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Simple Summary: Cnidarians (such as corals, anemones, jellyfish) are ancient and successful animals.
Previous studies have offered a variety of explanations for the adaptive success of certain cnidarian
taxa. However, common strategies for the long-term persistence of cnidarians have not been identified.
One factor that may contribute to their evolutionary success of the lineage is the nematocyst, a sting
organelle able to deliver venom into prey or enemies. Using bioinformatics analyses, we aimed to
quantitatively investigate the role of nematocysts in cnidarian adaptation. We identified the extensive
species-specific adaptation in nematocyst proteins (NEMs) and demonstrate that both a unique
evolutionary pattern of NEMs and the long evolutionary lag between nematocysts and cnidarians
support their key adaptive role. Further, we find NEMs experience approximately 50% more adaptive
changes on average compared to non-NEMs, and positively selected cnidarian-conserved proteins
are enriched in NEMs. These results support a key role of nematocysts in successful cnidarian
adaptation and provide a general quantitative framework for assessing the role of a phenotypic
novelty in adaptation. Moreover, the findings will be critical for reassessing the evolutionary history
of many established models, enhancing our understanding of both the mechanisms and evolutionary
preference of adaptive evolution.

Abstract: Nematocysts are secretory organelles in cnidarians that play important roles in predation,
defense, locomotion, and host invasion. However, the extent to which nematocysts contribute to
adaptation and the mechanisms underlying nematocyst evolution are unclear. Here, we investigated
the role of the nematocyst in cnidarian evolution based on eight nematocyst proteomes and 110
cnidarian transcriptomes/genomes. We detected extensive species-specific adaptive mutations in
nematocyst proteins (NEMs) and evidence for decentralized evolution, in which most evolutionary
events involved non-core NEMs, reflecting the rapid diversification of NEMs in cnidarians. Moreover,
there was a 33–55 million year macroevolutionary lag between nematocyst evolution and the main
phases of cnidarian diversification, suggesting that the nematocyst can act as a driving force in
evolution. Quantitative analysis revealed an excess of adaptive changes in NEMs and enrichment for
positively selected conserved NEMs. Together, these findings suggest that nematocysts may be key
to the adaptive success of cnidarians and provide a reference for quantitative analyses of the roles of
phenotypic novelties in adaptation.
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1. Introduction

Cnidarians, a group of invertebrates, have survived five mass extinctions and have
persisted for more than 700 million years [1,2]. Cnidarians have a simple body plan but
diverse morphologies and complex life cycles [3]. They include more than 12,400 species,
both free-living and parasitic, and are distributed in nearly all aquatic [3] and even terrestrial
habitats [4]. Previous studies have proposed gene- or environment-based mechanisms to
explain the adaptive success of certain cnidarian taxa [2,5]. However, common strategies
for the long-term persistence of cnidarians have not been identified. One factor that may
contribute to the evolutionary success of the lineage is the nematocyst, a secretory organelle
able to deliver chemical arsenals into prey or predators [6,7].

The nematocyst is a phenotypic novelty in cnidarians, observed in fossils from the
Middle Cambrian period [1,8]. Each nematocyst consists of a capsule and a coiled tubule
through which venom is injected with an ultrafast acceleration of 5 million g [9,10]. The
venom induces paralysis for prey capture and may cause pain, possibly for predator
deterrence [11]. Nematocysts are also used for locomotion in Hydra and host attachment
in parasitic myxozoans [7,12]. Strong selective pressures are expected to result in an arms
race. However, it is difficult to quantitatively evaluate the extent to which the nematocyst
contributes to adaptation and to explore the molecular mechanisms underlying this trait, in
part because the trait is polygenic, making it challenging to quantitatively detect selection
acting on multiple genes simultaneously [13]. Previous studies of novelties have focused
on a few genes [14] or qualitatively identified a trait as a key innovation by linking it to
increased diversification rates [15,16]. This approach may ignore environmental factors
and may result in the identification of a complex evolutionary process as a single event [17].
Until now, the role of the nematocyst in cnidarian adaptive evolution and associated
evolutionary processes are unclear. Resolving these issues requires knowledge of the
specific set of genes that encode the nematocyst proteome. These genes might reveal a
unique signature associated with nematocyst evolution and provide a basis for identifying
candidate components proximal to nematocyst composition and function [18].

The nematocyst proteomes of several cnidarians have recently been published, in-
cluding proteomes of some anthozoans [19–22], hydrozoans [18,21–23] cubozoans [24,25],
scyphozoans [21,25–31], and a myxozoan [32]. These pioneering studies have provided
important insights into the evolutionary history of the nematocyst (for example, [9,21,33]).
Nonetheless, we still lack a clear perspective on the role of this organelle in the adaptive
success of cnidarians over the past 700 million years.

Myxozoa are microscopic, oligocellular endoparasites with simple body organization,
but multiple morphologies in their complex life cycles [34]. They have only recently been
classified as cnidarians and, together with Polypodium hydriforme, form a sister clade to
Medusozoa [3,35]. Myxozoans are the only parasitic group that entailed substantial radia-
tion in cnidarians and represent about 20% of cnidarian species diversity [36]. Myxospores
consist of 1–13 polar capsules (referred to as nematocysts below) that have a functionality
different from that of free-living species–attaching the host [37,38]. Despite lacking barbs or
spines, the discharged tubules of some myxozoans have retained the ability to inject chemi-
cals and other structural elasticity not found in tubules of free-living cnidarians [12,39–41].
Thus, proteomic data of myxozoans are an important addition to understanding the adap-
tive evolution of cnidarian nematocysts. However, there is only one study to our knowledge
on the myxozoan nematocyst proteome, which performed a comprehensive functional and
proteomic analysis of Ceratonova shasta [32].

Here, we used three newly generated proteomes for myxozoan nematocysts in conjunc-
tion with five previously published proteomes and 110 cnidarian transcriptomes/genomes
to determine the extent of positive selection in nematocyst proteins (NEMs) and to charac-
terize their evolution in detail. We detected extensive species-specific adaptations in NEMs
as well as evidence for decentralized evolution, in which most evolutionary events involved
a non-core NEM set, possibly due to the rapid diversification of NEMs in cnidarians. Addi-
tionally, we detected a macroevolutionary lag between nematocyst evolution and the main
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phases of cnidarian diversification, suggesting that the nematocyst was an evolutionary
driving force. This was supported by quantitative analyses of relative adaptation and
enrichment of NEMs against reference proteins. We conclude that the nematocyst may be a
key determinant of the adaptive success of cnidarians by conferring flexibility (evolvability)
and therefore by promoting adaptation to changing selection regimes. Our results provide
new insights into the success of cnidarians and build a foundation for quantifying the
contribution of a phenotypic novelty to evolutionary success.

2. Materials and Methods
2.1. Collecting Details

Myxobolus honghuensis was collected from infected allogynogenetic gibel carp Carassius
auratus gibelio in Zoumaling Farm, Hubei Province, China on 29 July 2015. Myxobolus
wulii was sampled from infected allogynogenetic gibel carp in Yellow Sand Port, Jiangsu
Province, China on 8 August 2016. Thelohanellus kitauei was collected from infected common
carp Cyprinus carpio in Liuerbao Town, Shenyang Province, China on 11 August 2015. Fish
were held on ice before being killed with an overdose of MS-222 (Sigma–Aldrich, Co., Ltd.,
St. Louis, MO, USA). From each fish, tissue containing one large cyst was homogenized by
a manual glass tissue grinder and suspended in 0.1 M phosphate-buffered saline (PBS), pH
7.2, and then filtered through cotton gauze. Myxospores were separated from the filtrate
by sucrose gradient centrifugation and Percoll gradient centrifugation in turn, washed
several times with distilled water, and then examined microscopically to verify purity
and identify. Purified myxospores were either placed into RNAlater (Sigma), frozen in
liquid nitrogen and finally stored at −80 ◦C, or immediately sent to nematocyst isolation
as described below. Myxozoan identification was performed based on morphology and
18S sequencing [42,43]. The maintenance and care of experimental animals complied with
the National Institutes of Health Guide for the care and use of laboratory animals [44],
approved by the animal care and use committee of Huazhong Agricultural University,
China (HZAUFI-2015-011).

2.2. Nematocyst Isolation and Purity/Integrity Verification

Myxozoan nematocysts were isolated using our previously described methods [45].
Purified myxospores were disrupted by sonication for 3 min (on for 3 s and rest for
1 s) at 85 W electric power. Thereafter, by successively using 50%, 70%, 90% Percoll
gradient centrifugation, and 100% Percoll centrifugation, pure nematocysts (50%/70%
interface and the middle of the 70% layer) were separated from the sonicated suspension.
The nematocysts were intact and pure from contaminating cellular debris based on light
microscopy. To provide further evidence of the purity of the nematocysts, we fixed the T.
kitauei nematocysts in 3% glutaraldehyde at 4 ◦C, dehydrated with CO2 using the critical
point method and sputter-coated with gold. The microstructure was characterized with a
Japanese SU8010 field emission scanning electron microscope (FESEM) at 3 kV.

2.3. Next-Generation Sequencing and Assembly

We generated novel RNA-seq data for seven myxozoans and genomic data for two
myxozoans (Table S1). Total RNA was extracted from frozen preserved specimens us-
ing TRIzol 550 (Invitrogen). The purity and integrity of RNA were assessed using a
NanoPhotometer® spectrophotometer (IMPLEN, Westlake Village, CA, USA) and RNA
Nano 6000 Assay Kit from the Agilent Bioanalyzer 2100 system (Agilent Technologies, Santa
Clara, CA, USA), respectively. Libraries were prepared from the purified mRNA using
a NEBNext® Ultra RNA kit (New England Biolab (NEB), Ipswich, MA, USA) following
manufacturer’s recommendations and sequenced as 2 × 125 paired-end (PE) runs with
Illumina HiSeq 2500 for M. honghuensis, T. kitauei; as 2 × 150 paired-end runs with Illu-
mina HiSeq 4000 for Henneguya yanchengensis, Myxobolus ampullicapsulatus, M. honghuensis,
Myxobolus turpisrotundus, M. wulii, Myxobolus xiantaoensis, and T. kitauei. Raw sequence data
were cleaned and trimmed by removing adaptor and low-quality reads using Trimmomatic
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v0.33 [46]. Filtered reads were de novo assembled through Trinity v2.6.6 [47] and clustered
using CD-HIT v4.6.8 [48] and TGICL v2.1 [49].

For genome sequencing, DNA was extracted from the frozen spores of M. honghuensis
and M. wulii using a TIANamp Genomic DNA kit (TIANGEN Inc., Beijing, China). Libraries
were built using the TruSeq DNA library kit (Illumina). The ~500 bp (M. honghuensis) and
~450 bp (M. wulii) insert libraries were sequenced on an Illumina HiSeq 2500 (2 × 125 PE)
and Illumina HiSeq 4000 (2 × 150 PE), respectively. After filtering with Trimmomatic v0.33,
19.6 Gb and 18.5 Gb clean data were generated for M. honghuensis and M. wulii and were
assembled with SOAPdenovo v2.04 using default parameters [50]. As the genomic and
transcriptomic data were to be used specifically for subsequent MS/MS and phylogenomic
analyses, we did not perform further systemic post-assembly analyses in this study.

2.4. Data Decontamination and Construction Databases for MS/MS Analysis

We used our recently developed method to construct a clean, efficient, and compre-
hensive protein reference that we denote as the customized comprehensive proteomic
reference database (CCPRD) (for details, see [51]). Briefly, nonredundant host databases
containing proteins or nucleotide sequences from the host, as well as nonredundant closely
related databases containing proteins or nucleotide sequences from species closely related
to myxozoans, were constructed. These four databases were then blasted against the
transcriptome assemblies using TBLASTN or TBLASTX in BLAST + v2.4.0 [52] (−e value
1 × 10−5). Only transcriptome sequences that exclusively matched the host databases were
removed. The retained transcriptome sequences were further blasted against a bacterial
database using BLASTX (−e value 1 × 10−10). The positive hits were blasted to the NCBI
nonredundant protein database (NR) using BLASTX (−e value 1 × 10−5). Only sequences
that were annotated as “bacteria” were removed. For assessment and visualization of
contamination in genomes, taxonomic assignment of each contig was carried out using
Blobtools v1.0 [53]. Sequences that strongly matched Chordata and Proteobacteria were
excluded. The decontamination process was operated conservatively to prevent possible
over-decontamination that could result in the loss of a large portion of actually expressed
genes and proteins.

The CCPRDs of M. honghuensis, M. wulii, and T. kitauei were built by integrating infor-
mation from the genomic and RNA-seq data. For genomes, we used GeneMark-ET [54], Au-
gustus [55], and Semi-HMM-based Nucleic Acid Parser (SNAP) [56] for ab initio prediction,
Genewise [57] for homology-based prediction, and PASA [58] for transcriptome-assisted
prediction. For RNA-seq data, coding sequences were first predicted by TransDecoder [59]
and GeneMarkS-T [60]. Next, transcriptome homology-based predictions were performed
by a customized Perl script Hercules (https://github.com/qingxiangguo/hercules) (ac-
cessed date: 29 March 2017). Furthermore, those transcripts that were translated neither by
de novo nor homology-based method were translated into amino acid sequences using the
Transeq script from the European Molecular Biology Open Software Suite (EMBOSS) [61].
Finally, all proteins (>30 amino acids) resulting from genomic and RNA-seq data were
processed by CD-HIT with a threshold of 100% to collapse the group into a nonredundant
data set, leading to the final CCPRD.

2.5. Tandem Mass Spectrometry and Proteomic Analysis

Proteins were extracted from the cleaned nematocysts by dissolving them in lysis
buffer (4% SDS, 100 mM Tris-HCl pH 7.6, 1 mM DTT). Protein samples (20µg) were
separated on 10% SDS-polyacrylamide gel electrophoresis and visualized with Coomassie
Blue R-250 staining (Figure S1). A 60 µL protein solution was collected, and DTT was
added to a 10 mM final concentration, heated at 60 ◦C for 30 min, and then cooled to room
temperature. Then, 200µL UA buffer (8 M urea, 150 mM Tris-HCl, pH 8.0) was added and
centrifuged at 14,000× g for 15 min two times; 100 µL IAA buffer (100 mM iodoacetamide in
UA) was added and vortexed at 600 rpm for 1 min. The samples were incubated for 30 min
in darkness and were centrifuged at 14,000× g for 15 min. Then, 100 µL UA buffer was

https://github.com/qingxiangguo/hercules
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added and centrifuged at 14,000× g for 15 min two times, after which 100 µL NH4HCO3
buffer (25 mM) was added and centrifuged at 14,000× g for 15 min two times. Finally, the
protein suspensions were digested with 40 µL Trypsin buffer (2 µg Trypsin in 40 µL 100 mM
NH4HCO3) and vortexed (600 rpm, 1 min) before incubation at 37 ◦C overnight, and the
resulting peptides were collected as a filtrate. The filtrated peptides of each sample were
desalted on C18 cartridges (Sigma, St. Louis, MO, USA) and were concentrated by vacuum
centrifugation and reconstituted in 40 µL of 0.1% (v/v) formic acid. The peptides were
eluted with a linear 110 min gradient of 8–45% and 10 min to 95% acetonitrile with 0.1%
formic acid in water at a flow rate of 0.25 µL/min. The samples were analyzed using an
Easy-nLC nanoflow HPLC system connected to a Q-Exactive mass spectrometer (Thermo
Fisher Scientific, San Jose, CA, USA). MS/MS scans were acquired using Q-Exactive with a
mass resolution of 70,000 and 17,500, respectively. The MS scan range was 300–1800 m/z
with automatic gain control (AGC) target 3.0 × 10−6, and the maximum injection time was
50 ms. The AGC target and the maximum injection time for MS/MS were 3.0 × 10−6 and
60 ms, respectively. The higher-energy collisional dissociation (HCD) mode was used as
the fragmentation mode with 27 eV collision energy. The precursor isolation windows were
set to 2 m/z. The raw files were searched against the CCPRD using MaxQuant v1.5.3.8 [62].
The search was set at a precursor mass window of 6 ppm and a fragment tolerance of 20
ppm. The enzyme was set to trypsin. Missed cleavage sites were set to 2. For all searches,
carbamidomethylated cysteine was set as a fixed modification and oxidation of methionine
and N-terminal protein acetylation as variable modifications. The false-discovery rate for
peptides and proteins was set to 0.01. To estimate protein abundance, we used the iBAQ
(intensity-based absolute quantification) [63] option of MaxQuant.

As a single peptide can be linked to multiple proteins (e.g., in the case of razor proteins),
multiple protein IDs can be assigned to the same protein groups. To prevent the interference
of redundant proteins in downstream analysis while still retaining maximum information, a
leading protein-based protein identification strategy was introduced here. Briefly, an initial
table containing the protein group information from three replicates was constructed. After
excluding the proteins marked with “only identified by site”, “reverse”, and “contaminant”
from the initial table, leading proteins and majority proteins from all three replicates
were merged. The proteins (leading and majority) were annotated with the NR database,
and leading protein sequences that needed correction were detected and marked with
red color (Dataset S1). Comprehensive contaminants were manually determined with a
holistic consideration of blast results, iBAQ, and unique peptide counts. Gene Ontology
(GO) analysis and domain predictions were performed for the leading proteins with the
BLAST2GO tool v4.19 [64] and InterPro [65], respectively. The final table was improved
by correcting the leading protein sequences, removing the comprehensive contaminants
and recalculating the sequence length and iBAQ%. To evaluate the repeatability within
replicates and the consistency between leading and majority proteins, polar capsule proteins
identified in different selection criteria in three replicates were compared. The Venn diagram
in Figure S2 indicated good repeatability within replicates and that downstream analysis
based on leading proteins had good representativeness for that of majority proteins. The
identified proteins (accession numbers, sequences, Gene Ontology (GO) annotations, and
InterPro results) are summarized in Dataset S1.

2.6. Comparative Proteomic and Venomic Analyses

We identified orthologs using OrthoMCL v2.0.9, which applies the Markov clustering
algorithm [66]. Default options were used in all steps for nematocyst proteomes from eight
species, namely, myxozoans M. honghuensis, M. wulii, T. kitauei, and C. shasta [32], and the
free-living cnidarians Hydra vulgaris, Anemonia viridis, Aurelia aurita [21], and C. fleckeri [24].
To compare functionalities, BLAST2GO v4.19 [64] was used to obtain the InterPro domains
found in the various NEMs, with comparisons performed using Microsoft Excel. For both
orthologs and domains, the intra-group comparisons of the myxozoans were visualized in
R package VennDiagram [67], while the results from the eight nematocyst proteomes were
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visualized in UpSetR [68]. A comparison between the myxozoan nematocyst proteomes
and the four free-living cnidarian nematocyst proteomes was carried out using BLASTp
(−e value 1 × 10−20). Circoletto [69] and Circos [70] were used to represent the BLASTp
results.

To identify the putative toxins, a group of known cnidarian toxin sequences (e.g.,
metalloprotease, ShK, MAC-PF domains) was used as seed for reciprocal best BLAST
hit (RBBH) analysis with nematocyst proteomes (−e value 1 × 10−10). Then, a machine
learning-based classifier ToxClassifier [71] was used to exclude the proteins with non-toxic
physiological functions. All candidate toxin proteins identified by RBBH or ToxClassifier
were validated by blasting against Tox-Prot UniProtKB/Swiss-Prot [72], and only proteins
with the best match to toxins were retained (−e value 1 × 10−5). To generate an overview
of the distribution pattern of putative toxin protein families across cnidarians, a matrix of
the presence and absence of toxins in the present study and 23 well-annotated nematocyst
proteomes [18–32] was constructed (Dataset S2) and visualized. To avoid dramatically
increasing the number of potential toxins that could be explored, proteomes from whole
tissues (e.g., tenacles, mucus) were not included. The toxin information was extracted
directly from those original studies.

2.7. Ortholog Assessment, Gene Selection, and Data Filtering

For the cnidarian phylogeny dataset, a new supermatrix was assembled from 110
cnidarian transcriptomes and/or genomes, including our newly generated myxozoan data
(Dataset S3). HaMStR v13.2.3 [73] was used to determine orthologous genes following
the protocol in Reference [74]. Translated genes for all taxa were searched against the
basal model organism core ortholog set of HaMStR using the strict option and Nematostella
vectensis as the reference taxon. The orthologous groups were then aligned using MAFFT
v7.205, and ambiguously aligned regions were trimmed with trimAL v1.4.3 [75]. Align-
ments that covered fewer than 50 taxa were deleted. Filtering of paralogs was performed
in PhyloTreePruner v1.0 [76] based on trees generated with FastTree v2.1.11 [77] using
default settings. The protein alignments were concatenated into an initial cnidarian matrix
of 51,598 amino acid positions across 146 genes with 103 taxa. TreSpEx v1.1 [78] was used
to detect possible effects of sequence biases (LBA and saturation) in our phylogenomic data.
LB scores and pairwise distances [78] were calculated for each taxon and OG. Following
Struck [78], these values were plotted in R, and outliers were identified as taxa or genes
that could cause LBA artifacts or saturation. In addition, taxon-specific LB scores for each
gene were calculated, and a heatmap of these scores was generated to identify LBA in a
specific taxon (LB score higher than 200). To identify exogenous contamination missed by
our initial orthology inference approach, we blasted the alignments against a database that
included a set of representative cnidarian sequences and a set of representative bilaterian
sequences. Then, we removed all sequences that had better BLAST hits to bilaterians than
to cnidarians. Finally, a series of pruning experiments were conducted by removing those
taxa and genes identified to be LBA artifacts, saturated, and contaminations. The outline
for phylogenomic analysis is summarized in Figure S3.

For the nematocyst phylogeny, nematocyst core proteins were identified by OrthoMCL
v2.0.9 from eight nematocyst proteomes and were used as queries to search annotated
proteins from cnidarian transcriptomes or genomes with BLASTp. Reciprocal best hits
recovered at a cutoff of 1 × 10−5 among the cnidarian proteins and the matched sequences
were considered to be orthologs. As a secondary check, HMMER v3.0 [79] was also used
to find potential homologs. Retrieved amino acid sequences were aligned with MAFFT
v7.205 [80] by the L-INS-i method. Multiple alignments were trimmed using Gblocks
v0.91b [81]. In cases where there were multiple copies of homologs of a particular gene,
single-gene trees were built using IQ-TREE v1.6.4 [82] and were then manually inspected
to remove suspicious sequences and paralogs using FigTree v1.4.3 (http://tree.bio.ed.ac.
uk/software/figtree/) (accessed date: 5 November 2017). Single-gene alignments were
concatenated using SCaFoS v1.2.5 [83].

http://tree.bio.ed.ac.uk/software/figtree/
http://tree.bio.ed.ac.uk/software/figtree/
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2.8. Phylogenetic Analysis

The phylogenomic and nematocyst datasets were analyzed with both ML and Bayesian
inference (BI) methods. The ML analyses were conducted using RAxML v.8.2.12 [84]
and IQ-TREE v1.6.4 [82]. Nonparametric ML bootstrap support was obtained from 100
ML replicates using the PROTGAMMAAUTO model implemented in RAxML. The IQ-
TREE-inferred ML phylogeny used the LG + C20 + F + Γ4 model plus 10,000 ultrafast
(UF) bootstrap approximations. Bayesian Inference was performed with PhyloBayes MPI
v1.4 [85] using the CAT + GTR + Γ4 model. We ran four Markov chain Monte Carlo (MCMC
chains for 20,000 generations and saved every second tree. We tested for convergence
(maxdiff < 0.1) using bpcomp, implemented in PhyloBayes, with a burn-in of 20%.

Approximately unbiased [86] tests of various competing phylogenetic hypotheses
were conducted using loose constraints with the hypothetical groupings and optimizing
these constraints under LG +Γ4 + F + C20 + PSMF in IQ-TREE using the 146-gene (51,598
amino acid positions) dataset. The optimized trees were compared using the approximately
unbiased test with 10,000 RELL bootstrap replicates. Maximum log-likelihoods of each
constraint and their differences from the optimal ML tree were calculated and compared.
The hypotheses within the 95% confidence interval that could not be rejected were where
p > = 0.05.

To assess if fast-evolving genes were biasing inferences [87], we estimated the rates
of evolution per site with Dist_Est [88] under the LG + Γ4 model and removed the fastest
evolving sites in a stepwise fashion (3500 sites per step). Each step was analyzed using
10,000 MLBS pseudoreplicates in IQ-TREE under LG + Γ4 + F or LG +Γ4 + F + C20 + PSMF.

2.9. Divergence Time Estimation

The divergence times of nematocyst core proteins and the major cnidarian lineages
were calculated across the best ML tree, which was generated by RAxML, using Penalized
likelihood (PL) implemented in r8s v1.7.1 [89]. Cross-validation was tested to determine the
best smoothing value, and the smoothing parameters (cvstart = −8; cvinc = 1; cvnum = 15)
were set to 1 × 10−6. Four calibration points were used: the node of crown cnidarians
was constrained with a maximum age of 741 Mya (million years ago) [90], the minimum
age of Medusozoa was set to 570 Mya [91], the minimum age of Hexacorallia was set to
540 Mya [90], and the rise of Hydrozoa was fixed at 500 Mya [8].

2.10. Selection Analyses and Adaptation Quantification

Selection analysis was performed using Hyphy v2.3.14 [92]. For individual toxins
(astacin, C-type lectin, disintegrin, Kunitz, ShK), site-specific selection analysis of nucleotide
sequences was performed using MEME and FEL. The branch-site test was conducted by
aBSREL. The gene-wide episodic diversifying selection was performed using BUSTED.

To quantitatively evaluate the role of nematocyst proteins in cnidarian adaptation, or-
thologs in the genomes of eight cnidarians (Acropora digitifera, H. vulgaris, Orbicella faveolata,
Stylophora pistillata, Kudoa iwatai, T. kitauei, Exaiptasia diaphana, N. vectensis) [35,93–99] were
identified by OrthoMCL. We then classified these proteins into nematocyst proteins (NEMs)
and proteins with no nematocyst-match (non-NEMs) by blasting against a protein repertory
containing the same eight nematocyst proteomes as in comparative proteomics. We used
the multiple alignments of the coding sequences from the eight cnidarians listed above
to quantify adaptation across cnidarians using a method modified from Enard et al. [100].
Briefly, BUSTED was used as a threshold to determine whether genes were included in
analyses. If the threshold for BUSTED p-value was set to 10−x, we only included in the
quantification the adaptation of coding sequences with BUSTED p-value ≤ 10−x. For a
certain BUSTED p-value, we assessed the amount of adaptation experienced by a particular
protein (NEMs or non-NEMs) by estimating the average proportion of selected codons
from the aBSREL test along all cnidarian branches. Then, the adaptation for whole NEMs
(or non-NEMs) was quantified as the average proportions of selected codons in branches
across NEMs (or the same number of randomly matched non-NEMs; see the permutation
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scheme described below). We then compared NEMs and non-NEMs for weak (BUSTED
p-values ≤ 0.9) to increasingly strong (BUSTED p-values ≤ 10−x) evidence of adaptation.
We calculated the excess of adaptation across cnidarians in NEMs, which is measured as
the extra percentage of adaptation in NEMs compared to non-NEMs.

Non-NEMs were sampled by the permutation scheme. We used PAML to calculate dN
and dS under M8 model [101] (Dataset S4). The average dN in NEMs was first calculated
and noted as dN (NEM). Then, we formed a range in which the average dN of sampled
non-NEMs should fall. The infimum and supremum were defined as dN (inf) = 0.95 (αdN
(NEM)) and dN (sup) = 1.05(αdN (NEM)). We then started to sample five non-NEMs randomly
and continued until the average dN fell into [dN (inf), dN (sup)]. The average dN of non-
NEMs was kept within that interval. However, for every X non-NEM, the sampling was
completely random. If the average dN of non-NEMs was not within [dN (inf), dN (sup)],
we continued to sample until it went back to our expected interval. In this way, the X in
fact controls the variance of the sampling results, and the combination of α and X can be
tested through a series of trial and error. To define α and X, we conducted 104 random
samplings of non-NEMs, and it was found that α = 0.95 and X = 3 yielded the closest dN/dS
variance (0.001043401 in NEMs vs. 0.001075036 in non-NEMs, p = 0.7631) and slightly
different dN/dS means (NEMs mean = 0.04989917 vs. non-NEMs mean dN/dS = 0.0551787,
p = 0.0206). Further, Fisher’s exact test was used to determine whether there was adaptation
enrichment in NEMs considering the whole cnidarian orthologs as a background.

3. Results
3.1. Comparative Proteomics

Three new nematocyst proteomes were obtained for M. honghuensis (1366 NEMs), M.
wulii (632 NEMs), and T. kitauei (536 NEMs) of the family Myxobolidae (Figure 1, Dataset S1).
Comparative proteomics revealed that only 49, 50, and 50 NEMs were shared between these
myxobolids and C. shasta (family Ceratomyxidae, 114 NEMs [32]) (Figure 2A). Within the
myxobolids, only 244 and 193 NEMs were shared between T. kitauei and M. honghuensis and
between T. kitauei and M. wulii, respectively. Even between the closely related M. honghuen-
sis and M. wulii (congeners), only 364 NEMs were shared, constituting 30.8% and 69.9% of
the total NEMs. Thirty-four orthologs were conserved among myxozoan NEMs, including
gamma-glutamyl transpeptidase, nematoblast-specific nb012a, and rootletin (Dataset S5).
In terms of quantity, nematogalectins and nematoblast-specific nb012a accounted for a
relatively higher proportion of the total NEMs. However, the abundance pattern of the
34 NEMs was not significantly associated with species phylogenetic relationships.

Only 120, 109, and 104 domains were shared between the myxobolids and C. shasta
(Figure 2B). Within the myxobolids, 435 and 325 domains were shared between T. kitauei
and M. honghuensis and between T. kitauei and M. wulii. A total of 557 domains were shared
between M. honghuensis and M. wulii, constituting 38.4% and 86.1% of the total domains.
Eighty-three domains were conserved among myxozoan NEMs. Contrary to the limited
number of shared domains, all myxozoan NEMs had highly similar functional distributions.
The proteomes were characterized by enzymes, structural proteins, and novel sequences.
Many enzymes were part of the venom proteome, and structural proteins were composed
mainly of sequences with ECM motifs (Figure 2C–E). A global comparison including free-
living and parasitic cnidarians showed that the species-specific components ranked the
highest for both OG (orthologous groups) and domain intersections (Figure 2F,G).
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Thelohanellus kitauei proteomes and published nematocyst proteomes for the myxozoan Ceratonova 
shasta and free-living cnidarians Hydra vulgaris, Anemonia viridis, Aurelia aurita, and Chironex fleckeri. 
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Figure 1. Light microscopy and scanning electron microscopy of myxozoan nematocysts.
(A,C,E) Fresh and intact spores of Myxobolus honghuensis, Myxobolus wulii, and Thelohanellus ki-
tauei. (B,D,F) Isolated nematocysts of M. honghuensis, M. wulii, and T. kitauei. (G) Scanning electron
microscopy of the isolated T. kitauei nematocyst.
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Figure 2. Comparative analysis of the newly obtained Myxobolus honghuensis, Myxobolus wulii, and
Thelohanellus kitauei proteomes and published nematocyst proteomes for the myxozoan Ceratonova
shasta and free-living cnidarians Hydra vulgaris, Anemonia viridis, Aurelia aurita, and Chironex fleckeri.
Venn diagram showing the number of proteins (A) and InterPro domains (B) shared among the
nematocyst proteomes of M. honghuensis, M. wulii, T. kitauei, and C. shasta. (C–E) Distribution of
functional nematocyst proteomes. Functional protein classes of the M. honghuensis, M. wulii, and
T. kitauei nematocyst proteomes. Upset diagram showing the number of proteins (F) and InterPro
domains (G) shared among the eight cnidarian nematocyst proteomes.



Biology 2022, 11, 91 10 of 26

We next focused on the inter-group comparison of NEMs between myxozoans and
free-living cnidarians. Estimates of sequence similarity were inconsistent with phylogenetic
relationships (Figure 3). For example, all myxozoans had more common proteins and
higher amino acid sequence similarity to those of the sea anemone A. viridis than to those
of the moon jellyfish A. aurita. Likewise, there were as many as 201 NEM matches between
M. honghuensis and A. viridis, nearly twice as many matches obtained for M. honghuensis vs.
H. vulgaris.
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Figure 3. Circos representation of the sequence similarities of identified nematocyst proteins from
the four myxozoan models with published free-living cnidarian nematocyst proteomes (−e value
1 × 10−20). Colored lines represent similarity scores, with the corresponding E-values denoted in the
figure.

3.2. Myxozoan Venom Analysis

In total, 67, 74, and 67 putative toxins were identified in the M. honghuensis, M. wulii,
and T. kitauei proteomes, respectively (Dataset S2). According to their predicted biological
functions, these toxins were classified into five categories (Figure 4). The proportional
distributions of these toxin families were similar among the three species (Dataset S2).
Peptidases were the most diverse putative toxins, including metalloproteinases, cysteine
proteases, serine proteases, and aspartic peptidases. The metalloproteinases were alanine
aminopeptidases, astacins, ADAMs, carboxypeptidases, and thimet oligopeptidases. The
relative distributions of the other enzymes in the three species were also similar and, in
particular, were dominated by transferases, phosphatases, and peroxidases. In addition,
other toxins, such as neurotoxins (ShK-like and Kunitz-type), protease inhibitors, C-type
lectins, and CRiSPs, were identified in the NEMs of the three myxobolids.
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Figure 4. Presence of toxin families in cnidarian proteomes. A schematic tree of Cnidaria is shown
on the left. Circles indicate the presence of a toxin family in a species, light blue indicates that only
one protein was identified in the nematocyst proteome, and dark blue indicates that more than one
protein was identified in the nematocyst proteome.

Overall, the myxozoan toxin family was under negative selection (ω < 1) (Dataset
S6). However, using the branch-site unrestricted statistical test for episodic diversifica-
tion (BUSTED), we found evidence for episodic gene-wide positive selection across the
myxozoan astacin-like toxin family (p = 0.007). This indicates that at least one site on
at least one branch of the myxozoan-dominated astacin-like toxin subclade underwent
positive selection based on a comparison with the free-living cnidarian branches and genes.
Using adaptive branch-site random effects likelihood (aBSREL), we also found evidence
for episodic positive selection on the M. honghuensis branch in the C-type lectin phylogeny.

3.3. NEM Core Set

The nematocyst core set (NEMs shared by all eight cnidarians evaluated in the present
study) included five proteins, most of which have housekeeping functions (Table 1). Elon-
gation factor 1 alpha (EF1α) is a key component of protein biosynthesis [102]. Histones
(H2A and H2B) are the chief protein components of chromatin [103]. Heat shock pro-
teins are important molecular chaperones [104]. Nematogalectin is a major structural
component of the nematocyst tubule [105]. We then performed database searches and
phylogenetic analyses of these proteins to determine the variant types. The EF1α and HSP
(heat shock protein) sequences were identified as EF1α-1 and heat shock cognate 71 kDa
(Hsc70) based on sequence comparisons. The histones were assigned to canonical H2A and
canonical H2B type using HistoneDB2.0 [106]. The nematogalectin was identified as the
ancient nematogalectin-related type by a gene family analysis of cnidarian nematogalectins
(Figure S4).
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Table 1. Putative nematocyst core set that was conserved through cnidarians.

Protein M. honghuensis ID M. wulii ID T. kitauei ID

Elongation factor 1 alpha 1 75931_MH_MC 23790_WL_MC 165085_TK_MC
Canonical histone H2A 32284_MH_MC 49939_WL_MC 80662_TK_MC
Canonical histone H2B 28864_MH_MC 51458_WL_MC 62843_TK_MC

Heat shock cognate 71 kDa
(Hsc70) 8642_MH_MC 159445_WL_MC 85197_TK_MC

Nematogalectin-related 75931_MH_MC 23790_WL_MC 165085_TK_MC

3.4. Cnidarian Organismal and Nematocyst Phylogenetic Analyses

Our initial cnidarian organismal set consisted of 105 taxa, 146 orthologous groups,
51,598 amino acid positions, and 24.8% missing data (Figure S5). Both Bayesian analyses
using the CAT model and a maximum likelihood (ML) analysis using the PMSF model
strongly recovered the following relationship: (((Myxozoa + Polypodium) + Medusozoa)
+ Anthozoa). However, the myxozoan H. yanchengensis was grouped within Bilateria
(Figure S6) even after sequence bias correction (Figures S7–S9) and rogue species deletion
(Figures S10–S12). We then applied decontamination methods to Henneguya according
to Kayal et al. [107], and the resulting matrix robustly supported the assignment of H.
yanchengensis to the myxozoans (Figure S13). We ultimately obtained a well-supported
topology with good resolution of relationships among all major lineages of cnidarians
(Figure 5A), consistent with recently proposed relationships within Cnidaria [107].

Approximately unbiased (AU) tests were performed to compare alternative topologies
proposed in previous studies or obtained in our analysis (Figure S14). Most alternative
topologies for Myxozoa + Polypodium were significantly rejected (Table 2). To further
examine these conflicts, we estimated the rate of evolution at sites in the supermatrix of
146 proteins from 105 taxa and removed sites in a stepwise manner according to the rate
of evolution, plotting bootstrap values for nodes of interest in the tree per site deletion
step under the models LG + F + Γ4 and LG + C20 + F + Γ4 + PMSF estimated using IQ-
Tree (Figure 5B). With the progressive removal of the fastest evolving sites, the topologies
estimated by both the site-homogeneous and site-heterogeneous model and their support
values were unaffected until well over half of the data set was removed. Overall, the
conventional topology for the main lineages of cnidarians and class-level relationships
within Medusozoa were consistently and robustly supported.

Table 2. Approximately unbiased test of the cnidarian phylogeny. Each tree was loosely constrained
with the hypothetical groupings and optimized under LG + Γ4 + FMIX (empirical, C20) in IQ-tree
using the 146-gene (51,598 sites) data set. The optimized trees were compared using the approximately
unbiased test with 10,000 RELL bootstrap replicates. Maximum log-likelihoods of each constraint
and their differences from the optimal ML tree are listed. The hypotheses within the 95% confidence
interval that could not be rejected are where p ≤ 0.05. POLYPODIOZOA, Polypodium hydriforme.

Matrix_Name Constraint_Tree_Iqtree Log L ∆log L p-Value AU Bootstrap RELL

4_103tx_146og

Best_iqtree_ML −2,303,638.671 0.000 0.6220 0.4661
Best_Bayes −2,303,688.375 49.704 0.1477 0.1261

[Polypodiozoa + Hydrozoa] −2,304,312.129 673.458 0.0001 0.0000
[Polypodiozoa + Aegina_citrea] −2,305,903.793 2265.122 0.0018 0.0000

[[[Myxo + Polypodiozoa] + Anthozoa] +
Medusozoa] −2,304,295.467 656.796 0.0004 0.0000

[[Medusozoa + Octocorallia] + Hexacorallia] −2,305,100.274 1461.603 0.0025 0.0000
[[[Ceriantharia+ Hexacorallia] + Octocorallia]

+ Medusozoa] −2,303,639.715 1.044 0.5813 0.4078

[[[Cubozoa+ Scyphozoa] + Hydrozoa] +
Staurozoa] −2,303,758.459 119.787 0.0001 0.0000

[[Staurozoa + Cubozoa] + [Hydrozoa +
Scyphozoa]] −2,304,131.216 492.544 0.0000 0.0000
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Figure 5. (A) Tree of Cnidaria. The topology was inferred from the concatenated amino acid sequence
(main matrix 4_103tx_146og, 103 species, 51,598 positions) using PhyloBayes. Values at nodes are
posterior probabilities (pp) under CAT + GTR + Γ4, nonparametric ML bootstrap (bp) values obtained
from 100 ML replicates using the PROTGAMMAAUTO model implemented in RAxML, and ultrafast
bootstrap (UF) values from IQ-TREE under the LG + Γ4 + FMIX (empirical, C20) + PMSF model.
Diamond marks on branches correspond to 1.0 Bayesian pp and >95% bp and UF. Dashes represent
the alternative maximum likelihood topology. (B) Fast-evolving site removal analysis. Sites were
sorted based on their rates of evolution estimated under the LG + Γ4 + F model and were removed
from the data set according to rates (from highest to lowest). In each step, 3500 of the fastest evolving
sites were removed. The bootstrap values for each bipartition of interest are plotted under LG + Γ4 +
C20 + F + PMSF.

The nematocyst tree successfully recovered the higher-level phylogeny of Cnidaria:
(((Myxozoa + Polypodium) + Medusozoa) + Anthozoa) (Figure 6A). We also recovered
the two sister clades, Octocorallia and Hexacorallia, in Anthozoa and a monophyletic
Medusozoa with the well-accepted topology of (((Cubozoa + Scyphozoa) + Staurozoa) +
Hydrozoa). However, the nematocyst phylogenetic reconstruction was inconsistent with
the lower-level taxonomy of Cnidaria (i.e., at the genus or species levels).
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Figure 6. (A) Congruence between the nematocyst core protein tree (upper panel) and organismal
tree (lower panel). Nematocyst protein tree based on the concatenated protein alignment of five
nematocyst core proteins. Species tree based on the concatenated protein alignment of 146 single-copy
proteins. Cnidarian groups are shaded to highlight incongruencies resulting from gene transfer events.
(B) Chronogram of nematocyst (upper panel) and cnidaria (lower panel) evolution inferred using r8s.
We used the phylogeny resulting from concatenations of five and 146 genes in our age estimation.
Calibration points for nematocyst chronogram were as follows: (1) Cnidaria max-age (~741 Mya) is
marked with solid circles. Calibration points for the Cnidaria chronogram: (1) origin of Hydrozoa
(500 Mya), (2) Medusozoa minimum age (~570 Mya), (3) Hexacorallia min age (~540 Mya), and
(4) Cnidaria max-age (~741 Mya) are marked with four solid circles. Neo = Neogene, Pal = Paleogene,
Sil = Silurian.

3.5. Major Events in Nematocyst Evolution

In the NEM core set, evolutionary events before the diversification of the main lineage
only involved the gain of genes encoding nematogalectin/minicollagen and co-option of
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the housekeeping histones H2A, H2B, EF1α, and Hsc70. By comparing the phylogeny of
cnidarians (Figure 5, Table 2) with that of nematocyst core proteins (Figure 6A), we exam-
ined the evolution of the core set after diversification of the main lineage and found several
inconsistencies in the placement of Cerianthidae, Antipatharia, and Palythoa variabilis. This
most likely resulted from the transfer of the entire nematocyst gene complexes between
Anthozoa lineages after their separation from other major cnidarian groups. In addition
to gene transfer, post-expansion evolutionary events in the putative core set included the
expansion of nematogalectin and minicollagen (if counted) by duplication and divergence.

By contrast, the non-core NEM set showed massive gene recruitment, gene duplica-
tion, and gene decay events. Some toxins, such as the Kunitz-type family, were recruited
independently into Anthozoa/Scyphozoa/Myxobolidae; the Kunitz-type family was du-
plicated in Myxobolidae (Figure S15). Actinoporins were gained at the base of cnidarians
and subsequently lost in myxozoans. All venom proteins were lost in Ceratonova (Figure 4).
We also observed the extensive domain shuffling of the ShK toxin (Figure S16) and domain
recruitment in C-type lectin (Figure S17) and metalloproteinases (Figure S18).

3.6. Divergence Time Estimates

All divergence time estimates are summarized in Table 3. Nematocyst evolution was
always one step ahead of species evolution, with a gap of 33–55 million years (Figure 6B).
The last common ancestor of cnidarians occurred during the Tonian period, approximately
736 Mya. Medusozoa originated in 626.6 Mya. We estimated that the most recent common
ancestor (MRCA) of all myxozoans dates back to the late Cambrian (492.6 Mya).

Table 3. Comparison of divergence times for major nodes shared across eight studies. Numbers in
the parentheses represent the median times and 95% HPD interval (Mya). “-” = Not available. “M +
P” means Myxozoa + Polypodiozoa; “Coral” means Corallimorpharia.

Present Study Holzer et al.
2018

Kodádková
et al. 2015

Park et al.
2012

Waggoner &
Collins 2004

Cartwright &
Collins 2007

Medina et al.
2006

Peterson et al.
2004

Markers

146
single-copy

nuclear
orthologs

6 nuclear
protein-coding

genes

18S rRNA
gene

13
mitochondrial
protein-coding

genes

18S rRNA
gene

18S and 28S
rRNA genes

13
mitochondrial
protein-coding

genes

7 nuclear
protein-coding

genes

Node age
Deep nodes

Cnidaria 736.2 786 (723–848) - 741 (686–819) 875 (700–1200) 711.7 (389,
1035) - 595 (561–626)

“M + P” 592.9 725 (667–779) - - - - - -
Medusozoa 626.6 - - 607 (571–670) 790 (640–940) - - -

“M +P” +
Medusozoa 689.6 - - - - - - -

Shallow
nodes

P. hydriforme 592.9 651 (601–700) - - - - - -
Myxozoa 492.6 588 (540–642) 530 (457–603) - - - - -
Cubozoa 344.5 - - - - - - -

Scyphozoa 485.3 - - - - - - -
Cubozoa +
Scyphozoa 554.2 - - - - 537.5

(191–943) - -

Staurozoa 225.5 - - - - - - -
Octocorallia 388.5 - - 292 (173, 421) - - - -
Hexacorallia 554.4 - - 601 (544, 684) - 517.5 - -
Scleractinia +

Cora 284.3 - - 276 (235–323) - - 264 (240–280) -

Cora 214.2 - - 206 (158–253) - - 121 (110–132) -

3.7. NEM and Non-NEM Selection and Adaptation Analyses

All NEMs showed approximately 50% more adaptive amino acid changes, on average,
compared to estimates in non-NEMs. NEMs with the strongest evidence of adaptation
(BUSTED p-values < 10−5) had up to 60% excess of adaptive substitutions (Figure 7A,
permutation test p < 2.2 × 10−16, 107 iterations). These NEMs were enriched for 20 GO
(Gene Ontology) functions, including eight GO categories associated with more than
50 NEMs. Among the top 10 GO categories, seven were related to NEMs with a 40% or
greater excess of adaptation (permutation test p < 0.05 in all cases). GO terms associated
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with a strong excess of adaptation included cellular processes, such as metabolism, cellular
component organization or biogenesis, and biological regulation, as well as supracellular
processes related to development (Figure 7B). Moreover, Fisher’s exact test of NEMs against
background proteins showed that selective pressure was significantly enriched in NEMs
(p = 0.004658, 0.01117, and 0.007638 at the 0.05, 0.01, and 0.001 levels; Figure 7C).
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4. Discussion
4.1. Nematocyst Heterogeneity and Organelle–Organism Discordance Support Extensive
Species-Specific Adaptation

Our interspecific comparisons strongly support extensive species-specific adaptations
in nematocyst evolution. Only 34 orthologs in nematocyst proteomes were shared among
myxozoans. This heterogeneity was consistent with previous results for free-living cnidari-
ans [21]. Comparing myxozoan data to data for free-living cnidarians, only four of the 34
orthologs were myxozoan-specific, and this number might be reduced in the future as sam-
pling is expanded. Our results suggest that a myxozoan nematocyst “molecular toolbox”
was lacking in the common ancestor and was potentially conserved among myxozoans for
parasitism.

Despite the considerable differences in NEMs among cnidarians, there were a number
of shared domains. Among myxozoans, the functional modules that make up the proteomes
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were highly similar. These results suggest that the composition and functional heterogeneity
of the nematocyst resulted from extensive species-specific adaptation, a process focused
more on functions than on specific protein types [21].

The discordance between proteomic similarity and phylogenetic relationships may
also be explained by species-specific adaptations. Under changing conditions, the whole
nematocyst proteome might have undergone rapid evolutionary changes. Thus, proteomic
alterations might be inconsistent with the species phylogeny, especially for fast-evolving
lineages. This prediction was tested by mapping proteomic results to the species phylogeny.
Myxozoans had NEMs that were similar to those of sea anemones, inconsistent with the
expectation that myxozoans are phylogenetically more closely related to Medusozoa than to
Anthozoa [21], suggesting that rapidly evolving myxozoans are armed with nematocysts for
parasitism. To investigate whether quantitative information from proteomics data would
provide insights into species phylogenetic relationships, we compared the relative iBAQ
values of 34 shared NEMs among three myxozoans. The abundance patterns of the 34 NEMs
were found not to be significantly associated with phylogenetic relationships. However,
our results may not reflect the true composition of nematocysts, as different proteins may
perform differentially during digestion [21]. Thus, the relationship between the nematocyst
protein abundance pattern and the phylogeny is still wide open for discussion, and more
quantitative proteomics, including stable isotope labels and optimization of the dissolution
method, are needed to quantify the nematocyst composition. Collectively, our results
demonstrate that the nematocyst is highly diverse at the proteomic level. The striking
interspecific heterogeneity in nematocyst proteome composition may be related to rapid
diversification, highlighting its potentially significant role in adaptive evolution.

4.2. Dynamic Evolution of Myxozoan Venom and Episodic Positive Selection

Venom stored in nematocysts may be under selection, independent of other nematocyst
core/structural proteins. Therefore, the evolution and selection of toxins warrant an
independent investigation. We present evidence for the expression and translation of
venom toxin homologs in myxobolid nematocysts, consistent with previous proteomic
studies of myxospores [21]. Putative toxins are absent from C. shasta [32], suggesting that
the composition of venom varies greatly among myxozoan families. The apparent loss
of venom toxins in nematocysts of C. shasta could be attributed to a structural adaptation
that facilitates host attachment rather than toxin delivery [40]. Despite the significant
sequence differences, the functional modules of toxins were similar among the three
myxobolids, exhibiting a similar evolutionary trend to that of other non-toxic NEMs. As
observed in the comparative analysis of all NEMs, the Myxobolidae NEMs showed a unique
toxin distribution pattern that was more similar to that anthozoans than to medusozoans,
including abundant putative neurotoxins and a lack of cytolysins [108–110]. Our results are
inconsistent with the hypothesis that the toxin gene distribution is correlated with species
relatedness [108], suggesting that toxin families are not necessarily restricted to certain
taxonomic groups but are common throughout cnidarian venom evolution [27].

Animal venoms are theorized to evolve under positive Darwinian selection in an arms
race scenario [21]. Previous work has shown that genes encoding toxins in cnidarians
experience stronger purifying selection than those of other venomous animals, possibly
due to the functional role of these proteins in nematocyst development [21,111,112]. In
myxozoans, despite substantial purifying selection across toxin sequences, a subset of genes
(i.e., sites) along a subset of lineages showed evidence for positive selection, referred to as
episodic positive selection [112]. We speculate that due to the simple morphology, myxo-
zoan venoms are less constrained by nematocyst development. Thus, genomic constraints
imposed on venom evolution are partially relaxed, leading to the intensification of selection
on myxozoan toxins. Furthermore, this discrete positive selection may correspond with
increased potency and/or specificity of a particular toxin or species. Overall, these patterns
suggest that myxozoan venoms were subjected to various selective pressures, including
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wide-spread purifying selection and a few instances of gene-specific or lineage-specific
episodic positive selection.

4.3. Defining the NEM Core Set

The identification of the core protein set is important for analyses of nematocyst
evolution. In accordance with Rachamin et al. [21], we validated the relatively small set
of core NEMs, most of which are housekeeping proteins. They include two histones, HSP,
EF1α, and nematogalectin. Only nematogalectin is a nematocyst-specific component. Thus,
it is possible that these non-nematocyst-specific components are cellular contaminants that
can be explained by density gradient centrifugation, leading to the co-elution of nematocyst
components with a small fraction of nuclei. However, we think that this explanation is
unlikely for several reasons. (1) The purity of nematocysts was verified by light and electron
microscopy. (2) The house-keeping proteins have also been reported in previous studies
of free-living cnidarians [21,24] and are thought to have non-canonical functions, such as
the maintenance of venom homeostasis (HSP), shaping the microtubule scaffold (EF1α),
and even acting as venom (histones). (3) Histones have also been recovered from the clean
nematocysts of C. shasta extracted by a dielectrophoresis-based microfluidic device. (4) The
fraction of these house-keeping proteins in the complete proteome was high, as estimated
by iBAQ values. Thus, their presence cannot be explained by chance alone. (5) The house-
keeping proteins may have been co-opted by the ancestral nematocyst, suggesting that the
core proteins are not necessarily nematocyst-specific. This is supported by the observation
that all the core NEMs were the canonical type, in accordance with their ancient origin.

Next, conspicuously missing from our results were the minicollagens detected by
Balasubramanian et al. [18], one of the most comprehensive datasets generated to date. This
could reflect our isolation process or an insufficient protein solubilization protocol for the
resolution of most major structural components, such as minicollagens. However, we do
not think the absence of minicollagens is the result of insufficient nematocyst solubilization
for three reasons. (1) Minicollagens formed insoluble polymers in mature wall structures
and were difficult to dissolve in SDS before analysis, as observed by Rachamin et al. [21],
and may reflect differences in extraction methods. (2) We successfully resolved major
structural components, such as nematogalectins and ECM-related proteins, constituting
about one-third of the Hydra nematocyst proteome [18]. (3) The proportion of structural
proteins in our NEMs was lower than that in Hydra but comparable to that reported for
the myxozoan C. shasta [32]. Thus, the reduction in structural components in our NEMs
might be explained by lineage-specific characteristics, rather than insufficient solubilization.
We performed a further proteomic database search using the oxidation of proline and still
did not detect minicollagens (Dataset S7). Hence, the lack of minicollagen detection is not
due to failure of matching collagenous peptides with proline hydroxylation. Despite the
important role of minicollagen in nematocysts, it was not included in the current core set;
it shows a complex evolutionary history and the ancestral sequence is unclear [113,114].
Therefore, the task of elucidating the evolution of the nematocyst may rest on establishing
how the above core set evolved.

4.4. Decentralized Evolutionary Pattern of Nematocysts

With the aid of a robust cnidarian phylogeny and a nematocyst tree based on the core
set, the evolution of the core/non-core set before and after the major lineage expansion
was examined. We found a pattern of “decentralized modification”, in which the putative
core set underwent few modifications before and after appearing in the shared ancestor of
cnidarians, and most evolutionary events were found in the non-core set. For example, the
evolutionary processes involving the core set only included a few innovations, co-option
events, expansion of nematogalectin/minicollagen, and frequent gene transfer events in
anthozoans (Figure 6A), the latter of which might be related to the frequent symbiosis
between anthozoans and dinoflagellates algae [115]. The non-core set, however, showed
massive gene recruitment, gene duplication, and gene decay events. The above evolu-
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tionary pattern is distinct from that of other organelles or complex systems. e.g., bacterial
flagella [116], bivalve shell matrix [117] or bacterial non-flagellar T3SS (NF-T3SS) [118].

The most plausible explanation for the decentralized modification is that the rise
of a nematocyst prototype was followed by the rapid diversification of cnidarians and,
therefore, there was a relatively short period for evolutionary events to occur [119] before
the rapid expansion of nematocysts into various lineages. Subsequently, strong selective
pressure led to active lineage-specific modifications and finally contributed to the high
heterogeneity of nematocysts. These results provide reasonable support for the key role of
the nematocyst in cnidarian evolution.

4.5. Macroevolutionary Lag between the Nematocyst Core Set and Cnidarian Diversification

A prerequisite for the nematocyst to be an adaptive driver is that the ancestral nema-
tocyst arose before the main cnidarian lineages diverged. This was tested by comparing the
timescale of the nematocyst ancient core complex and organismal evolution under the same
chronogram framework. The nematocyst consistently predicated steps in cnidarian evolu-
tion with a stride length of 33–55 My. The last common ancestor of cnidarians occurred
during the Tonian period, approximately 736 Mya, within the range of 389–1035 Mya [120],
earlier than 561–626 Mya [121], but later than the estimates reported by Holzer et al. [5]
(723–848 Mya), Park et al. [90] (686–819 Mya), and Waggoner and Collins [122] (700–1200
Mya). Medusozoa was estimated to have originated 626.6 Mya, which is earlier than
estimate of Park et al. [90] (571–670 Mya) but later than that of Waggoner and Collins [122]
(640–940 Mya). In shallower nodes, such as the origin of cnidarian classes or families, our
divergence time estimates are considerably younger than those of Holzer et al. [5]. We
estimated that the most recent common ancestor (MRCA) of all myxozoans arose in the late
Cambrian (492.6 Mya), later than the Ediacaran, 588 Ma (540–642 Mya), reported by Holzer
et al. [5]. These results suggest that nematocysts achieved substantial complexity early in
the evolution of these groups and have the potential to be a driving evolutionary force.

4.6. Frequent Adaptation in NEMs across Cnidarians

Despite evidence for the essential role of the nematocyst in cnidarian adaptive evo-
lution, the extent to which the trait contributed to the evolution of the lineage remains
unclear. For quantitative analysis, we detected episodes of adaptive evolution along each
of the eight branches on the cnidarian tree using the adaptive branch-site REL test (aBSREL
test) [123] and the BUSTED test [124]. A permutation test showed that adaptation has been
much more common in NEMs than in non-NEMs across cnidarians. The strongest excess
of adaptation in NEMs reached 60%, and these were related to 20 GO functions. The excess
of adaptation in NEMs therefore involves wide functions. Interestingly, some of these func-
tions are consistent with the functions of recently diverged nematocysts, such as response
to stimuli and organelle localization. Moreover, a selective pressure enrichment analysis
of the NEMs against conserved background proteins indicated that selective pressure on
background proteins was significantly enriched in the NEMs, consistent with the idea that
selection in cnidarians disproportionately affects the nematocyst. These results suggest that
the nematocyst plays a predominant role in adaptive evolution in cnidarians via pleiotropic
effects on diverse biological functions.

4.7. Future Perspectives

Our analysis benefits from the integration of decades of omics data for cnidarians.
However, there are still potential sources of bias that should be addressed in future research.
Although our NEM core set is in accordance with previous studies, it may change over
time as a result of increased taxon sampling and the optimization of nematocyst solu-
bilization methods. Furthermore, additional genome- and transcriptome-wide searches
of cnidarian minicollagens are needed to better clarify the evolutionary trajectories of
these proteins [114], which can be integrated into the core set and further improve our
understanding of nematocyst evolution.
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5. Conclusions

Starting with a top-down analysis of a phenotype of interest, we observed a strong
increase in the rate of adaptive evolution in the nematocyst by a holistic consideration of the
proteomic composition, patterns of evolution, chronograms, and quantification of adaptive
evolution. The nematocyst likely increases evolvability, enabling adaptation to changing se-
lection regimes and thereby contributing to the striking diversity of cnidarians. The unique
role of nematocysts provides an important addition to the catalog of mechanisms underly-
ing adaptive success in the lineage and establishes a promising system for investigating the
ecological and evolutionary implications of phenotypic novelties in non-model organisms.
Our results emphasize the importance of quantitative analyses in the role of novelties in
evolution and diversification, providing a basis for reassessing the evolutionary history of
many established models, with the potential to substantially improve our understanding
of both the mechanistic basis of novel traits and evolutionary processes. The present study
and other research on cnidarian structures also play an important role as simple models
for basic theories of structural development–beginning with the pioneering work of Alan
Turing [125–129].
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