatial receptive fields tend to fire
together, in line with previous findings (Dunn et al., 2015;
Tocker et al., 2015).

DISCUSSION

The network within the MEC contains grid cells, which encode
navigational information in the form of firing fields that are
organized in a regular periodic structure, and additional cells
that encode space with non-periodic firing fields. Whereas
there is a general consensus that the network within the MEC
is critical for navigation, the functional connectivity between
cells in the MEC remains enigmatic, including the connectivity
between grid–grid cells, the non-grid cell population, and
across populations. The influence of the recent past activity of
neurons on their future activity has also not been characterized.
Here, we used a novel theoretical framework to identify how
these different contributions determine the network activity of
neurons in the MEC.

Using the GLM approach to capture the dynamics of neurons
in the MEC, we captured the effective interaction between
neurons as well as the temporal correlations of neurons, including
the theta oscillatory pattern.

We found that stronger functional interactions were
correlated to place field similarity in position encoding
neurons, suggesting that the interactions between neurons
are stronger for closer spatial receptive fields regardless of the
functional classification of these neurons into specific classes
such as grid cells.

The finding of effective interactions between different
functional types might have biological implications. Looking
on the known architecture of the connectivity between the
postsubiculum, which contain mainly head direction cells, to the
MEC, one could argue that head direction cells in the MEC forms
a separated information stream from other functional classes
such as grid cells. However, our findings might indicate that all
cell types in the MEC are functionally connected either by local
interaction in the MEC or derived by one spatially input stream.

The second phase of our analysis examined the contribution
of recent history to the activity of single cells. We found that

the structure of the temporal filters included the refectory
period, burst adaptation, and theta oscillation. Some of
these components may be implemented physiologically by
interneuron circuitry that controls the gain (Buetfering et al.,
2014) and by subthreshold membrane potential oscillations
(Alonso and Llinás, 1989).

Although the use of interactions and postspike filters
improved the ability to predict correlation structure of neuronal
activity both in the form of autocorrelations of single cells or
cross-correlations between cells, generally, the temporal filters
did not enhance firing rate prediction. This result concords
with findings from the retina (Pillow et al., 2008). The GLM
approach we used, thus, may constitute a flexible way to model
the building blocks that govern neural activity, but as described
above, it lacks the ability to predict the neural response in full.
The complexity of modeling MEC neurons may involve more
dimensions and complex interactions between neurons than
presented here. More complex models such as deep learning
(LeCun et al., 2015) with recurrent connectivity might result
in better predictions. However, this comes with the downside
of a lack of interpretation of the model in terms of physiology
or a way to justify the architecture through physiological and
anatomical equivalents.

Two studies have addressed issues similar to the ones
raised in this study, namely, how functional interactions
between neurons in the MEC depend on the functional
distance between cells. Specifically, Dunn et al. (2015)
evaluated pairwise correlations between cells using a maximum
entropy kinetic pairwise model and studied their functional
connectivity. In their analysis, they took the covariations
in firing rates due to overlapping fields into account and
found that functional connections decayed with the functional
distance between cells. In a second study, Tocker et al.
(2015) studied noise correlations of cells in the MEC while
accounting for similarity in receptive field structure. Both
studies concluded that their findings were consistent with
the predictions of the continuous attractor model. The
current study thus extends these findings since the GLM
approach makes it possible to reveal the temporal structure
of the interaction and hence identify the temporal profile of
the interaction.

In addition to these studies, Kraus et al. (2015) found
that spiking history was the strongest predictor of spike
rate variation. Here, we found that there is no significant
difference between the model with postspike filters and
the models without. The difference between these two
results are due to the fundamental difference in the
input to the two models. In the Kraus et al. case, the
recent history of the neuron itself was used to predict
the future activity in the specific trial. One can expect
that the actual noise present in the network and influence
the neuronal variability in the specific trial. In our case,
the only input to the cell is the animal trajectory and does
not involve the MEC neuron history but the simulated
neuron history only.

One need to keep in mind the limitation of the GLM, which
does not provide evidence for the connections between neurons.
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GLM only reveals the effective connectivity between neurons.
This interaction can be the result of a direct synaptic connection
between the two cells or a third unobserved entity that influences
the activity of the two cells. Such entity could be in the form
of a third neuron, which forms synaptic connection on the two
cells, or a neuron that mediates information from one cell to
the second (i.e., one measured neuron synapses the unobserved
neuron, which in turn synapses the second observed neuron).
The unobserved entity can be even an entire neuronal circuit that
is responsible for the observed interaction.

It should be noted that there is a difference in the number of
classified cells by the classical approach and the GLM approach
in our study and the finding by Hardcastle et al. (2017),
specifically 84 vs. 73% in our case and 77 vs. 42% in the
Hardcastle data. This can be explained by the fact that the GLM
classifies about 80% of cells regardless of their characterization
by the classical approach. In the work of Hardcastle et al.,
only 42% of the cells were classified initially by traditional
classification, which leaves large room for improvement in the
GLM approach. In our case, 73% of the cells were classified
initially by the classical approach, which leaves little room
for improvement. The differences in the datasets can be due
to small differences in the recording position or due to
preprocessing of the data.

Overall, our study provides a new approach to researching
MEC neurons. Using the GLM approach, we successfully
quantified how each variable affects the neural response.
Applying this framework to a complete population of neurons
in the MEC could shed light on network interactions and lead to
a better understanding of the ways in which neurons with MEC
encode navigational information.
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