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Abstract

Background: Antimicrobial resistance (AMR) of bacterial pathogens is an emerging public health threat. This threat
extends to pets as it also compromises our ability to treat their infections. Surveillance programs in the United States
have traditionally focused on collecting data from food animals, foods, and people. The Veterinary Laboratory
Investigation and Response Network (Vet-LIRN), a national network of 45 veterinary diagnostic laboratories,
tested the antimicrobial susceptibility of clinically relevant bacterial isolates from animals, with companion
animal species represented for the first time in a monitoring program. During 2017, we systematically collected
and tested 1968 isolates. To identify genetic determinants associated with AMR and the potential genetic relatedness
of animal and human strains, whole genome sequencing (WGS) was performed on 192 isolates: 69 Salmonella enterica
(all animal sources), 63 Escherichia coli (dogs), and 60 Staphylococcus pseudintermedius (dogs).
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Results: We found that most Salmonella isolates (46/69, 67%) had no known resistance genes. Several isolates from
both food and companion animals, however, showed genetic relatedness to isolates from humans. For pathogenic E.
coli, no resistance genes were identified in 60% (38/63) of the isolates. Diverse resistance patterns were observed, and
one of the isolates had predicted resistance to fluoroquinolones and cephalosporins, important antibiotics in human
and veterinary medicine. For S. pseudintermedius, we observed a bimodal distribution of resistance genes, with some
isolates having a diverse array of resistance mechanisms, including the mecA gene (19/60, 32%).

Conclusion: The findings from this study highlight the critical importance of veterinary diagnostic laboratory data as
part of any national antimicrobial resistance surveillance program. The finding of some highly resistant bacteria from
companion animals, and the observation of isolates related to those isolated from humans demonstrates the public
health significance of incorporating companion animal data into surveillance systems. Vet-LIRN will continue to build
the infrastructure to collect the data necessary to perform surveillance of resistant bacteria as part of fulfilling its mission
to advance human and animal health. A One Health approach to AMR surveillance programs is crucial and must include
data from humans, animals, and environmental sources to be effective.
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Background
Antimicrobial resistance (AMR) is a global public health
threat, and in the United States alone at least 23,000
people die each year due to resistant bacterial infections
[1]. It is also a One Health issue because AMR emer-
gence in bacteria from humans, animals, or the environ-
ment can impact the health of the others [2]. As such, it
is critical to identify and characterize emerging AMR
threats in each of these reservoirs so that integrated con-
trol policies may be developed.
Since 1996, the U.S. Centers for Disease Control and

Prevention (CDC), the Food and Drug Administration
(FDA), and the U.S. Department of Agriculture (USDA)
have successfully monitored the development of AMR in
foodborne pathogens through the National Antimicro-
bial Resistance Monitoring System (NARMS). This pro-
gram is an integrated surveillance system that monitors
the presence and resistance of foodborne pathogens
from healthy food animals, retail meats, and human pa-
tients. These data provide valuable information on how
AMR in the food supply may affect human health [3].
However, until this study, there was no systematic data
collection of bacterial isolates from companion animals
in the US, or among other integrated surveillance sys-
tems such as those in Denmark and Canada [4, 5].
It is essential that data from animal pathogens col-

lected by veterinary diagnostic laboratories be incorpo-
rated into AMR surveillance activities as part of the One
Health framework. These data, from bacterial pathogens
of clinically ill veterinary patients, are an important
addition to other surveillance programs that look at bac-
teria from healthy farm animals, foods and ill humans.
Including veterinary pathogens in AMR surveillance will
directly assist the veterinary profession treating our
companion animals and will indirectly enhance our un-
derstanding of the epidemiology of AMR. The data from

such studies can also be used to develop antimicrobial
use (AMU) guidelines to educate veterinarians on the
principles of good antimicrobial stewardship in their
daily practice. Since the health of humans and animals
are intricately linked, this data source is one of the
critical components of One Health surveillance [6].
In March of 2015, the United States National Action

Plan for Combating Antibiotic-Resistant Bacteria (CARB)
was released to guide government, public heath, health-
care, and veterinary partners in addressing the AMR
threat [7]. The National Action Plan specifically charged
the FDA Veterinary Laboratory Investigation and Re-
sponse Network (Vet-LIRN) with developing, expanding,
and maintaining capacity in veterinary and food safety
laboratories to conduct standardized antimicrobial
susceptibility testing (AST) and characterize priority
animal pathogens through whole genome sequencing
(WGS). Other partners in this effort include the
USDA’s National Animal Health Laboratory Network
(NAHLN) and NARMS.
In order to address the tasks outlined by the CARB

initiative, representatives from FDA, USDA and the
American Association of Veterinary Laboratory Diag-
nosticians (AAVLD) formed the AAVLD Antimicrobial
Resistance Working Group (Working Group). The
Working Group conducted a survey among veterinary
diagnostic laboratories in the U.S. [8] to identify which
bacteria are commonly obtained in clinical laboratories
and to develop a priority list of pathogens for surveil-
lance. Using the recommendations of the Working
Group [8] the FDA Center for Veterinary Medicine
(CVM) developed a pilot program to evaluate the feasi-
bility of using veterinary diagnostic laboratories in the
Vet-LIRN network to monitor the antimicrobial suscep-
tibility of selected veterinary pathogens. The four key
objectives of the pilot project were to develop the
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laboratory infrastructure for a collaborative project with
multiple participating veterinary diagnostic laboratories,
to confirm laboratory proficiency for AST and WGS, to
develop technology for sharing data within the network
and to make the information publicly available.
The Working Group recommended Escherichia coli,

Salmonella enterica, and Staphylococcus pseudintermedius
for resistance monitoring based on frequency of culture,
importance of the pathogen in clinical practice and avail-
ability of standardized AST methods for the pathogens.
Dogs comprise the majority of clinical diagnostic veter-
inary isolates, and scientific reports also suggest that
pathogens may transmit between humans and compan-
ion animals [9–11]. As a result, Vet-LIRN collected both
S. pseudintermedius and E. coli specifically from dogs,
where each bacterium frequently causes self-limiting in-
fections. Salmonella was collected from all hosts, where
it can cause gastrointestinal or in some cases systemic
infections in a variety of animal species.
The Vet-LIRN program funded new AST testing

equipment for multiple laboratories since the launch of
the CARB initiative. Additionally, support from Vet-LIRN
has rapidly increased the capacity for standardized WGS
in U.S. veterinary diagnostic laboratories by providing
state-of-the-art equipment and training. However, the
Working Group survey [8] also noted considerable vari-
ation in AST methods, inhibiting direct comparison be-
tween labs. As genotypic markers of resistance identified
by WGS match phenotypic measures approximately 99%
of the time for S. enterica and E. coli, WGS can serve as
reasonable proxy for traditional AST methods, circum-
venting the limitations noted in the survey [12–14]. Add-
itionally, WGS can provide information on the potential
transmissibility of resistance on mobile elements and the
relatedness of isolates to those causing human illness [15].
Here we describe the data collection and WGS results

from 2017, the first year of the pilot program, which in-
cluded E. coli and S. pseudintermedius from dogs and S.
enterica from any host animal. Specifically, we sought to
assess the prevalence of antimicrobial resistance genes
(ARGs) in our study population and the genetic back-
grounds in which these ARGs are present.

Results
A total of 1968 isolates (691 E. coli, 691 S. pseudinterme-
dius, and 586 S. enterica) were collected, 200 of which
were sequenced (68 E. coli, 71 S. enterica, and 61 S. pseu-
dintermedius). The anatomical sites from which these
isolates were collected is shown in Table 1.
Eight isolates were excluded from the initial set of 200 se-

quenced isolates. Four E. coli isolates were excluded because
they were collected from non-canine hosts (ECOL-17-VL-
LA-KS-0031, ECOL-17-VL-LA-KS-0009, ECOL-17-VL-LA-
KS-0046, and ECOL-17-VL-SD-NC-0028). One E. coli

sequence (ECOL-17-VL-SD-OK-0009) and one S. enterica
isolate (SAL-17-VL-LA-ND-0006) were excluded because of
unusually long total assembly lengths. These two sequences
also had > 20% of their assembly length classified as
to a different species (S. enterica and Enterobacter
cancerogenus, respectively). Two other isolates, one
Salmonella (SAL-17-VL-SD-NC-0013) and one S.
pseudintermedius (SPSE-17-VL-LA-KY-0018) were ex-
cluded after the majority of the assembly length was
classified as a different species (Citrobacter braakii
and S. schleiferi, respectively). The final dataset consisted
of 63 E. coli, 69 S. enterica, and 60 S. pseudintermedius
sequences.

E. coli
No resistance genes were identified in 60% percent of
the E. coli isolates. The majority of E. coli isolates (38/
63, 60%) were classified as phylogroup B2, including one
that matched the atypical profile reported by Mendonça
and colleagues [16], but clustered with other B2 isolates
in the phylogeny (n = 38) [Fig. 1]. Fewer ARG were

Table 1 Anatomical site from which pathogen was isolated

Anatomical site: E. coli S. pseudintermedius S. enterica

abscess 0 3 0

air sac 0 0 1

aspirate swab 0 1 0

bladder 2 0 0

brain 0 1 0

crop 0 0 1

ear 5 10 0

gall bladder 1 0 0

GI/fecal 5 1 47

heart 0 0 1

joint 0 1 2

kidney 0 0 1

liver 0 0 5

lung 6 3 7

lymph node 0 0 1

nasal swab 0 1 0

prostatic wash fluid 1 0 0

skin 6 26 0

unspecified/swab 0 1 0

unspecified/tissue 3 5 5

urine 35 5 0

uterus 1 0 0

vaginal swab 1 0 0

wound 2 3 0

Total 68 61 71
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detected in phylogroup B2 isolates (median: 0, interquar-
tile range: 0–0) as compared to those that belonged to
other phylogroups (median: 2, interquartile range: 0–8).
Fifteen isolates (24%) were predicted to be resistant to
cephalosporins, conferred by blaCMY and blaCTX-M
genes. Eight isolates also possessed mphA genes pre-
dicted to confer macrolide resistance. Fourteen isolates
had gyrA amino acid substitutions expected to confer
fluoroquinolone resistance (13 S83 L and D87N, 1 S83A
and D87G), although none of the isolates had plasmid-
mediated quinolone resistance genes. One isolate had
genes expected to confer resistance to almost all anti-
microbial classes, including cephalosporins, macro-
lides, fluoroquinolones, aminoglycosides, and tetracycline,
meaning an infection caused by this bacterium would be

extremely difficult to treat. A full summary of ARG detec-
tions is included in Additional file 2.

Salmonella
The majority (46/69, 67%) of Salmonella had no
known resistance genes. The most common host
types for Salmonella were bovine (n = 25), equine (n
= 15), porcine (n = 9) and chicken (n = 6). No other
host type was shared by more than two isolates. Half
(33/66, 50%) of the isolates were separated from a
human clinical isolate in the NCBI Pathogen Browser
by 20 or fewer SNPs [Fig. 2]. Three isolates were ex-
cluded from this analysis because the closest clinical
isolate was from a non-human host. The most fre-
quently identified serovar was Typhimurium (n = 12),

Fig. 1 Phylogeny and Antimicrobial Resistance Gene Predictions in E. coli. Midpoint-rooted core genome phylogenetic tree of E. coli isolates with
ARG predictions. Each column corresponds to the ARG listed along the top, with colors corresponding to the antibiotic class to which that gene
confers resistance. A filled box indicates the detection of that gene
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followed by serovars Dublin (n = 7) and Newport (n = 7)
[Table 2]. None of the isolates had fluoroquinolone re-
sistance mutations in gyrA. Two isolates had the
plasmid-mediated quinolone resistance gene qnrB5.
These two isolates also had blaCMY-2 resistance genes,
which were present in 10 strains (14%) and confer resist-
ance to cephalosporins and potentiated penicillins. The
greatest number of ARGs were detected in porcine and
bovine isolates. The only other host types for isolates in

which any ARGs were detected were chicken, turkey, and
feline [Fig. 3a], and the feline isolate belonged to the
bovine-adapted serovar Dublin. It is unclear if these differ-
ences in resistance prevalence are broadly representative
due to the low number of isolates from each animal
source. While the median number of ARGs detected was
0, both for isolates more closely (≤20 SNPs) and distantly
(> 20 SNPs) related to human isolates, the distribution
skewed towards higher values in the more human-related
set, primarily driven by serovar Dublin [Fig. 3b].
A consistent pattern of ARG presence was found in

6/7 Salmonella serovar Dublin isolates, with sul2,
aph(3″)-Ib/aph(6)-Id, tet(A), and floR being detected
within an approximately 7 kbp window. This pattern
was also shared by individual isolates of serovars
Agona, Derby, and Heidelberg, suggesting horizontal
transfer of this resistance element across distinct line-
ages [Fig. 4]. These nine isolates were the only ones
with an IncA/C2 plasmid match detected in Plasmid-
Finder, with eight also carrying a blaCMY-2 family
beta-lactamase. Together, these genes are predicted to
confer resistance to sulfonamides, streptomycin, tetra-
cycline, phenicols, penicillins, and cephalosporins. In
assemblies of 3 isolates, two of serovar Dublin and
one of serovar Agona, blaCMY-2 was located on the
same contig as the sul2–floR region. In the serovar
Dublin assemblies, it was 28.3 kbp upstream of sul2
while in the serovar Agona assembly this distance
was 29.5 kbp. A full summary of ARG and plasmid
detections is included in Additional file 2.

Fig. 2 Number of Human-related S. enterica Isolates by Host Organism. Red bars show the number of isolates from each host organism that were
separated from a human isolate by 20 or fewer SNPs. Grey bars show the number of isolates separated from a human isolate by more than 20 SNPs

Table 2 Salmonella enterica Serovars

Serovar Count Host Type

Typhimurium 12 Bovine (2), Equine (2), Porcine (2), Chicken (2),
Pigeon (2), Llama (1), Parrot (1)

Dublin 7 Bovine (6), Feline (1)

Newport 7 Equine (5), Llama (1), Raccoon (1)

Cerro 4 Bovine (3), Chicken (1)

I 4, [5],12:i:- 4 Porcine (2), Equine (1), Canine (1)

Mbandaka 4 Bovine (2), Chicken (1), Canine (1)

Infantis 3 Equine (1), Porcine (1), Feline (1)

Kentucky 3 Equine (1), Chicken (1), Reptile (1)

Braenderup 2 Equine (2)

Derby 2 Porcine (2)

Montevideo 2 Bovine (2)

Uganda 2 Bovine (2)

Other 17 Bovine (7), Equine (4), Porcine (2), Chicken (1),
Reptile (1), Turkey (1), Goat (1)
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Fig. 3 Number of ARGs detected by Host Organism and Human-relatedness. Box-and-whisker plots showing the number of ARGs detected (a) in
isolates from each host type and (b) is isolates separated from a human isolate by 20 or fewer (red) or more than twenty (grey) SNPs

Fig. 4 Heatmap of S. enterica ARGs by Serovar. Each row corresponds to a serovar, ordered by number of isolates. Each column is an ARG, clustered
by co-occurrence as shown by the dendrogram. Darker colors indicate that a given gene is present in a higher proportion of isolates of that serovar
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Staphylococcus pseudintermedius
The distribution of ARGs per isolate in S. pseudintermedius
was bimodal, with two or fewer ARGs detected in 36/60
(60%) assemblies and seven or more ARGs were detected
in 20/60 (33%) [Fig. 5]. The most frequently detected ARG
was a blaZ family beta-lactamase, found in 46/60 (77%) as-
semblies. The tetracycline resistance gene tetM was found
in 25/60 (42%) and the bifunctional gentamicin/kanamycin
resistance gene aac(6′)-Ie/aph(2″)-Ia was found in 21/60
(35%). The mecA gene, which confers methicillin resistance,
was detected in 19 isolates comprising 14 different MLST

profiles [17]. Nineteen isolates also contained a 2.3 kbp re-
sistance region consisting of aph(3′)-IIIa, sat4, and
ant(6)-Ia, which are predicted to confer resistance to kana-
mycin, streptothricin, and streptomycin, respectively. A
gyrA S84 L fluoroquinolone resistance mutation was
present in 16/60 (27%) isolates. A full summary of
ARG detections is included in Additional file 2.

Discussion
Antimicrobial resistance is a major public health issue of
growing importance, which requires comprehensive One

Fig. 5 Phylogeny and Antimicrobial Resistance Gene Predictions in S. pseudintermedius. Midpoint-rooted core genome phylogenetic tree of S.
pseudintermedius isolates with ARG predictions. Each column corresponds to the ARG listed along the top, with colors corresponding to the
antibiotic class to which that gene confers resistance. A filled box indicates the detection of that gene
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Health surveillance and action plans to identify and ap-
propriately respond to the problem. This study fills one
important gap in existing AMR surveillance in the U.S.
by incorporating bacteria collected from veterinary diag-
nostic laboratories. By making all of the WGS data pub-
licly accessible, this study also facilitates international
research and surveillance efforts.
The majority of Salmonella isolates in our study had

no ARGs detected, consistent with NARMS human
data where approximately 76% of Salmonella remain
susceptible to all 14 antibiotics on their panel [3]. How-
ever, the distribution of ARGs varied across different
host types. This could arise from a combination of fac-
tors, including variation in the host range of different
serotypes, the clinical conditions leading to capture by
our sampling framework for different species, and dif-
ferences in antibiotic exposure. While our data are in-
sufficient to formally assess whether certain host
species are more likely to contribute to human infec-
tion, they do suggest that companion animals warrant
further attention. Serotype-specific differences in resist-
ance prevalence were also not surprising, as some Sal-
monella serovars are known to commonly possess
multidrug-resistance elements. Our Salmonella Dublin
isolates provide an example of the connection between
humans, livestock, and companion animals. As would
be expected given that it is a cattle-adapted serotype,
most of our Salmonella Dublin isolates were from bo-
vine hosts. However, the Salmonella Dublin isolate with
the closest genetic link to a human isolate was from a
cat. Human infections with Salmonella Dublin are typ-
ically associated with exposure to beef and dairy prod-
ucts, exposures which may be shared with companion
animals [18]. While clinical history of this cat is un-
known, and the source of its infection cannot be deter-
mined, we hope continued surveillance of companion
animals will enable us to better understand their role in
zoonotic transmission pathways as an integral compo-
nent of the One Health framework.
As with Salmonella, most of the E. coli isolates from this

study did not carry any ARGs. However, we identified one
E. coli isolate with resistance mechanisms to all major
antimicrobial classes, something which has not been ob-
served in NARMS sampling of food animals and retail
meats. We also found several E. coli isolates with the
extended-spectrum beta-lactamase genes blaCTX-M-14 and
blaCTX-M-15, which were also the most common resistance
genes found among isolates from E. coli isolated from re-
tail meats and food animals [19]. This suggests the poten-
tial relatedness of these strains or their mobile resistance
elements, and the higher prevalence of these genes in dog
isolates may be in line with previous work that has found
pet ownership associated with human colonization of E.
coli carrying such resistance mechanisms [20].

The mecA methicillin resistance gene was detected in
32% of our S. pseudintermedius isolates. Methicillin-resist-
ant S. pseudintermedius (MRSP) emerged as a significant
concern in the early 2000s, with one study finding that the
frequency of methicillin resistance among canine S. pseu-
dintermedius isolates tested at a veterinary teaching hos-
pital increased from < 5% in 2001 to nearly 30% in 2008
[21]. The overall prevalence of MRSP has been reported
from 0 to 4.5% in healthy dogs and up to 7% in dogs with
inflammatory skin disease in North America and Europe,
with even higher prevalence in some clinical populations
[17, 22]. Fourteen distinct MLST profiles were observed
amongst mecA-positive isolates, indicating that the MRSP
population in North America may be more diverse than
has previously been reported [23, 24]. In line with previ-
ous studies, we also found that mecA-positive isolates
tended to carry genes expected to confer resistance to
multiple other classes of antibiotics, limiting treatment
options [9, 10, 17, 23, 25, 26]. While there is evidence of S.
pseudintermedius strain sharing between pets and their
owners, the extent to which contact with companion ani-
mals increases risk is unclear [9, 10, 27].
Together, these data underscore the relevance of AMR

monitoring of bacteria causing significant disease in ani-
mal species from veterinary diagnostic labs, fulfilling our
objectives to establish an animal AMR monitoring sys-
tem. This component should not be overlooked as part
of any One Health national surveillance strategy, and
Vet-LIRN will continue to monitor resistance in Salmon-
ella, E. coli, and S. pseudintermedius, providing import-
ant information on temporal trends. These data will be
used to design further surveillance studies and to sup-
plement data from existing surveillance programs as we
strive to develop evidence-based practices to support the
reduction of AMR in human and animal pathogens.

Conclusion
This study highlights the utility of performing AMR sur-
veillance of bacteria from veterinary diagnostic labora-
tories as a part of any national surveillance program.
The incorporation of companion animals helps address a
key gap in the current national AMR surveillance frame-
work as part of a One Health paradigm. As the isolates
for this study were obtained from clinical cases submit-
ted for diagnosis, we acknowledge that they are not rep-
resentative the overall population of these bacteria in
targeted host species. However, they can serve as a valu-
able sentinel population, as shown by the finding of
some highly resistant bacterial strains, including some
related to those from humans. WGS has become a cru-
cial tool to identify the origins and spread of AMR and
to develop successful One Health surveillance strategies.
Such surveillance studies will help to assess trends in
AMR over time and can facilitate the development of
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public policies based on sound science. Vet-LIRN will
continue to support our laboratories’ participation in
AMR monitoring of veterinary pathogens as part of
fulfilling its mission of advancing human and animal
health.

Methods
Pathogen selection
Vet-LIRN selected two microbial pathogens monitored
by NARMS: Salmonella enterica and Escherichia coli. A
third pathogen, Staphylococcus pseudintermedius, was
selected based on the results of the Working Group sur-
vey. Isolates of Salmonella were collected from all ani-
mal hosts, and E. coli and S. pseudintermedius isolates
were collected only from dogs, with all bacteria being
derived from clinically sick animals.

Participating laboratories and planned isolate collection
Isolates were collected by a network of 20 Vet-LIRN vet-
erinary diagnostic laboratories (“source laboratories”).
Each of these were partnered with one of four WGS la-
boratories. Figure 6 shows the geographical distribution
and organization of Vet-LIRN WGS and source labora-
tories in 2017. All laboratories were affiliated with either
an academic institution or U.S. state government. Source
laboratories collected the first four isolates each month,

from each of the three selected pathogens, S. enterica, E.
coli, and S. pseudintermedius, for a potential total of 144
isolates per source laboratory. The potential total num-
ber of isolates for 2017 was 2880.
U.S. laboratories serotyped all Salmonella isolates ei-

ther in-house or by referral to the USDA National Veter-
inary Services Laboratory. Isolates from Canada were
serotyped by Public Health Agency of Canada National
Microbiology Laboratory. Laboratories were instructed
to select only one isolate per client submission. Isolate
species were determined by either analytical profile
index (API), matrix assisted laser desorption/ionization-
time of flight (MALDI-TOF) mass spectrometry, polymer-
ase chain reaction (PCR), Sensititre, Vitek, or biochemical
identification. A frozen aliquot of each isolate was sent to
the corresponding WGS laboratory. Each quarter,
Vet-LIRN randomly selected one isolate of each pathogen
species from each source laboratory to be sequenced.
Source laboratories submitted metadata for each iso-

late, while anonymizing certain features by omitting spe-
cific geographic location and client information. In the
U.S., veterinarians are required by the Principles of Vet-
erinary Medical Ethics [28], and by law [29], to keep the
medical records of their patients confidential. Metadata
was collected using the metadata sheet developed by the
GenomeTrakr program [30], with additional information

Fig. 6 Geographical distribution and organization of Vet-LIRN WGS and Source laboratories. Twenty source laboratories (19 is the U.S. and one in
Canada) (red) collected isolates. Four WGS labs (blue) selected five collaborating source labs each and sequenced a subset of the isolates
submitted by their source labs. Remaining Vet-LIRN laboratories, currently not participating in the project, are shown in black. Additional
labs became source labs in 2018. License for using and editing US Map Template for Power Point was purchased from Envato Pty Ltd.,
PO Box 16,122, Collins Street West, Victoria, 8007 Australia

Ceric et al. BMC Veterinary Research          (2019) 15:130 Page 9 of 13



required by the Vet-LIRN Program Office. Those fields
included the information on which source lab collected
the isolate, Vet-LIRN specific isolate ID, isolate taxo-
nomic name, date of collection (day, month, or year),
U.S. state, specific animal host, case type (primary, sec-
ondary, tertiary), as well as the anatomical site from
which the pathogen was isolated. A complete metadata
sheet template is provided as Additional file 1.
Four sequencing laboratories (“WGS labs”) each had

five collaborating source labs (Fig. 6) and sequenced a
subset of the isolates submitted by their source labs
quarterly. These isolates were selected at random by the
Vet-LIRN program office, to obtain a snapshot of the
pathogens being cultured at referral veterinary laborator-
ies. One isolate of each pathogen species was sequenced
per quarter, from each of the source labs. Depending on
the case load of source labs, each WGS lab was expected
to sequence up to 60 isolates/year, for a potential total of
240 isolates for all of 2017.

Whole genome sequencing (WGS)
After harmonizing the test method across four different
laboratories and passing an FDA GenomeTrakr program
proficiency test, Vet-LIRN WGS laboratories sequenced
the isolates. DNA was extracted from either a single col-
ony, or a pellet of a liquid culture from a single colony,
using the DNeasy Blood and Tissue Kit (QIAGEN Sci-
ences, Germantown, MD). DNA quality control was per-
formed using Qubit instrumentation and reagents
(Thermo Fisher Scientific, Waltham, MA). Genomic li-
braries were prepared following the Nextera XT Library
Preparation Kit protocol (Illumina, Inc.) according to
the manufacturer’s instructions. Laboratories had the op-
tion of normalizing libraries either using the Illumina
bead-based normalization procedure or by concentration
of the purified libraries using Qubit. Sequencing was
performed on the Illumina MiSeq platform using v2,
2x250bp chemistry (Illumina, Inc., San Diego, CA).

Sequence analysis
All sequencing reads were uploaded to National Center
for Biotechnology Information (NCBI) SRA under BioPro-
jects PRJNA316449, PRJNA314607, and PRJNA316451.
Isolate-level accession numbers are listed in Additional file
2. Any samples with an average coverage of less than 30X
were repeated until they met this threshold. Low quality
segments were removed using the Trimmomatic version
0.36 sliding window program with a window size of 4 and
minimum quality score of 20 [31]. Trimmed reads were
then assembled using SPAdes version 3.10.1 [32]. Assem-
bly quality was assessed using Quast version 4.0 [33] and
contigs were classified using Kraken2 [34]. Samples were
excluded from further analysis if they showed evidence of
substantial contamination.

Parsnp was used to generate a core genome alignment
phylogenetic tree for each of the three species [35]. As-
semblies were screened for AMR genes in the NCBI and
ARG-ANNOT [36] databases and plasmids in the Plas-
midFinder [37] database using ABRicate version 0.8
(https://github.com/tseemann/abricate). Endogenous and
ubiquitously detected resistance genes (ampC, ampH, and
penicillin-binding protein in E. coli) and regulatory genes
(tetR in S. enterica and E. coli and mecI and mecR1 in S.
pseudintermedius) were excluded from antimicrobial re-
sistance gene (ARG) counts but are listed in Additional
file 2. Trees and ARG predictions were visualized using
iTOL [38]. Assemblies were annotated using Prokka [39],
and the gyrA gene was searched for amino acid changes
associated with fluoroquinolone resistance: amino acids
83 and 87 in E. coli and Salmonella and 84 in S. pseudin-
termedius [25, 40, 41]. Salmonella serovar predictions
were generated using SISTR version 1.0.2 [42]. E. coli phy-
logroups were determined by searching each assembly for
the Clermont quadriplex PCR primers using BLAST [43]
and verifying that they would produce a PCR product of
the expected size [44]. Ambiguous phylogroup predictions
were verified by comparing to the core genome phylogeny
and manually examining the target sequence fragments.
Multilocus sequence typing (MLST) profiles were deter-
mined using SRST2 and the seven-locus S. pseudinterme-
dius MLST scheme hosted on PubMLST (https://pubmlst.
org/spseudintermedius/, accessed October 31, 2018) [24,
45]. For Salmonella isolates, we obtained the SNP distance
to the nearest clinical isolate, assumed to be of human ori-
gin, using the NCBI Pathogen Detection Isolate Browser
(https://www.ncbi.nlm.nih.gov/pathogens/, accessed February
21, 2019) [46]. Isolates were excluded from SNP distance
comparisons if the nearest clinical isolate was specified as ori-
ginating from a non-human host. A distance of ≤20 SNPs
was used as a threshold for potential relatedness [47].

Additional files

Additional file 1: Metadata entry template sheet. (XLSX 284 kb)

Additional file 2: A table with full summary of ARG and plasmid detections
and NCBI isolate-level accession numbers. (XLSX 33 kb)
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