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Abstract: Liver fibrosis is a critical complication of obesity-induced fatty liver disease. Wnt1 inducible
signaling pathway protein 1 (WISP1/CCN4), a novel adipokine associated with visceral obesity and
insulin resistance, also contributes to lung and kidney fibrosis. The aim of the present study was to
investigate the role of CCN4 in liver fibrosis in severe obesity. For this, human liver biopsies were
collected from 35 severely obese humans (BMI 42.5 ± 0.7 kg/m2, age 46.7 ± 1.8 y, 25.7% males) during
bariatric surgery and examined for the expression of CCN4, fibrosis, and inflammation markers.
Hepatic stellate LX-2 cells were treated with human recombinant CCN4 alone or in combination
with LPS or transforming growth factor beta (TGF-β) and examined for fibrosis and inflammation
markers. CCN4 mRNA expression in the liver positively correlated with BMI and expression of
fibrosis markers COL1A1, COL3A1, COL6A1, αSMA, TGFB1, extracellular matrix turnover enzymes
TIMP1 and MMP9, and the inflammatory marker ITGAX/CD11c. In LX-2 cells, the exposure to
recombinant CCN4 caused dose-dependent induction of MMP9 and MCP1. CCN4 potentiated
the TGF-β-mediated induction of COL3A1, TIMP1, and MCP1 but showed no interaction with
LPS treatment. Our results suggest a potential contribution of CCN4 to the early pathogenesis of
obesity-associated liver fibrosis.
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1. Introduction

Liver fibrosis is a critical complication of non-alcoholic fatty liver disease (NAFLD),
which is associated with obesity, metabolic syndrome, and type 2 diabetes. NAFLD is
defined by excessive triglyceride accumulation in hepatocytes and represents an increas-
ingly prevalent and common liver disease affecting 20–30% of Western countries [1]. In
about 25% of subjects with NAFLD, the disease can progress to non-alcoholic steatohepati-
tis (NASH) that is histologically characterized by hepatocyte ballooning, apoptosis, and
chronic inflammation. Furthermore, patients with NASH may develop hepatic fibrosis,
which dramatically increases the risk of irreversible cirrhosis, liver failure, and hepatocel-
lular carcinoma [2]. Thus, hepatic fibrosis is an important component of the progression
of NAFLD and NASH to cirrhosis and strongly contributes to the disturbance of liver
functions. Besides metabolically-induced fibrosis, other chronic liver diseases caused by
viral, inflammatory, or toxic liver injury are also accompanied by liver fibrosis [3].

A key feature of liver fibrosis is an increased remodeling of the extracellular matrix
(ECM). The ECM is a complex grid consisting of multiple proteins (collagens, glycoproteins,
proteoglycans, elastin, etc.) and essentially contributes to the regulation of liver home-
ostasis [3]. In liver fibrosis, a high ECM turnover results in increased ECM degradation
by matrix metalloproteinases and, simultaneously, in increased accumulation of both new
and already existing proteins, which is macroscopically described as fibrosis [3]. Major
ECM-producing cells in liver fibrosis are hepatic stellate cells (HSCs) which are activated
by a metabolically-induced hepatocellular injury and transformed into highly proliferative
myofibroblasts, which express and deposit large quantities of ECM components [3,4].

Multiple pathophysiological pathways contribute in general to metabolically-induced
hepatic fibrosis progression and, in particular, to HSC activation [5]. In brief, diet-induced
lipid overload of liver cells generates lipotoxicity and glucotoxicity. The resulting en-
doplasmic reticulum and mitochondrial stress induce the formation of reactive oxygen
species and a deregulated unfolded protein response, developing apoptosis and liver injury.
This leads to the production of proinflammatory cytokines, chemokines, and damage-
associated molecular patterns (DAMPs), which upregulate the activation of Kupffer cells
and monocyte-derived macrophages, resulting in chronic inflammation and activation
of HSCs into myofibroblasts [5]. Further, high levels of transforming growth factor beta
(TGF-β) that occur during chronic liver damage result in activation of HSCs and massive
hepatocyte cell death, contributing to the promotion of liver fibrosis [6]. Besides the TGF-β
signaling pathway, the WNT pathway also plays an active role in mediating fibrosis in
the liver and other organs and tissues and therefore represents a promising target for the
treatment of liver fibrosis [7].

WNT-inducible signaling pathway protein-1 (WISP-1, also known as CCN4) is a
downstream target of the canonical WNT signaling pathway and belongs to the CCN
(CTGF/Cyr61/Nov) family of ECM proteins [8]. Under physiological conditions, CCN4
plays an important role in embryonic development, wound healing, and tissue repair [8].
Aberrant CCN4 expression is associated with various pathologies, including osteoarthri-
tis, fibrosis, and cancer [9–12]. Particularly, an involvement of CCN4 was demonstrated
in mouse lung and kidney fibrosis development [12,13] as well as CCL4-induced liver
fibrosis [14], increasing the synthesis of extracellular matrix components (ECM) in fibrob-
lasts [11].
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CCN4 is expressed in human liver and adipose tissue [15,16], but other tissues can
also possibly contribute to its circulating levels. We recently characterized CCN4 as a
novel adipokine associated with visceral obesity and insulin resistance [15–17]. Indeed,
circulating CCN4 levels are increased in subjects with visceral obesity, positively asso-
ciated with BMI, and downregulated by weight loss [15,16]. Further, circulating CCN4
levels are higher in patients with gestational diabetes [18] and obese subjects with insulin
resistance [19]. Cell experiments showed that CCN4 inhibits insulin action in cultured
hepatocytes and muscle cells [16] and stimulates differentiation of human macrophages
towards a proinflammatory phenotype [15]. Interestingly, circulating CCN4 levels are
associated with visceral adipose tissue fibrosis [19]. However, it is unknown whether
CCN4 contributes to the early stages of the development of human liver fibrosis associated
with obesity and NAFLD.

To clarify this, we examined the association between CCN4 in circulation and its
hepatic expression with fibrosis markers in liver samples from severely obese subjects
without advanced liver cirrhosis. To study possible underlying mechanisms, we addition-
ally investigated the effects of CCN4 on a model of HSC. Our results suggest a potential
contribution of CCN4 in the pathogenesis of obesity-associated liver fibrosis.

2. Materials and Methods
2.1. Study Design and Sample Collection

Thirty-five severely obese subjects with an indication for bariatric surgery were re-
cruited for the study in the Berlin-Brandenburg area in Germany from January 2016 to June
2017. The inclusion criteria were (i) a BMI > 40 kg/m2 or (ii) a BMI > 35 kg/m2 and obesity-
related co-morbidities (type 2 diabetes, hypertension, dyslipidemia, obstructive sleep apnea
syndrome). Patients suffering from severe infectious diseases, cancer, liver cirrhosis, or
alcohol abuse were excluded. Anthropometric measurements were conducted 3–5 days
before surgery. Fasting blood sampling was performed on the day of the surgery, while
liver biopsies from the left lobe were collected during the bariatric surgery. Body composi-
tion was determined by air displacement plethysmography using BOD POD (COSMED,
Rome, Italy). Intrahepatic lipid content (IHL) was measured by localized 1H-MRS on a
1.5-T whole-body scanner (MAGNETOM Avanto, Siemens Healthineers, Germany) at the
Ernst von Bergmann Hospital in Potsdam. Due to technical restrictions for MR examina-
tions, only a sub-group of 12 subjects could undergo these measurements. Therefore, we
additionally assessed triglyceride content in liver samples as described below.

The bariatric surgery took place at the Vivantes Hospital Spandau (Berlin, Germany).
The trial was approved by the Ethics Committee of the Charité University Medicine in
Berlin (Application No. EA4/006/15), and was conducted in accordance with the Declara-
tion of Helsinki, and registered at www.drks.de accessed on 25 April 2021 (DRKS00009509).
All participants provided written informed consent before entering the study.

2.2. Blood Sampling and Tissue Collection

On the day of the surgery, blood was sampled, and liver biopsies from the left lobe
were collected during the bariatric surgery. A small part of the liver biopsies was stored in
4% formaldehyde for histological analysis, and the rest was flash-frozen in liquid nitrogen
and stored at −80 ◦C until further examinations. Venous blood samples were immediately
centrifuged and frozen at −80 ◦C until analysis.

2.3. Histology and Immunohistochemistry

After the liver tissue was immersed in 4% formaldehyde for 24 h at room temperature
and embedded in paraffin, it was sectioned in 2µm histological slices and stained with
hematoxylin and eosin (H&E). All of the images were acquired with a BX46 Upright micro-
scope (Olympus, Tokyo, Japan) and were assessed at 20× magnification by an experienced
pathologist. Each biopsy was scored on the grade of steatosis, lobular inflammation, hep-
atocellular ballooning, and fibrosis which were evaluated semi-quantitatively: steatosis

www.drks.de
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(0–3), lobular inflammation (0–2), hepatocellular ballooning (0–2), and fibrosis (0–4) [20].
In particular, the stage of fibrosis was assessed as follows: stage 0: none; stage 1:1a or 1b
perisinusoidal zone 3 or 1c portal fibrosis; stage 2: perisinusoidal and periportal fibrosis
without bridging; stage 3: bridging fibrosis; and stage 4: cirrhosis [20]. The NAFLD Activity
Score (NAS) was determined as the sum of steatosis, hepatocellular ballooning, and lobular
inflammation scores, and study subjects were categorized as having no NAFLD (NAS = 0),
NAFLD (NAS = 1–2), or NASH (NAS ≥ 3).

To determine hepatic fibrosis, alpha-smooth muscle actin (αSMA, antibody dilution
1:500, Abcam, Berlin, Germany), Sirius red and trichrome stainings were additionally
performed by histochemical and immunohistochemical methods, and images were taken
with the Axioplan 2 microscope, AxioCam color HRC, and 10× objective Plan-Neofluar
(Zeiss, Jena, Germany) (Supplementary Figure S1). Image quantification was performed
by the Intellesis Trainable Segmentation Software (ZEN 2.5 System Blue edition) using
artificial intelligence. The software was trained manually by outlining the classes of
interest as background, stained cytoplasm, nuclei and region of interest (Supplementary
Figure S2). The resulting masks were implemented as image analysis templates for the
assessment of region parameters in all images (10 images/section). Macrophage infiltration
was assessed by CD68 immunohistochemistry (antibody dilution 1:100, Dako/Agilent,
Hamburg, Germany), and macrophages were counted in 10 different images per section.

2.4. Analytical Procedures

Routine markers were measured in serum using ABX Pentra 400 (HORIBA, Kyoto,
Japan). Capillary blood glucose concentrations were measured using a glucose oxidase
method on a Dr. Müller Super GL (Dr. Müller Glucose Analyzer, Freital, Germany).
WISP-1/CCN4 levels were measured by human direct sandwich WISP-1/CCN4 DuoSet
ELISA kit (DY1627; R&D Systems, Germany) in combination with bovine serum albumin
(A7030, Sigma, Munich, Germany) or human serum albumin (A1887, Sigma) and per-
formed on 96-well high-binding assay plates (82.1581, Sarstedt, Nümbrecht, Germany) as
described in [17]. Commercially available ELISA kits were used for the measurements of
serum/plasma insulin (Insulin ELISA, Mercodia AB, Uppsala, Sweden) and TIMP1 (all
from R&D Systems, Minneapolis, MN, USA), and the U-Plex assay was used to measure
IL6, tumor necrosis factor alpha (TNFα), and MCP1 (MSD, Rockville, MD, USA).

Analysis of hepatic triglyceride content was performed according to the Triglyceride
Determination Kit (Sigma Aldrich Chemie, Steinheim, Germany), and the absorbance
changes were detected at 540 nm by spectrophotometry.

2.5. Cell Culture

The immortalized human hepatic cell-line LX-2 (Merck, Cat. # SCC064) was cultured in
a DMEM High Glucose-Medium (Gibco/Invitrogen, Karlsruhe, Germany), supplemented
with 2% fetal calf serum and 1% antibiotic-antimycotic (both from Sigma Aldrich, Munich,
Germany). For the experiment, cells were seeded at a density of 300,000 cells/well in 6 well
plates (TPP) and treated with human recombinant WISP-1 (10, 100, 500 ng/mL; PeproTech,
Hamburg, Germany) alone or in combination with 1 ng/mL lipopolysaccharides (LPS)
(Sigma Aldrich, Munich, Germany) or 1 ng/mL TGF-β (PeproTech) for 24 h. Cell culture
supernatants were analyzed using the Bio-Rad 200 System (Bio-Rad, Feldkirchen, Germany)
and ProcartaPlex multiplex immunoassay (Invitrogen/Affymetrix, Darmstadt, Germany).

2.6. Gene Expression Analyses

Total RNA from liver and cell samples was purified using the RNeasy Mini Kit (both
from Qiagen, Hilden, Germany) or the NucleoSpin® RNA II kit (MACHEREY-NAGEL,
Düren, Germany), respectively. RNA concentration was measured using an ND-1000
spectrophotometer (Nanodrop, PeqLab, Erlangen, Germany). Single-stranded cDNA
was synthesized with a High-Capacity cDNA Reverse Transcription kit (Thermo Fisher
Scientific, Darmstadt, Germany). Quantitative real-time PCR (qPCR) was performed
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by the ViiA 7 sequence detection system using Power SYBR Green PCR Master Mix
(Applied Biosystems, Forster City, CA, USA) and specific primers as described in [21]. Gene
expression was assessed by the standard curve method and normalized to the reference
gene beta-glucuronidase (GUSB). Primer sequences are shown in Supplementary Table S1.

2.7. Analysis of WISP1 Expression in Human Tissue Panel

We used the publicly available data GTEx v7 from dbGap (https://www.gtexportal.
org accessed on 25 April 2021) and analyzed the mRNA expression of WISP1 in 48 human
tissues, both in males and females as described in [22]. The data used for the analyses
described in this manuscript were obtained from dbGaP accession number phs000424.v8.p2
on the 28 January 2019.

2.8. Statistical Analyses

Statistical analyses were performed with SPSS v.20 (SPSS, Chicago, IL, USA) as de-
scribed in [21]. All data are reported as mean ± standard error of the mean (SEM). Data
distribution was determined by the Shapiro–Wilk test. Variables showing a skewed distri-
bution were log-transformed prior to analysis. A paired or two-sample t-test and Mann-
Whitney U test were used to compare the two groups, while an ANOVA with subsequent
post hoc analysis was applied to compare more than two groups. A correlation analysis was
performed through the Pearson’s coefficient or the Spearman’s rank correlation coefficient
depending on data distribution. The index of whole-body insulin resistance (HOMA-IR)
was calculated as: fasting insulin (µU/mL) × fasting glucose in (mM)/22.5. Statistical
significance was defined as p < 0.05.

3. Results
3.1. Circulating CCN4 and Anthropometric and Biochemical Parameters

The analysis of CCN4 in 48 human tissues revealed its mRNA expression in most
investigated organs, including lung, kidney, heart, adipose tissue, and liver, and showed
no difference between male and female subjects (Supplementary Figure S3). Because
CCN4 can be secreted in the circulation and was recently described to play a role in the
pathogenesis of obesity [15], we further investigated the association of its circulating levels
with anthropometric and biochemical parameters as well as markers of hepatic function.

For this, we analyzed blood samples from 35 severely obese subjects without advanced
liver cirrhosis (9 men and 26 women with a BMI of 42.5 kg/m2, and a fat mass of 53.3%
of their body weight) (Table 1). Three subjects had type 1 diabetes, and eight subjects
had type 2 diabetes. Histological analysis of liver biopsies showed that 26 subjects had
liver steatosis, 10 subjects had ballooning, 28 subjects displayed lobular inflammation, and
24 subjects showed hepatic fibrosis. According to the NAS scoring system [20], 11 subjects
had non-alcoholic steatohepatitis (NASH). Within the NASH group, all participants had
steatosis: ten subjects had lobular inflammation, eight subjects showed ballooning, and
nine subjects showed fibrosis. The mean circulating CCN4 level was 76.7 ± 15.0 pg/mL.
The blood sample of one subject was missing, and in 14 subjects (8 without NASH and
6 with NASH), circulating CCN4 levels were below the limit of detection. There were no
differences in circulating CCN4 levels between subjects with (88.9 ± 20.1 pg/mL; n = 15)
and without (73.8 ± 19.1 pg/mL; n = 5) NASH and between subjects with different fibrosis
scores and NAS scores assessed histologically (Supplementary Figure S4). A correlation
analysis revealed a positive association between circulating CCN4 levels and fasting glucose
(r = 0.480. p = 0.032) but not BMI, fasting insulin, HOMA-IR, liver enzymes (ALT, AST,
GGT), NAFLD liver fat score [23], triglyceride levels assessed in liver samples, and serum
cytokines (IL6, TNF alpha, MCP1).

https://www.gtexportal.org
https://www.gtexportal.org
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Table 1. Baseline Anthropometric and Clinical Parameters of Study Participants.

Parameter Values

n 35
Gender (n, men/women) 9/26

Age (years) 46.7 ± 1.8
Weight (kg) 124.7 ± 3.9

BMI (kg/m2) 42.5 ± 0.7
Fat mass (%) 53.3 ± 1.6

IHL (%) a 13.2 ± 2.4
AST (U/L) 25.5 ± 2.4
ALT (U/L) 31.9 ± 2.2
GGT (U/L) 33.7 ± 5.3

Creatinine (µmol/L) 74.5 ± 4.2
Urea (mmol/L) 5.4 ± 0.9

Uric acid (µmol/L) 315.0 ± 15.5
Cholesterol (mmol/L) 4.15 ± 0.18

HDL-c (mmol/L) 0.96 ± 0.03
LDL-c (mmol/L) 1.90 ± 0.16

Triglyceride (mmol/L) 3.01 ± 0.23
NEFA (mmol/L) 1.85 ± 0.56

Fasting glucose (mmol/L) 7.24 ± 0.43
Fasting insulin (mU/L) 15.3 ± 1.5

HOMA-IR 4.94 ± 0.58
HbA1c (%) 5.9 ± 0.2

Diabetes type 1 (n) 3
Diabetes type 2 (n) 8

Hepatic steatosis (n) 26
Ballooning (n) 10

Lobular inflammation (n) 28
Hepatic fibrosis (n) 24

NASH (n) 11
Values are presented as means ± SEM. a—IHL data available for 12 subjects.

3.2. Association of Hepatic CCN4 Expression with Fibrosis Markers

To investigate the association between CCN4 and fibrosis markers in the liver, mRNA
expression was determined using qPCR in a total of 33 samples. All samples showed
histological hepatic fibrosis scores between 0 and 2, i.e., no to moderate liver fibrosis
(Supplementary Figure S1). Hepatic CCN4 expression positively correlated with BMI
(r = 0.370, p = 0.034) (Figure 1A) but showed no relation to the presence of NASH, NAS
score, or hepatic triglyceride content (Supplementary Figure S5). We found a positive
correlation between CCN4 expression and mRNA expression of fibrosis markers—three
collagen genes COL1A1 (r = 0.652; p < 0.001), COL3A1 (r = 0.579; p < 0.001), COL6A1
(r = 0.645; p < 0.001), αSMA, (r = 0.380; p = 0.029), as well as TGFB1 (r = 0.500, p = 0.003), a
key regulator of tissue fibrosis (Figure 1B–F), but not with αSMA, Sirius red and trichrome
stainings quantified by an automated histological image analysis. In addition, TIMP1
(r = 0.554; p < 0.001) and MMP9 (r = 0.526; p < 0.001), two important enzymes in the
regulation of ECM turnover, were positively associated with hepatic mRNA expression of
CCN4 (Figure 1G–H) and other fibrosis markers (Supplementary Table S2). CCN4 mRNA
levels also showed a tendency to associate with the macrophage marker ITGAX (CD11c)
(r = 0.304, p = 0.091) (Figure 1I), but not with other hepatic cytokine markers (IL6, TNFα,
MCP1, IL1B, IL10) or with macrophage numbers in liver sections.

We also observed no correlation between hepatic CCN4 expression and key deter-
minants of ER-stress (BiP, XBP1s, XBP1, DDIT3), fatty acid β-oxidation (MCAD, ACOX1,
ACOX2, CPT1A, PPARA), lipid storage (PPARG, SCD1), and de novo lipogenesis (ChREBP,
FASN, ACC1, ACC2, AMPK) except for SREBP1c (r = 0.461, p = 0.007).
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3.3. Effects of CCN4 Treatment in Human Hepatic Stellate Cells

HSCs play a key role in the initiation and progression of liver fibrosis by secreting
fibrogenic factors that encourage hepatic fibrocytes, fibroblasts, and bone marrow-derived
myofibroblasts to produce collagen [24]. To investigate whether HSC activation represents
a link between CCN4 and liver fibrosis, we investigated the effects of CCN4 on LX-2 cells,
a well-established model for the study of HSC [25]. For this, LX-2 cells were treated with
human recombinant CCN4 (10, 100, 500 ng/mL) alone or in combination with 1 ng/mL LPS
or 1 ng/mL TGF-β for 24h. TGF-β treatment strongly increased the mRNA expression of fi-
brosis markers COL1A1, COL3A1, αSMA, and TIMP1 (Figure 2), whereas LPS upregulated
MMP9 and cytokines MCP1, IL6 (Figure 3A,B), and IL1β (data not shown). MMP9, MCP1
expression, and IL-6 secretion were upregulated after CCN4 stimulation alone. CCN4 did
not show an additive effect on LPS stimulation, but an increase in COL3A1, TIMP1, and
MCP1 mRNA in combination with TGF-β was observed (Figures 2A,E and 3A). Notably,
CCN4 treatment affected neither TGFB1 mRNA nor secretion levels (Figure 3C,D). On the
contrary, all tested TGF-β concentrations increased CCN4 expression in LX-2 cells, and
CCN4 upregulated its own expression in combination with TGF-β (Figure 3E). Thus, our
findings on stellate cells highlighted a role for CCN4 in the induction of liver fibrosis.
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Figure 3. CCN4 effects on inflammatory markers in hepatic stellate LX-2 cells. LX-2 cells were
stimulated for 24 h with human recombinant CCN4 (0, 10, 100 or 500 ng/mL; in white) alone or in
combination with 1 ng/mL LPS (grey bars) or 1 ng/mL TGF-β (black bars) (n = 4). (A,C,E) Gene
expression was measured by qPCR. (B,D) Cytokine secretion was determined by multiplex assay.
Data are shown as mean ± SEM. * p < 0.05, ** p < 0.01.

4. Discussion

Our study provided the first piece of evidence that the novel adipokine WISP1/CCN4,
which is increased in visceral obesity, might contribute to the early development of obesity-
associated fibrosis even before marked cirrhotic changes occur. We showed for the first time
that, in severely obese subjects without advanced liver cirrhosis, hepatic CCN4 expression
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is associated with BMI, expression of fibrosis markers, and ECM turnover enzymes in liver
samples. In contrast, circulating CCN4 was not associated with liver fibrosis. Further, in
the HSC model, exposure to CCN4 caused a dose-dependent induction of fibrosis markers
and proinflammatory cytokines alone or in combination with TGF-β treatment. These
findings extend our previous studies showing the functions of CCN4 in insulin resistance
and inflammation [15–17,26].

We and others detected CCN4 expression in both human and mouse liver and adipose
tissue [15,16]. GTEx data, as well as our findings, showed that CCN4 levels are more
abundant in visceral adipose tissue (VAT) than in subcutaneous adipose tissue (SAT) and
the liver [16]. Furthermore, feeding mice a high-fat diet increases CCN4 mRNA levels in
both the liver and adipose tissue [15]. Finally, circulating CCN4 levels and CCN4 expression
in VAT are higher in subjects with visceral obesity compared to non-obese subjects [16].

CCN4 can be secreted into the circulation from adipocytes but is not produced in
monocytes and macrophages [15]. We, therefore, postulate that VAT is the main source
of circulating CCN4, at least in visceral obesity, although the liver and other organs
could also contribute to the circulating CCN4 levels. Circulating CCN4 might affect the
metabolic regulation in other organs, including the liver. In vitro experiments showed that
CCN4 could inhibit insulin action in hepatocytes and muscle cells by affecting Akt/FOXO
signaling [16] and suggested that CCN4 might induce insulin resistance in the liver and
muscle. CCN4 can also activate the TLR4/JNK signaling pathway [27], linking CCN4-
induced insulin resistance with inflammation. In human macrophage cultures, CCN4
treatment induced the expression and secretion of proinflammatory cytokines IL-6, TNFα,
and IL-1β and shifted cell differentiation towards the proinflammatory M1 type [15], acting
via the CD14–TLR4 signaling [28]. In our previous work, CCN4 mRNA expression in
VAT showed a positive correlation with CCL2 expression in a cohort of normal-weight
and obese subjects [16]. In a cohort of subjects with type 2 diabetes, the circulating CCN4
levels correlated positively with fat mass, serum leptin, resistin, and visfatin levels [26],
suggesting that CCN4 may contribute to the metabolically-induced tissue inflammation.

Unexpectedly, in the present study, circulating CCN4 showed no association with
markers of liver function such as liver enzymes, SAF score, and fibrosis score and was not
different in subjects with or without NASH. As mentioned above, other organs besides the
liver and adipose tissue can also contribute to the circulating levels of CCN4 and could
explain the absence of correlation between circulating CCN4 and local fibrosis.

Nevertheless, in the liver, CCN4 mRNA expression was associated with BMI and
expression of fibrosis markers COL1A1, COL3A1, COL6A1, αSMA, TGFB1, ECM degrada-
tion enzyme MMP9, the inhibitor of matrix metalloproteinases TIMP1, and inflammatory
marker ITGAX/CD11c. We, therefore, hypothesize that, in the liver of severely obese
subjects, CCN4 secreted into the ECM acts locally in an autocrine or paracrine fashion
resulting in the upregulated fibrosis and inflammation. However, we cannot exclude that
circulating CCN4 also contributes to these processes. Other research groups showed that
CCN4 mediates pulmonary fibrosis in mice and is upregulated in humans with idiopathic
pulmonary fibrosis [13]. CCN4 was also shown to be associated with renal fibrosis in a
TGF-β-induced tubular epithelial cell model, a mouse model of obstructive nephropa-
thy, and in subjects with chronic kidney disease [12]. Several studies showed that the
other CCN family member, connective tissue growth factor (CTGF/CCN2), facilitates
liver fibrosis in humans and animal models [29,30], whereas CYR61/CCN1, in contrast,
promotes regression of liver fibrosis through induction of cellular senescence in hepatic
myofibroblasts [31].

Interestingly, hepatic CCN4 expression was not associated with expression levels of the
key genes of the lipid metabolism except for SREBP1c. This suggests that, in the liver, CCN4
is not markedly involved in the regulation of lipid metabolism and lipid accumulation.

Our data also demonstrated an important role of HSC in the CCN4-mediated regu-
lation of liver fibrosis. We showed in LX-2 cells, a well-established model for the study
of HSC [25], that exposure to CCN4 caused induction of fibrosis markers and proinflam-
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matory cytokines alone or in combination with TGF-β treatment. Similar results were
demonstrated in a previously published study [32]. Chronic liver injury induced the
increased production of TGF-β by a number of non-parenchymal liver cells, including
HSCs and immune cells, resulting in the activation of HSCs and excessive ECM protein
production accompanied by hepatocyte cell death [6]. Likewise, TGF-β can promote its
own expression, which was also observed in our experiments (Figure 3C). Furthermore,
TGF-β showed a tendency to increase CCN4 expression (p = 0.06). This finding is in
agreement with data on CCN2, which drives collagen production in HSC downstream of
TGF-β [30]. Finally, CCN4 upregulated its own expression in HSC in combination with
TGF-β (Figure 3E), which might accelerate the progression of liver fibrosis via a vicious
circle. In general, the interaction between TGF-β and WNT signaling pathways (which is
an upstream pathway of CCN4) is complex; it can take place on extracellular, cytoplasmic,
and nuclear levels and might depend on the specific tissue and on the pathophysiological
situation [33].

Interestingly, CCN4 upregulated the expression of both the fibrosis marker COL3A1
and the ECM turnover enzyme TIMP1 in TGF-β—treated LX-2 culture and also increased
the mRNA levels of another ECM turnover enzyme, MMP9. A similar effect of recombinant
CCN4 treatment on TIMP1 expression was found on human lung fibroblasts [13]. Moreover,
TIMP1 and MMP9 expression positively correlated with hepatic mRNA levels of CCN4
and other fibrosis markers in our association analysis. Thus, our data suggest that CCN4
might stimulate both excessive hepatic production of ECM proteins, such as collagens
and αSMA and increased expression of ECM turnover enzymes, which are both increased
in the pathogenesis of liver fibrosis [3]. MMPs and TIMPs play a pivotal role in matrix
remodeling during hepatic injury and repair [34]. Therefore, TIMP1 increase upon CCN4
treatment could be a protective reaction in response to fibrosis progression.

Besides the possible direct impact of CCN4 on HCS activation, the next possible mecha-
nism of liver fibrosis might be that CCN4 accelerates liver inflammation and the correspond-
ing production of proinflammatory cytokines and TGF-β by infiltrating macrophages and
Kupffer cells which in turn induces HSC activation [35]. In agreement with this, we found a
tendency towards a positive association of hepatic CCN4 with inflammatory marker ITGAX
and a CCN4-induced upregulation of MCP1 and IL6 in LX2 cells. MCP1 expression was
additionally induced in TGF-β—treated cultures suggesting, again, the tight interaction
between TGF-β and WNT/CCN4 signaling pathways. Based on our findings, we suggest
that CCN4 might accelerate both HSC activation and liver inflammation contributing, in
this way, to the aggravation of liver fibrosis (Figure 4). However, the exact molecular
mechanism of the observed CCN4 effects in liver fibrosis still needs to be elucidated. In
particular, in vivo experiments using an animal model of obesity-associated fibrosis in both
CCN4-deficient and wild-type mice would shed light on underlying mechanisms.

Several limitations of our study have to be mentioned. Firstly, the subject number in
our study was relatively small and might not have enough power to detect some associ-
ations. For the same reason, and because in some subjects, the circulating WISP1 levels
were under the detection limit, we were not able to perform data analysis in subgroups of
subjects with and without NASH or diabetes separately. Nevertheless, in the whole cohort,
we were able to find a range of significant associations of CCN4 with fibrosis markers and
with the BMI suggesting the CCN4 role in liver fibrosis. Secondly, we could only assess the
mRNA expression of WISP1 and other markers because no tissue lysates were available
for the protein assessment. The quantification of CCN4 and fibrosis markers at the protein
level, i.e., by Western blotting, might provide more information about their relationships.
Although we provided the fibrosis marker assessment by the automated histological image
analysis, we did not find the correlation between CCN4 expression and fibrosis. This might
be explained by insufficient sensitivity of the quantification method used or, again, by the
small subject number. Thirdly, the study provided only cross-sectional observations giving
no possibility to follow up on the CCN4 effects during the progression of obesity or weight
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loss. However, the collection of repeated human liver samples is extremely difficult, and
the investigation of this question looks more realistic in animal studies.
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so-called hepatic stellate cells play a key role in the pathogenesis of liver fibrosis. Upon metabolic dis-
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macrophages, induce the activation of HSC, their proliferation, and ECM deposition. CCN4 might
accelerate both HSC activation and liver inflammation contributing in this way to the aggravation of
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Taken together, our results suggest a contribution of CCN4 to the pathogenesis of
obesity-associated liver fibrosis. However, the molecular mechanisms of the relationship
between CCN4 and liver fibrosis have to be evaluated in future studies.
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