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One of the fundamental issues for robot navigation is to extract an object of interest from an image. The biggest challenges for
extracting objects of interest are how to use amachine tomodel the objects in which a human is interested and extract them quickly
and reliably under varying illumination conditions. This article develops a novel method for segmenting an object of interest in a
cluttered environment by combining a P300-based brain computer interface (BCI) and an improved fuzzy color extractor (IFCE).
The induced P300 potential identifies the corresponding region of interest and obtains the target of interest for the IFCE. The
classification results not only represent the human mind but also deliver the associated seed pixel and fuzzy parameters to extract
the specific objects in which the human is interested.Then, the IFCE is used to extract the corresponding objects. The results show
that the IFCE delivers better performance than the BP network or the traditional FCE. The use of a P300-based IFCE provides
a reliable solution for assisting a computer in identifying an object of interest within images taken under varying illumination
intensities.

1. Introduction

One of the primary color segmentation tasks is to extract
objects (regions) of interest from an image, since a variety of
vision-based applications rely on the quality of the extracted
objects. Over the past years,many researchers have used color
segmentation algorithms to extract regions of interest, but the
low robustness of the existing algorithms to illumination vari-
ation in cluttered environments is still problematic. For exam-
ple, Felzenszwalb and Huttenlocher defined a predicate for
measuring the evidence for a boundary between two regions
using a graph-based representation of the color image. The
developed algorithm constructs the boundary of the graph by
comparing the difference between two components and their
internal differences, respectively, computed by minimum

spanning tree (MST) and the edge weights based on the
absolute intensity difference or all three (red, green, and blue)
of the color plane segmentations for color images [1]. Dony
and Wesolkowski introduced an edge detection approach
for color images, which was based on the calculation of
the vector angle between two adjacent pixels. The method
detected only chromatic differences so that it was suitable for
applications where differences in illuminationwere irrelevant
[2]. Shi and Malik treated color image segmentation as a
graph-partitioning problem and proposed a global criterion,
that is, the normalized cut, for segmenting the graph. The
normalized-cut criterion measures the total dissimilarity
between the different groups as well as the total similarity
within the groups.Then, they optimized this criterion using a
computational approach based on the generalized-eigenvalue
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technique [3]. Malik et al. used contour and texture analysis
for color image segmentation. They provided an algorithm
for partitioning greyscale images into disjoint regions of
coherent brightness and texture. The cues of contour and
texture differences were exploited simultaneously.Then, they
introduced a gating operator based on the texturedness of
the neighborhood of a pixel that facilitates cue combination.
Finally, the spectral-graph theoretical framework of normal-
ized cuts was used to find partitions of the image in regions
of coherent texture and brightness [4]. Albalooshi and Asari
proposed a self-organizing lattice Boltzmann active-contour
(SOLBAC) approach for segmentation while preserving the
precise details of the object’s region of interest. Even though
the approach improved the computational time cost, the
computer could not effectively identify the object of interest
[5]. In terms of the psychology of object and pattern recog-
nition, Brewer and Williams think that the pattern or object
recognition is the process by which the brain recognizes
light, shapes, and colors as particular objects or patterns.
It is the process of “assigning meaning to the visual input
by identifying the objects in the visual field.” This ability
combines perception, attention, and memory [6]. Therefore,
it is too difficult to identify an arbitrary object depending
only on machine understanding, even if it seems simple
for humans, since the recognition process is so sophisti-
cated.

General segmentation algorithms usually process the
entire image instead of the regions of interest [7]. However,
these segmentation algorithms suffer from a computational
time that is too long to satisfy the real-time requirements
because a number of segments that are not of interest
have to be processed when the algorithms are applied to
vision-based robot-tracking systems. For robot operations,
the segmentation of only regions of interest to fulfill robot
tasks in real time should be a priority. For example, the
objects of interest are goals, robots, doors, and so forth,
in RoboCup [8]. For a match between two robot teams,
the use of fast and robust algorithms for extracting these
objects is the key step to winning the match. The popular
algorithmsproposed for this goalweremostly the color-based
segmentation and geometrical image-processing methods
[9]. Among them, the most commonly used color space is
HSV [10] and the most commonly used geometrical image-
processing tool is the Hough transform for circle detection
[11, 12]. Moreover, Kaufmann et al. proposed the visual robot-
detection technique by training the vertical and horizontal
color histograms and other features using two BP networks
and combining the output of the two neural networks to
make the final classification decision [13]. For extracting an
object of interest in cluttered environments under diverse and
varying light illumination for robot navigation or operations,
the robustness and fast processing time of the algorithms are
critical.

In this paper, we present a method of segmenting regions
(objects) of interest with color similarity via the P300-based
IFCE. First, we design a 3X3 P300 paradigm to stimulate the
targets, that is, the interesting-object candidates, including
their corresponding fuzzy parameters and seed pixels. An
object of interest towhich a subject pays attention is identified

while the P300 stimuli are flashing. Second, to extract an
object of interest reliably, the IFCE proposed herein processes
each detected pixel based on the angle between two vectors
from the detected pixel to the seed pixel in RGB space coordi-
nates.The vector length corresponds to the pixel illumination
intensity and the direction corresponds to the color.The IFCE
is much more robust than other color-extraction algorithms
because the pixel illumination intensity and the color are
separately represented. This algorithm extracts an object of
interest quickly since the corresponding seed pixel and fuzzy
parameters are predetermined in the training process. Last,
we conducted comparative studies of the proposed algorithm
with a BP network and the traditional FCE. The results show
that the proposed P300-IFCE method is very robust for
segmenting regions of interest. This study not only benefits
people with severe motor disabilities, but also works as an
auxiliary means of assisting the nondisabled man when both
of his hands are busy, for example, our current project on
control of an underwater manipulator via brainwaves [14].
In this application, the operator uses a P300 paradigm to
control the underwater manipulator, while both the opera-
tor’s hands are used to operate the underwater vehicle move-
ment.

The motivations of this study are trying to address
the following issues: First, effectively extracting an object
of interest in a cluttered environment usually suffers from
the following: how to use a computer to model the object
like human understanding in mind and how to extract the
object of interest from the cluttered environment under
varying illumination conditions. In order to solve these two
issues, we propose the method for object extraction via the
P300-based IFCE. The P300 paradigm is used to identify
an object of interest for robot navigation to simplify the
complex process of identifying the object using a computer.
Although the P300 paradigm could not directly represent
the operator’s mind, it indirectly maps the operator mental
activities into his/her intention to identify the object which
the machine should extract, while the IFCE operator is used
to deal with the varying light conditions to improve the
quality of the object of interest to be extracted. Second, the
trend to developing an intelligent robot system is trying
to combine human and machine intelligence. The study in
this paper would be an attempt to fuse brainwaves, which
indirectly or directly represent the human intentions, and
the fuzzy logic-based IFCE operator, which is a typical
computational algorithm, to enhance the performance of
the object extraction in a cluttered environment. Mental
activities through brain signals in psychology may not need
a complex computational process, but currently it is very
difficult for engineers to use the conclusions from psychology
studies to implement the process without knowing the inside
principles. Finally, this study would especially benefit people
with severe motor disabilities; they cannot express their
mind through a keypad, a mouse, or even speaking a word.
In this circumstance, the P300 paradigm, as an auxiliary
tool, establishes argumentative communication for them to
select an object of interest in order to express their mental
activities. By analysing the P300 components from their
brain signals, the machine can identify which objects of
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interest should be extracted with help of the IFCE algo-
rithm.

Up to now, most of the BRI approaches have focused
on low level control of a robot system via brain signals [15–
21]. For example, the works [22, 23] used four or six visual
stimuli designed in the SSVEP or ERP model to control a
humanoid robot’s walking behaviors. On the contrary, the
study in this article applies the P300 paradigm into a BRI
system at a high level to assist the computer to express an
object of interest that a human understands. Following the
introduction, Section 2 describes the IFCE in detail and how
to use it to extract an object. Section 3 gives an introduction
to the P300-based seed-pixel selection, which includes estab-
lishing a P300 model, acquiring data and analysing signals,
and guaranteeing that the seed pixels represent objects of
interest. Section 4 presents some experiments in cluttered
environments and compares the P300-based IFCE with two
other algorithms to validate the robustness and efficiency of
the proposed P300-based IFCE method. In addition, the last
section draws some conclusions and puts forward some ideas
for future work.

2. Improved Fuzzy Color Extractor

The fuzzy color extractor (FCE) was first proposed as an
Iterative Fuzzy-Segmentation (IFS) algorithm by Li [24]. He
applied IFS to extract color components of a chemical plume
and its odour source for visual confirmation of the identified
odour source [25]. The fuzzy color extractor can directly
extract the chemical plume and its source by defining their
color patterns. However, the color patterns are defined in the
RGB space and the components of R, G, and B vary due
to changes in illumination intensity. Once the illumination
intensity changes, the color patterns are supposed to be

recalibrated. In this paper, the traditional FCE is modified
by defining a new color pattern to improve its robustness
under different illumination intensities.Herein, the new color
pattern is defined by the angle between the vectors of two
pixels in RGB space coordinates and then replaces the R,
G, and B values as the input of the traditional FCE. Based
on the newly defined color pattern, a pixel is classified as
belonging or not belonging to the target after fuzzification
and defuzzification. The IFCE will be explained in detail as
follows.

2.1. Color Pattern Definition. Traditionally, the colors of
an image are described in the RGB space, where colors
are represented by their red, green, and blue components
in an orthogonal Cartesian space, as shown in Figure 1.
The color of each pixel 𝑝(𝑚, 𝑛), denoted by (𝑚, 𝑛)RGB, is
processed to separate its red, green, and blue components
(𝑝(𝑚, 𝑛)R, 𝑝(𝑚, 𝑛)G, 𝑝(𝑚, 𝑛)B) [7]. To distinguish between
two different pixels, for example, 𝑝(𝑚, 𝑛) and 𝑞(𝑠, 𝑡), three
variables must be calculated, as presented in (1). In this
paper, a new color pattern is put forward that compresses
these three variables into a single variable. First, each pixel
in RGB space is regarded as a three-dimensional vector
from the original point to this pixel, as shown by points
𝑝 and 𝑞 in Figure 1. The length of the vector represents
the illumination intensity while the direction of the vector
represents the color. Thus, the illumination intensity and
the color of a pixel are decomposed so that the represen-
tation method is able to adapt to variations in illumination
conditions. The compressed single variable is described as
(2), where 𝑑(𝑝, 𝑞) represents the difference between the two
pixels 𝑝 and 𝑞. In the new color pattern, the angle between
two vectors replaces the three distances of RGB values,
which reduces the influence of illumination-intensity varia-
tions:

dif (𝑝, 𝑞)R = 𝑝 (𝑚, 𝑛)R − 𝑞 (𝑠, 𝑡)R ,

dif (𝑝, 𝑞)G = 𝑝 (𝑚, 𝑛)G − 𝑞 (𝑠, 𝑡)G ,

dif (𝑝, 𝑞)B = 𝑝 (𝑚, 𝑛)B − 𝑞 (𝑠, 𝑡)B ,
(1)

𝑑 (𝑝, 𝑞) = arccos 𝑝 (𝑚, 𝑛)R ⋅ 𝑞 (𝑠, 𝑡)R + 𝑝 (𝑚, 𝑛)G ⋅ 𝑞 (𝑠, 𝑡)G + 𝑝 (𝑚, 𝑛)B ⋅ 𝑞 (𝑠, 𝑡)B
√𝑝 (𝑚, 𝑛)2R + 𝑝 (𝑚, 𝑛)2G + 𝑝 (𝑚, 𝑛)2B ⋅ √𝑞 (𝑠, 𝑡)2R + 𝑞 (𝑠, 𝑡)2G + 𝑞 (𝑠, 𝑡)2B

, (2)

where 0 ⩽ 𝑚, 𝑠 ⩽ 𝑀, 0 ⩽ 𝑛, 𝑡 ⩽ 𝑁, and𝑀 and𝑁 indicate the
size of the array containing the image.

2.2. Fuzzy Rules. Here, we apply the following fuzzy rules to
process the input 𝑑(𝑝, 𝑞):

If 𝑑(𝑝, 𝑞) is zero,
then 𝑝(𝑚, 𝑛) and 𝑞(𝑠, 𝑡) are matched.
If 𝑑(𝑝, 𝑞) is negative or positive,
then 𝑝(𝑚, 𝑛) and 𝑞(𝑠, 𝑡) are unmatched.

In fact, 𝑞(𝑠, 𝑡) often corresponds to a seed pixel, which
can represent an object to be extracted. Thus, “matched”
means that 𝑝(𝑚, 𝑛) is matched with the seed pixel. Both rules
indicate that the pixel 𝑝(𝑚, 𝑛) belongs to the object to be
extracted if the angle between 𝑝(𝑚, 𝑛) and the seed pixel
in the RGB coordinate system is small enough; otherwise,
𝑝(𝑚, 𝑛) does not belong to the object.

2.3. Fuzzification and Defuzzification. When we obtain the
angle 𝑑(𝑝, 𝑞), the membership can be calculated. Figure 2(a)
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Figure 1: RGB space coordinate system.

shows the membership functions (𝜇𝑁(𝑥), 𝜇𝑍(𝑥), 𝜇𝑃(𝑥)) for
the input fuzzy variables (negative, zero, and positive) that are
defined by

𝜇𝑁 (𝑥) =

{{{{{{
{{{{{{
{

1 −𝑝𝑖2 ≤ 𝑥 < −𝛼2𝑥 + 𝛼1
𝛼1 − 𝛼2

−𝛼2 ≤ 𝑥 < −𝛼1
0 −𝛼1 ≤ 𝑥 ≤

𝑝𝑖
2 ,

𝜇𝑍 (𝑥) =

{{{{{{{{{{{{{
{{{{{{{{{{{{{
{

0 −𝑝𝑖2 ≤ 𝑥 < −𝛼2𝑥 + 𝛼2
𝛼2 − 𝛼1

−𝛼2 ≤ 𝑥 < −𝛼1
1 −𝛼1 ≤ 𝑥 < 𝛼1
𝛼2 − 𝑥
𝛼2 − 𝛼1

𝛼1 ≤ 𝑥 < 𝛼2
0 𝛼2 ≤ 𝑥 <

𝑝𝑖
2 ,

𝜇𝑃 (𝑥) =

{{{{{{
{{{{{{
{

0 −𝑝𝑖2 ≤ 𝑥 < −𝛼1𝑥 − 𝛼1
𝛼2 − 𝛼1

𝛼1 ≤ 𝑥 < 𝛼2
1 𝛼2 ≤ 𝑥 <

𝑝𝑖
2 .

(3)

Figure 2(b) shows the membership functions (𝜇𝑀(𝑥), 𝜇𝑈(𝑥))
for the output fuzzy variables (matched, unmatched), which
are defined by

𝜇𝑀 (𝑥) =
{{
{{
{

𝜌𝑈 − 𝑥
𝜌𝑈

0 ≤ 𝑥 < 𝜌𝑈
0 𝜌𝑈 ≤ 𝑥 ≤

𝑝𝑖
2 ,

𝜇𝑈 (𝑥) =
{{
{{
{

0 0 ≤ 𝑥 < 𝜌𝑀
𝑥 − 𝜌𝑀
𝑝𝑖/2 − 𝜌𝑀

𝜌𝑀 ≤ 𝑥 ≤
𝑝𝑖
2 ,

(4)

where 𝜌𝑀 + 𝜌𝑈 = 𝑝𝑖/2. Based on the membership functions
for angles𝑑(𝑝, 𝑞), the fuzzy rules produce thematchedweight
𝜔𝑚 and unmatched weight 𝜔𝑢 according to

𝜔𝑚 = 𝜇𝑍 (𝑑 (𝑝, 𝑞)) ,
𝜔𝑢 = max {𝜇𝑁 (𝑑 (𝑝, 𝑞)) , 𝜇𝑃 (𝑑 (𝑝, 𝑞))} .

(5)

Figure 2(b) shows the produced areas in the output domain
for the case in which 𝜔𝑚 and 𝜔𝑢 cut 𝜇𝑀(𝑥) and 𝜇𝑈(𝑥).
A crisp output value, Δ𝜌𝐹, is calculated by the centroid-
defuzzification method, as shown in

Δ𝜌𝐹 =
∫𝜇out (𝑥) 𝑥 𝑑𝑥
∫ 𝜇out (𝑥) 𝑑𝑥

, (6)

where 𝜇out(𝑥) represents the envelope function of the areas
cut by 𝜔𝑚 and 𝜔𝑢 in the fuzzy output domain. If Δ𝜌𝐹 <
𝜎, where 𝜎 is a threshold, 𝑝(𝑚, 𝑛) is extracted; otherwise,
𝑝(𝑚, 𝑛) is not extracted. The IFCE can be understood as a
mapping operator between angle 𝑑(𝑝, 𝑞) in the RGB space
and a difference Δ𝜌𝐹 in the intensity space under a fuzzy
metric.

2.4. Subregion Generation and Object Extraction. Given a
seed pixel, similar pixels that are “matched” in one image are
extracted. However, the extracted pixels may include some
discrete points. Not only the object itself but also some noise
is extracted. Usually, the noise is distributed discretely and
randomly, so some measures must be taken to ignore it.
Meanwhile, the pixels belonging to some subregions need to
be merged together in order to extract the entire object.

Here, we use a technique that is different from the tradi-
tional region-growing based method [26] to generate subre-
gions.The subregion generation, as shown in Figure 3, occurs
together with the “matching” process. First, the first seed
pixel representing the object is obtained from the stimulus
target induced by the P300 potential. Second, the angles
between the seed pixel and every other pixel in the image are
calculated and the minimal angle is selected as the starting
pixel. Third, we use the IFCE to determine the “matched”
pixels in one subimage based on the pattern, as shown in
Figure 3(c). When all the “matched” pixels based on the seed
pixel are determined in a subregion, the subregion extraction
is complete. Then, a new pixel is selected with the minimal
angle from the remaining pixels and the process described
above is repeated to extract the next subregion.The extraction
process continues until (7) is not satisfied or there is no
“matched” pixel adjacent to the subregion:

𝑑 (𝑝, 𝑞) = ∑
𝑖

[𝑝 (𝑚, 𝑛)𝑖 − 𝑞 (𝑠, 𝑡)𝑖]2 < 𝑟, (7)

where 𝑖 represents the R,G, andB values and 𝑟 is the threshold
that was preset based on experience. 𝑑(𝑝, 𝑞) calculates the
distance between one pixel and the seed pixel in RGB space.
The equation guarantees that the pixel to be extracted is near
to the seed pixel in order to extract the pixel whose color
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Figure 2: (a) Membership functions for angles. (b) Membership functions for defuzzification.
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Figure 3: The subregion growing towards (a) its 4 adjacent neighbors, (b) its 4 diagonal neighbors, and (c) its 8 surrounding neighbors.

is similar to the seed pixel. Still, this threshold may change
based on different colors, but not the image. The threshold
remains the same for objects with similar colors.

Lastly, several subregions are obtained. In this paper, it is
assumed that the subregion with the largest number of pixels
is the object. During the process of pixel extraction, there
might be some bad pixels belonging to the object that are not
extracted to the subregion because of the reflection of light.
Therefore, we fill in the pixels missing in the object.When the
number of unextracted pixels between two extracted pixels is
smaller than a given threshold, the unextracted pixels should
be regarded as part of the object and be extracted. This
process is executed in every row and column. As a result, only
the subregion representing the object is extracted.

3. Seed Pixels and Fuzzy Parameters

This paper proposes a method for object extraction from
a cluttered image, which combines the P300 paradigm

and IFCE. Just as with the most object recognition meth-
ods [27, 28], the proposed method consists of offline and
online phases. The offline phase is to establish a dataset
of the parameters of objects in a cluttered image for the
IFCE, including seed pixels and fuzzy parameters, while the
online phase is to use the P300 paradigm to select an object
of interest, that is, to select its corresponding parameters
from the dataset for the IFCE-based object extraction proc-
ess.

Figure 4 shows the selection process of P300-based object
parameters. During this process, the subject first focuses
on an object of interest represented by the P300 visual
stimuli. Then, his/her brain signals acquired by the EEG
device are analysed and classified to choose the parame-
ters of the object of interest from the dataset. Last, the
corresponding parameters are delivered to IFCE to extract
the object on which the subject is focusing. The detailed
explanation of the process is addressed in the following para-
graphs.
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P300 visual stimuli

Focus on one target

Brain signal acquisition

Signal analysis

Classification

Result output

Parameter transference to IFCE

Figure 4: The process of P300-based seed-pixel selection.

Figure 5: 3 × 3 P300 speller user interface.

3.1. P300 Paradigm. Among various EEG models, P300 has
the advantages of having multiple targets, high accuracy, and
short training time. Therefore, we designed a 3 × 3 P300
speller as the user interface, as shown in Figure 5, to represent
an object of interest that contains the RGB-value information
of the seed pixel and the fuzzy parameters. Once the target,
that is, the object of interest, is selected, the corresponding
parameters are delivered to the IFCE to extract the object in
an image.Therefore, the accuracy and real-time performance
of the P300 model can directly influence the performance
of the IFCE. In this article, we need 7 targets and reserve 2
additional targets to expand the number of seed pixels when
needed.

The P300 experiment consists of offline training and an
online experiment.The offline training is used to train a clas-
sifier for the online experiment. During a P300 experiment,
one repetition consists of flashing each of the six rows and

Offline trial

Online trial

0 1.8 3.6 5.4 7.2 9.0 10.8

(s)

Repetition

Flash one row or one column randomly

0 300 600 900 1200 1500 1800

(ms)

Figure 6: The time sequence of the offline trial, online trial, one
repetition, and one flash.

columns one by one in a randomorder.The presentation time
of a row or a column is 200ms and the interstimulus interval
(ISI) [29] is 300ms; thus one display cycle (one repetition) is
1.8 s. A single repetition flashes every row and every column
once, and every target flashes twice. A number of repetitions
constitute a trial, inwhich the subject is asked to focus on only
one target. Each target consists of 6 repetitions in the offline
training process and 3 repetitions in the online experiment. In
this article, each target flashes 6 times (namely, 3 trials) before
the P300 model outputs a result. The subject is suggested to
count the times where the target is presented [30]. Figure 6
shows the time sequence of the offline trial, online trial, one
repetition, and one flash.

EEG signals were recorded from 8 subjects who partic-
ipated in 6 sessions of the P300-model testing, including 3
offline and 3 online experiments.The acquired neural signals
are amplified, preprocessed by an analog low-pass filter of
50Hz, and digitalized with a sampling frequency of 1000Hz.
The standard EEG cap with 30 channels is used to acquire the
EEG signals.

3.2. Signal Analysis. Signal analysis consists of preprocessing,
feature extraction, and classification. In preprocessing, a
digital band-pass filter with a bandwidth of 0.1 to 30Hz
filtered the data segment lasting 800ms from a stimulus
appearance. Then, we selected data from 50ms to 800ms
to remove the average component. Lastly, data after 50-
fold frequency reduction were used to form the feature
vectors. In feature extraction, the data of 30 channels were
connected together head to tail. Thus, the feature vectors of
the target and nontarget were obtained. For classification,
we used a Fisher Linear Discriminant Analysis (FLDA) as
our classifier. The two classes of target and nontarget were
markedwith Labels 1 and−1, respectively.The FLDA classifier
in the online experiment used the classifier trained by offline
data.
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Table 1: Seed-pixel dataset (partial).

Object RGB 𝛼
1

𝛼
2

𝜌
𝑀

𝜎
O1 186,69,34 .2 .3 .2 .5
O2 104,140,53 .2 .3 .2 .5
O3 130,100,142 .1 .2 .3 .6
O4 141,47,48 .1 .4 .3 .6
O5 87,133,166 .1 .3 .3 .6
O6 134,147,181 .15 .25 .8 .5
O7 176,134,36 .2 .3 .4 .4

3.3. Seed-Pixel and Fuzzy-Parameter Selection. A seed-pixel
dataset consists of the RGB values of every pixel and the
corresponding fuzzy parameters, as shown in Table 1. O1
to O7 represent seven objects in cluttered environments,
corresponding to the first seven stimuli in the P300 model.
The RGB value is obtained from the original image shot by
a camera. For each group of R, G, and B values, a pixel
belonging to the object is randomly extracted, except for
some reflective pixels. The remaining parameters in Table 1
are obtained according to the results of the fuzzy training
process based on experience. Once one target of the seven is
selected, the corresponding parameters will be delivered to
the IFCE and the object of interest is to be extracted.

Thus, the subject can select a seed pixel from a predefined
set of pixels to directly identify different targets. Not only the
seed pixel but also the fuzzy parameters are optimized choices
because they are all pretrained before the experiment. Since
the seed-pixel selection is straightforward, the computation
time of seed-pixel determination is greatly reduced and the
real-time performance of the system is improved.

4. Experiments and Results

4.1. Evaluation of the P300-Based Model. The evaluation of
the P300-based model consists of two parts: offline training
and online experiment. In the offline training process, the
acquired data that are processed and classified as described in
the previous section are used to train the FLDA classifiers of
different subjects. In the online experiments, we applied the
FLDA classifiers to recognize the target and provide feedback
to the subjects in real time.

Eight subjects (seven right-handed, one left-handed)with
normal vision volunteered to undergo the experiments. The
collected neural signals are divided into the training and
testing data for the FLDA classifier. To evaluate the P300-
based model objectively, the acquired data are randomly
chosen to train the FLDA classifier, and then the remaining
data are used as test data for testing the FLDA classifier. The
evaluation process repeats the procedure for training and
testing the FLDA classifier 6 times. Table 2 lists the accuracy
rates of the classification results for every time and every
subject.

After the offline training, in the online experiment, the
FLDA classifier with the highest accuracy from 6 evaluations
of every subject were chosen. However, in the online exper-
iment, we finalized a classification result after voting based

Table 2: Classification accuracy rates of the offline training.

Subject Acc. 1 2 3 4 5 6 Average
S1 94.44 100 100 100 94.44 100 98.15
S2 100 100 100 100 100 100 100
S3 100 100 100 100 100 100 100
S4 94.44 100 100 100 100 100 99.07
S5 100 100 100 100 94.44 100 99.07
S6 100 100 91.67 100 91.67 100 94.44
S7 100 100 88.89 100 88.89 100 96.30
S8 83.33 100 91.67 100 100 100 95.83

Table 3: Classification accuracy rates of the online experiment.

Subject Acc. 1 2 3 Average
S1 100 100 100 100
S2 100 100 100 100
S3 100 100 100 100
S4 94.44 100 100 98.15
S5 100 100 100 100
S6 100 100 100 100
S7 100 94.44 94.44 96.29
S8 100 100 100 100

on 3 repetitions. The target that has more than two votes
will be selected as the final target. Similarly, Table 3 lists the
accuracy rates of the classification results for every time and
every subject in the online experiment. We conducted the
online experiment 3 times and each experiment includes 9
targets for 2 cycles. Then, the accuracy rates are summarized
for every experiment.

By analysing the evaluation results, we find that the
accuracy rates of the offline and online experiments are
higher than 95%. Furthermore, some subjects, despite having
no experience with the P300-based model, can achieve an
accuracy rate of 100%.The results demonstrate that the P300-
based model is very suitable for seed-pixel selection.

4.2. Segmentation of Objects of Interest. To demonstrate the
advantages of the IFCE, we contrast the segmentation results
obtained using a BP network, the traditional FCE, and the
IFCE. The object recognition results will be demonstrated in
the following part.

Figures 7(a) and 7(b) show two original images taken
by a NAO robot [31] whose camera is set to a resolution of
320×240 pixels.The objects shown in the image are all based
on the material from the camera itself. However, the image is
not dependent on the property of the camera so any camera
that can take color pictures should work. The images reveal
an ordinary scene in daily life and the illumination intensity
varies from early in the morning with sunlight to late in
the evening with the lights on. The color threshold methods
[32] cannot be used to segment the objects from the image
because there are too many colors in the image. Therefore,
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(a) (b)

Figure 7: The original images. (a) Early in the morning with sunlight. (b) Late in the evening with the lights on.

this paper uses a BP network [13] and the traditional FCE
to segment the images in order to contrast the results with
those of the IFCE. Figures 8 and 9 show the segmentation
results of 7 objects obtained using a BP network, the FCE and
the IFCE. Additionally, the BP network and FCE also used
the subregion-generationmethod in the process of segmenta-
tion.

When the illumination condition is early in the morning
with sunlight, the results shown in Figures 8(a), 8(d), and
8(g) indicate that the BP network and FCE worked with the
bright colors and achieved good performance. For some dark
colors, Figures 8(b) and 8(e) show that the BP network and
the FCE basically extracted the objects, but the details of the
objects were not revealedwell and some noise pixels were also
extracted alongwith the objects. Furthermore, in Figures 8(c)
and 8(f), the objects of interest were totally submerged in the
noise. However, the proposed IFCE was able to successfully
extract all 7 of the objects of interest. When the illumination
intensity changes late in the evening with the lights on, the
results in Figure 9 show the strong robustness of the IFCE,
in contrast with the BP network and FCE. As is shown in
Figures 9(a), 9(b), 9(c), 9(e), and 9(g), the objects of interest
were extracted, but the two methods performed badly in
terms of presentation of the details and noise elimination.
Figures 9(d) and 9(f) show that the wrong regions were
extracted as the objects of interest. Note that Figures 8 and
9 share the same parameters even though the illumination
intensities are different. Thus, the IFCE was more robust
than the BP network and FCE. For Figures 8(f) and 9(f),
the two parameters of the IFCE are changed to obtain the
segmentation result. In total, the IFCE is able to adapt to
illumination-intensity variations without recalibrating the
parameters, but the BPnetwork possibly needs to be retrained
when the illumination intensity changes. In our experiment,
we used the IFCE to segment the image and acquire the
objects of interest.

4.3. Discussion. To illustrate the illumination-intensity vari-
ations, we compare the saturation and the lightness between
the 7 objects in the two images. Table 4 lists the variation rates
of the same pixel under different illumination intensities. As
the table shows, the IFCE is able to segment the regions

Table 4: Variations in the saturation and lightness at different
illumination intensities.

Object Saturation Variation rate
(%) Lightness Variation rate

(%)
O1 140 163 16.4 120 103 14.2
O2 102 92 9.8 121 96 20.7
O3 44 40 9.1 90 120 33.3
O4 144 128 11.1 96 88 8.3
O5 173 74 57.2 145 118 18.6
O6 32 16 50.0 114 109 4.4
O7 240 157 34.6 150 101 32.7

of interest for saturation-variation rates ranging from 9.1%
to 57.2% and lightness-variation rates ranging from 4.4% to
33.3%. Therefore, the IFCE is adaptive to a wide range of
illumination-intensity variations. For the object in Figures
8(f) and 9(f), the difficulty in segmenting is caused not only
by a relatively large illumination-intensity variation but also
by its small areas; thus, a recalibration process is still needed
to obtain the object.

Furthermore, the training processes of the parameters of
the BP network and IFCE (similar to the traditional FCE)
are different from each other. The BP network often needs
a variety of samples to obtain a good model, while the IFCE
only needs one pixel belonging to the object to train the fuzzy
parameters. Therefore, the BP network needs to extract as
many pixels belonging to the object as possible in order to
obtain enough training samples. An interest region covering
a small area may be not enough to train a BP network. For
any region of interest, a single seed pixel is able to train
the fuzzy parameters for segmentation. Thus, the IFCE has
more potential to reduce the burden of humans and comput-
ers.

In terms of seed-pixel selection, it is the first key step
for image segmentation. In this paper, the first very initial
seed pixel is manually selected by using a mouse to click a
pixel on the object of interest and the corresponding fuzzy
parameters are preset. During the offline phase of the setting
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Figure 8: Comparison of the results obtained using a BP network,
FCE, and IFCE (early in the morning with sunlight).

process, the remaining seed pixels for extracting this object
are automatically determined based on (7). The criterion for
evaluating good performance is defined by observing object
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Figure 9: Comparison of the results obtained using a BP network,
FCE, and IFCE (late in the evening with the lights on).

contours as whole as possible and redundant pixels as few
as possible. This strategy for the seed-pixel selection process
combining the manual selection of the initial seed pixel and
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automatic determination of the remaining seed pixels delivers
better performance than only using manual selection of all
the seed pixels. The P300-based model directly selects a
seed pixel and its corresponding fuzzy parameters from a
preestablished dataset that has no accidental error with the
help of the P300-based model. In addition, the introduction
of brain signals provides an effective means to assist the
computer in recognizing the objects that are of interest to
humans.

For any given experimental environments, we analyse
those objects in an image needed for specific operation tasks
to establish a dataset for the P300 paradigm. In this paper, we
usually choose the objects that are commonly used for robot
navigation tasks, so the proposed method works as long as
the objects exist in the environment since each object has the
same parameters even under different conditions.The dataset
grows when more objects in an unknown environment
needed to be extracted.

The reasons for applying the P300 paradigm into object
recognition in the BRI area are as follows: First, it is an
unsolved problem: how to use a machine to effectively
represent objects of interest that a human understands. Like
controlling robot motion via brainwaves, applying the P300
paradigm is indirectly incorporating human intentions to
identify the object of interest for robot navigation, which is
able to provide abundant visual stimuli to expand objects of
interest in complex environments and to achieve high recog-
nition accuracy because they represent human intentions
correctly. Second, the visual stimuli are directly presented
in the form of objects of interest, instead of simple words
or squares, because the objects of interest might provide
subjects with more instinctive information to understand
the visual stimuli meaning and help subjects concentrate
on their mental activities [33], which elite the high quality
P300 potentials. Finally, the P300-based IFCE would be the
first attempt to combine the BCI technologies with machine
vision, which may lead to fusing human knowledge and
machine intelligence.

5. Conclusions

In this article, we integrate the EEG-based P300 model into
the object extraction process. The extraction of an object is a
complex process from the aspect of psychology, so it is very
difficult for a computer to understand an object of interest
without human involvement. Therefore, this article draws
support from the P300-based model to assist the computer
in extracting an object of interest. Herein, the P300-based
paradigm was used to induce a stimulus target representing
an object of interest including its seed pixel in the image.
Once the seed pixel was obtained via P300 brain signals, the
segmentation method uses the IFCE to process the image to
generate the subregions of interest that form the object of
interest from the image.

To validate the feasibility of the system, we conducted
some experiments and compared the results obtained using
the proposed segmentation method with those obtained
using other methods. Eight subjects participated in the P300
offline and online experiments and the average accuracy rates

reached higher than 95%. Each target of the P300 interface
represented a seed pixel containing the corresponding RGB
values and fuzzy parameters of the object. After the target
was locked by the subject, the data would be transferred to
the IFCE for segmentation. At last, the IFCE was tested on
two images taken in a daily life environment with different
illumination intensities. The results showed that the IFCE
had a better performance than the BP network and the
traditional FCE, especially for some objects with dark colors.
Moreover, there is no need to recalibrate the fuzzy parameters
of the IFCE even when the illumination intensity changes.
Therefore, even if the image changes as a whole, the method
is still effective as long as the objects in the original image
appear in a new image. If a new object appears in the image,
the corresponding parameters are obtained to update the
dataset by a short time training process which then can be
used to extract the object.

Due to the robustness and precision of interesting-
object extraction, the exact color and shape information can
be revealed vividly, which provides an effective means for
automatically identifying an object of interest by matching
a property with the object via P300 brain signals. Once an
object of interest is identified, the NAO is able to find a path
to approach the object and to conduct the operation [34].
Nevertheless, the current IFCE algorithm aims at extracting
an object with “single” similar color. As for a very complex
object, we can consider combining the color information
with others, such as object shapes and textures, to represent
the object. In addition, we try to set multiple seed pixels
representing an object with “multiple” similar colors to
extract them via IFCE. Then, these multiple similar colors
near to each other will merge together to form the object.
Generally, each object may have its specific colors different
from the others, so using these specific colorsmay be the very
convenient way to solve the problem.

Our future work will focus on applying the P300 para-
digm into robot vision because processing images acquired
from the camera of a robot provides a variety of applications
in daily life. Combining the P300-based paradigm with the
IFCE will make robot operations more effective and efficient
to serve in complex environments and especially provide an
auxiliary means for people who are unable to use both hands
in some circumstances. Furthermore, this is our first attempt
to combine the brain signal with the objects extraction
algorithm. In the future, first we will develop algorithms to
automatically update the dataset when any untrained object
appears, and second we will apply an optimization algorithm,
such as a generic algorithm (GA), to determine the initial seed
pixel and fuzzy sets instead of manual adjusting.
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